蔗糖转运蛋白VvSUC11、VvSUC12在提高甜菜含糖量中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
VvSUC11和VvSUC12是葡萄蔗糖转运蛋白,已有的研究表明二者的功能是负责蔗糖从质外体向薄壁细胞装载,在葡萄成熟时果实糖分积累中起重要作用。
     在农业生产实践中,为了获得高产量,人们不仅要设法提高农作物光合作用形成的生物产量,而且要通过一定的措施来提高其经济器官的产量;因此,利用蔗糖转运蛋白来定向的提高农作物经济器官的产量,是一种调控库源关系的有效手段。
     为了研究蔗糖转运蛋白能否提高甜菜含糖量,本研究将葡萄蔗糖转运蛋白基因VvSUC11和VvSUC12与甘薯的甘薯贮藏蛋白(sporamin)基因的根部特异性启动子命名为SP1和SP2重组。以实验室保存的pCAMBIA2301为起始载体构建了用于转化甜菜的双价植物表达载体PCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12。
     甜菜是两年生异交草本植物,因为其栽培驯化的时间较短,遗传背景狭窄,种质资源贫乏;特别是甜菜自交高度不亲和性,使得优良甜菜单株的基因型因不能遗传而很容易丢失,给优良选育材料品种的繁殖和保存带来了很大的困难。现代生物技术的发展,特别是基因工程的发展给甜菜育种方法开辟了一条新途径。可以通过植物组织培养和基因工程相结合的方法进行甜菜的分子育种。目前关于甜菜组织培养的众多研究表明,甜菜可以采取直接器官发生再生植株方式(不经历愈伤组织阶段)进行组织培养,而且用这种方式获得的再生苗更适合作为转化外源基因的受体材料。研究表明,甜菜的叶柄作为外植体,其再生频率较高,遗传转化后,其转化率也较高。
     本研究建立了甜菜叶柄高效直接再生体系。试验通过种植无菌甜菜苗、无菌苗预培养、叶柄的诱导分化培养,不定芽的产生和生根,获得了完整的再生植株,建立了甜菜再生体系。试验结果表明:甜菜种子消毒后在1/2MS培养基中生长10 d左右,取出幼苗除根后在预培养培养基(MS+6-BA0.5mg/L+NAA0.05mg/L)的中预培养50-60 d,然后取其叶柄作为外植体在诱导分化培养基(MS+6-BA0.5mg/L+NAA0.05mg/L)中进行不定芽诱导,不定芽的诱导率在50%以上;将不定芽移到生根培养基(MS+IBA2.0mg/L)中诱导生根,诱导生根率在90%以上。
     用农杆菌介导法将载体PCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12转化甜菜KWS-9103品种,发现预培养4d,侵染时农杆菌的浓度OD600值为0.5附加0.005%表面活性剂:Silwet L-77,延迟筛选4d,转化效率最高,可达42%。对在卡那霉素中分化并生根的甜菜植株进行PCR和RT-PCR检测,证明了目的基因已整合到甜菜中并表达,为研究其能否提高甜菜的含糖量奠定了坚实的基础。
VvSUC11 and VvSUC12 are sucrose transporters from grape berries. Studies showed that their function was the loading of sucrose from the apoplast into the parenchyma cells. They play a key role in the accumulation of sugar during this process of ripening of grapes.
     In agricultural production, in order to obtain high yield, people not only try to improve the biological yield of photosynthesis, but also to adopt certain measures to improve economic production. The use of sucrose transporters orientation to improve the economics of production is an effective mean to regulate the relationship between the sources to the library.
     To study whether sucrose transporters can improve the yields of sugar of sugar beet, we have recombined genes VvSUC11、VvSUC12 from the grapes, and root-specific promoters of sweet potato storage protein gene from sweet potato, named as SP1 and SP2. We have constructed a bivalent plant expression vector PCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 using PBI121 and pCAMBIA2301 as original vectors.
     Sugar beet is a 2-year-old, out crossing herbaceous plant. It is a poor seed resource because of shorter time of domestication cultivation and narrow genetic background. In particular, its high incompatibility in self-fertilization makes it easily to lose good single plant genotype causing lots of difficulties in breeding and preservation of the fine varieties. However, the development of modern biotechnology, particularly, the development of genetic engineering provides a new way in the breeding of sugar beet.. We can precede molecule breeding by the way of combining plant tissue culture and genetic engineering. At present, the large numbers of sugar beet tissue culture studies have shown that regeneration plants from the direct organogenesis (not through callus phase) and plant regeneration was a more suitable receptor plant for receiving foreign gene. Studies have shown that the rates regeneration of petioles of sugar bee as explants is higher, and after transformation, their rate of transformation is also higher.
     We have stetted up a high efficient direct regeneration system of its petioles. Through planting free vaccine seedlings, their pre-cultivating, induction of differentiation cultivating of petioles, adventitious buds obtained and rooting, regenerated plants obtained, a rapid propagation system of sugar beet was established. The results showed that sugar beet seeds were sterilized and germinated in the1/2MS for 10 d, then their seedlings were transferred to pre-culture medium (MS +6-BA 0.5mg/L+NAA0.05mg/L) for a 50~60 d pre-culture, and then their petioles were cut as explants and were transferred to the shoot-inducing medium(MS+6-BA0.5mg/L+NAA0.05mg /L) for induction of adventitious buds, induction rate of adventitious buds was more than 50%. Adventitious buds were placed onto the rooting medium (MS+IBA2.0mg/L) for rooting. Induction rate of rooting was more than 90%.
     We transformed the vector PCAMBIA2301-SP1-FvSUC11-SP2-VvSUC12 into sugar beet of KWS-9103 breeding line with the methodologies of Agrobacterium-mediated transformation. We have established the optimal genetic transformation protocol of sugar beet as followed:the explants pre-cultured for 4 days were immersed in Agrobacterium suspension of OD600= 0.5, supplemented with 0.005% Silwet L-77, and followed by 4-day culture on medium containing cefotaxime, then the buds were selected on medium containing kanamycin and cefotaxime. The percentage of kanamycin -resistant buds was as high as 42%. Results of PCR and RT-PCR proved that the aim genes had integrated into sugar beet genome and expressed. It will lay a solid foundation for studying whether sucrose transporters can improve the yields of sugar of sugar beet.
引文
[1]李满红.新时期我国甜菜育种及良种繁育发展策略[J].中国甜菜糖业,2007,(2):1419.
    [2]王燕飞,张立明,杨洪泽,等.谈新疆甜菜育种方向及品种合理配置[J].中国糖料,2003,(3)42-46.
    [3]张艳春,黄祥辉,邵金旺.甜菜转基因研究进展[J].中国糖料,2002,(1):34-36.
    [4]姚华建,李大伟,于嘉林,等.甜菜坏死黄脉病毒外壳蛋白基因在甜菜转基因植株中的表达[J].生物工程学报,1997,13(4):440-442.
    [5]张素珍,向本春,席德慧,等.抗丛根病转基因甜菜田间试验简结[J].石河子科技,2000,(1):2-3.
    [6]刘巧红,徐德吕,孔凡江,等.基因工程方法在抗甜菜丛根病育种中的应用[J].中国甜菜糖业,2000,(1):17-19.
    [7]徐德吕,刘巧红,江莉萍.甜菜转基因植株抗性表现及种子获得[J].中国甜菜糖业,2003,(4):34.
    [8]郝秀英,于嘉林,王燕飞,等.新疆甜菜品种(系)基因转化和再生体系的建立[J].中国糖料,2002,(4):5-7.
    [9]徐德吕,刘巧红,江莉萍.甜菜转基因植株抗性表现及种子获得[J].中国甜菜糖业,2002(4):34.
    [10]徐伟丽,徐德昌,刘巧红,等.第三代转基因甜菜植株的检测[J].中国甜菜糖业,2006,(1):22-23.
    [11]马龙彪,徐香玲,张悦琴,等.几J‘质酶基因转化甜菜的研究[J].中国糖料,2000,(3):8-10.
    [12]李红侠,张文彬.甜菜抗虫转基因研究现状[J].中国甜菜糖业,2004,(2):20-24.
    [13]陈中义,吴限,张杰,等PCR-RFLP筛选DNA文库克隆Bt cry基因的研究[J].中国农业科学,2003,36(4):398-402.
    [14]李天然,张剑锋,李旭刚.抗冻冷蛋白基因转化甜菜的研究[J].内蒙古大学学报,1998,29(1):144-146.
    [15]张红,段晓光,杨爱芳,等.沿海甜菜的遗传转化和转基因耐盐植株的获得[J].技术通讯,2005,15(8):72-77.
    [16]刘宝辉.玉米蔗糖磷酸合成酶(SPS)基因的克隆及对甜菜遗传转化的研究:[博十学位论文].哈尔滨:东北农业大学,2003:22-35.
    [17]杨敏.荷兰育成低热量糖转基因甜菜[J].农村实用技术,2006,(3):10.
    [18]李敏,杨双,阮燕晔,等.拟南芥T-DNA插入突变体atsuc3的PCR鉴定[J].植物生理学通讯,2006,42(1):91-94.
    [19]杨彩菊,郝大海,杨素祥,等.高等植物中的蔗糖载体[J].植物生理学通讯,2006,42(4):767-776.
    [20]陈思,曾磊,陈尚武,等.蔗糖转运蛋白基因VvSUC12和VvSUC27在葡萄胚性和非 胚性愈伤组织中的差异表达[J].生物工程学报,2010,26(4):530-537.
    [21]邵明文,张悦琴,黄彩云.甜菜花药、胚珠培养及其在育种上的应用[J].中国农业科学,1993,26(2):56-62.
    [22]郭九峰,邵明文,马龙彪,等.甜菜原生质体培养再生植株的研究[J].中国糖料,1994(4):4-9.
    [23]刘巧红,江莉萍,顾红.甜菜原生质体培养及大块愈伤组织的产生[J].中国菜糖业,2001,(2):14-15.
    [24]张剑锋,李天然,邓香兰.高效诱导甜菜再生植株的研究[J].生物工程报,1997,13(3):273-278.
    [25]张生学,不同基因型甜菜叶柄直接再生体系的建立及影响因素的研究[硕十学位论文].中国农业科学院硕士学位论文,2007.
    [26]杨爱芳,赵仕兰,朱丽萍,等.利用转基因技术创造甜菜耐盐种质[J].山东农业科学,2002,(2):3-6.
    [27]张海霞,张少英,白薇,等.提高甜菜遗传转化频率的研究[J].中国糖料,2005,(1):6-8.
    [28]Ehlers U, Commandeur U, Frank R, et al. Cloning of the coat protein gene from beet necrotic yellow vein virus and its expression in sugar beet hairy roots. Theor[J]. Appl.Genet.,1991, 81:777-782.
    [29]Tertivanidis K,Goudoula C,Vasilidiotis C,et al. Superoxide dismutase transgenes in sugar beet confer resistance to oxidative agents and the fungus C.beticola[J]. Transgenic Research,2004, PC1193:1-9.
    [30]Morad J, Peyman N, Mohammad A M, et al. Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic crylAb gene[J].Euphytica,2009,165:333-344.
    [31]Tian Y, Fan L, Thurau T, et al. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome[J]. J Mol Evol,2004,58:40-53.
    [32]Suren S,Michael K,Carolien P,et al. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection[J]. Plant Molecular Biology,2004,1:1-10.
    [33]Wright T, Penner D. Cell selection and inheritance of imidazolinone resistance in sugar beet (Beta vulgaris) [J].Theor Appl Genet.,1998; 96:612-620.
    [34]Mannerlof M,Tuvesson S,Steen P,et al.Transgenic sugar beet tolerance to glypho sate[J].Euphytica,1997,94:83-91.
    [35]Sevenier R, Hall RD, van der Meer IM, et al. (1998) High level fructan accumulation in a transgenic sugar beet[J]. Nat Biotechnol 16:843-846.
    [36]Weyens G, Ritsema T, Van Dun K, et al. (2004)Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes[J]. Plant Biotechnol J 2:321-327.
    [37]Kuhn C, Barker L, Biirkle L, et al. Update on sucrose transport in higher plants[J]. J Exp Bot, 1999,50:935-953.
    [38]Williams LE, Lemoine R, Sauer N. Sugar transporters in higher plants- a diversity of roles and complex regulation[J]. Trends in Plant Science,2000,5(7):283-290.
    [39]Sylvie L, Eckhard B, Hanjo H[J].The dual function of sugar carriers:transport and sugar sensing. Plant Cell,1999,11:707-726.
    [40]Buchanan BB, Gruissem W, Jones RL [J].Biochemistry &Molecular Biology of Plants. Rockville:American Society of Plant Physiologists,2000,748-776.
    [41]Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast[J].EMBO J,1992,11(13):4705-4713.
    [42]Lemoine R.Sucrose transporters in plants:update on function and structure[J].Biochim Biophys Acta,2000,1465(1~2):246-262.
    [43]Schulze WX, Reinders A, Ward J, et al.Interactions between co-expressed Arabidopsis sucrose transporters in the splitubiquitin system[J]. BMC Biochem,2003,4:1-10.
    [44]Williams LE, Lemoine R, Sauer N. Sugar.transporters in higher plants:adversity of roles and complex regulation[J].Trends Plant Sci,2000,5:283-290.
    [45]Lalonde S, Boles E, Hellmann H, et al. The dual function of sugar carriers:transport and sugar sensing[J]. Plant Cell,1999,11:707-726.
    [46]Weig A, Komor E. An active sucrose carrier(Scrl)that is predominantly expressed in the seeding of Ricinus communist L[J].J Plant Physiol,1996,147:685-690.
    [47]Kuhn C, Barker L, Burkle L, et al. Update on sucrose transport in higher plants[J]. J Exp Bot,1999,50:935-953.
    [48]Lalonde S, Wipf D, Frommer WB. Transport mechanisms for organic forms of carbon and nitrogen between source and sink[J].Ann Rev Plant Biol,2004,55:341-372.
    [49]Ward JM, Kiihn C, Tegeder M, et al. Sucrose transport in higher plants[J].Int Rev Cytol,1998,178:41-71.
    [50]Kiihn C, Hajirezaei M R, Fernie A R, et aL.The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development[J].Plant Physiol,2003,131:102-113.
    [51]Weber H, Borisjuk L, Heim U, et al. A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in five bean seeds[J]. Plant Cell, 1997,9:895-908.
    [52]Weise A, Barker L, Kuhn C, et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity is localized in enucleate sieve elements of plants[J]. Plant Cell,2000, 12:1345-1355.
    [53]Lemoine R. Sucrose transporters in plants:update on function and structure[J].BBA Biomembranes,2000,1465(1/2):246-262.
    [54]Veenhoff LM, Heuberger EHML, Poolman B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways[J].EMBO J,2001,20(12):3056-3062.
    [55]Reinders A, Schulze W, Kiihn C, et al. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element[J]. Plant Cell,2002,14(7):1567-1577.
    [56]Li ZS, GaUet O, Gaillard C, Lemoine R. et al. Reconstitution of active sucrose transport in plant proteoliposomes[J]. FEBS Lett,1991,286:117-120.
    [57]Barker L. Ktihn C, Weise A, et al. a putative sucrose sensor in sieve elements[J].PlantCell,2000,12:1153-1164.
    [58]Barth I. Meyer S. Sauer N. PmSUC3:characterization of a SUT2/SUC3-type sucrose transporter from Plantago major[J].Plant Cell,2003,15(6):1375-1385.
    [59]Davies C, Wolf T, Robinson SP. Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Sci,1999,147(2):93-100.
    [60]Manning K, Davies C, Bowan HC, et al. Functional characterization of two ripening-related sucrose transporters from grape berries[J].Ann Bot,2001,87(1):125-129.
    [61]Zhang YL, Meng QY, Zhu HL, et al. Functional characterization of a LAHC sucrose transporter isolated from grape berries in yeast[J]. Plant Growth Regul,2008,54(1):71-79.
    [62]Krens F, Jamar D, Rouwendal G, et al. Transfer of cytoplasm from new Beta CMS sources to sugar beet by asymmetric fusion.1. Shoot regeneration frommesophyll protoplasts and characterization of regenerated plants [J].Theor. Appl. Genet.,1990,79:390-396.
    [63]Horsch R B, Fry J E, Hoffman N L, et al. A simple and general method for transferring genes into plants [J]. Science,1985,227:1229-1231.
    [64]Paul H,Zijlstra C,Leeuwaugh J, et al. Reproduction of the beet cyst nematode Heterodera schachtii Schm.on transformed root cultures of Beta vulgaris L[J].Plant Cell Rep,1987,6:379-381.
    [65]Krens F, Zijlstra C, Molen W, et al. Transformation and regeneration in sugar beet (Beta vulgaris L.) induced by"shooter"mutants of Agrobacterium tumefaciens[J].Euphytica,1988, 5:185-194.
    [66]Mann A, Matzk A, Sautter C, et al. Transient gene expression in shoot apical meristems of sugar beet seedlings after particle bombardment[J].J. Exp. Bot,1995,46:1625-1628.
    [67]Ingersoll J, Huette T, Owens L. Effect of promoter leader sequences on transient expression of reporter gene chimeras biolistically transferred into sugar beet (Beta vulgaris L.)suspension cells [J].Plant Cell Rep,1996,15:836-840.
    [68]Snyder G, Ingersoll J, Smigocki A, et al. Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet (Beta vulgaris L.) by Agrobacterium or particle bombardment [J].Plant Cell Rep,1999,18:829-834.
    [69]Ivic-Haymes S, Smigocki A. Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.)leaves[J].Plant Cell Rep,2005,23:699-704.
    [70]Francesca D M, Yongxin W, Piergiorgio S, et al. Genetic transformation of the sugar beet plastome[J]. Transgenic Res,2009,18:17-30.
    [71]A.F. Yang, X.G. Duan, X.F. Gu, et al. E□client transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance[J].Plant Cell, Tissue and Organ Culture,2005,83:259-270.
    [72]Ivic S. et al. Growth habit and sugar accumulation in sugar beet (Beta vulgaris L.) transformed with a cytokinin biosynthesis gene[J].2005,23(10-11):699-704.
    [73]Hattori T, Nakamura K. Genes coding for the major tuberous root protein of sweet potato: identification of putative regulatory sequence in the 5'upstream region[J]. Plant Molecular Biology,1988,11(4):417-426.
    [74]Ohta S, Hattori T, Morikami A, et al. High-level expression of a sweet potato sporamin gene promoter:β-glucuroidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type- specific regulatory elements[J].Molecular and General Genetics,1991,225(3):369-378.
    [75]Ritchie GA, Short KC, Dave MR. In vitro shoot regeneration from callus, leaf axils and petioles of sugar beet (Beta vulgaris L.)[J]. J Exp Bot,1989,40:277-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700