Caenorhabditis elegans对重金属离子Cd~(2+)、Pb~(2+)和Zn~(2+)的反应以及利用RNAi研究几种影响其寿命的基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了秀丽小杆线虫Caenorhabdits elegans对重金属Cd~(2+)、Zn~(2+)、Pb2+的反应以及利用RNAi对影响C. elegans寿命的一些因素进行了研究。
     首先研究了三种重金属对秀丽小杆线虫的毒害作用。结果表明:24h时,三种重金属的毒性为Pb~(2+)>Cd~(2+)>Zn~(2+),半致死浓度分别为41774μg·L~(-1)、65945μg·L~(-1)、113323μg·L~(-1);48h时,三种重金属的毒性为Pb~(2+)>Cd~(2+)>Zn~(2+),半致死浓度分别为31567μg·L~(-1)、38679μg·L~(-1)、63423μg·L~(-1);72h时,三种重金属的毒性为Cd~(2+)≈Pb~(2+)>Zn~(2+),半致死浓度分别为24669μg·L~(-1)、24946μg·L~(-1)、40668μg·L~(-1)。三种重金属的毒性中Cd~(2+)随时间变化的速度最快,Pb~(2+)随时间变化的速度最慢;Pb~(2+)随浓度的变化最快,Zn~(2+)随浓度变化最慢。
     重金属浓度对C. elegans联合作用的影响的实验表明:当Cd~(2+)和Zn~(2+)共同作用于线虫时,在低浓度时,呈现出简单的相加作用,高浓度时,呈现出拮抗作用;Pb~(2+)和Zn~(2+)共同作用于线虫时,四个浓度都呈现出简单的相加作用;当Cd2+和Pb~(2+)共同作用于线虫时,低浓度呈现出简单的相加效应,高浓度呈现出协同作用。
     用AI指数法分析C. elegans暴露重金属的时间对重金属联合作用的影响,结果表明:当Cd~(2+)和Zn~(2+)以1:2的质量比混合时,在24h、48h和72h,其相加指数AI均小于0,联合作用表现为拮抗作用;当Pb~(2+)和Zn~(2+)以1:2的质量比混合时,在24h、48h和72h,其相加指数AI均小于0,联合作用表现为拮抗作用;当Cd~(2+)和Pb~(2+)以1:1的质量比混合时,在24h,其相加指数大于0,联合作用表现为协同作用;在48h和72h,其相加指数均小于0,联合作用表现为拮抗作用。
     利用转基因线虫PC72,发展了一种可用于生物监测的高灵敏度的生物监测器。实验结果表明:在三种重金属的毒害下,染色率都呈现出随致死率变化而变化的特点,延长毒害时间能增加其染色率,空白对照即便染色时间延长也未曾出现明显的染色率增加。利用计分法评估线虫的染色效果,得分也和染色率呈现出相关变化。与致死率相比,用染色评估水体毒性的方法更加快捷、灵敏。
     转基因线虫PC72染色的方法用于检验厦门海域海水水质取得了比较好的效果,检测结果显示染色率与致死率的变化趋势相同,染色率与致死率相关,但利用染色率检测能够缩短检测时间,提高监测灵敏度。
     其次利用RNAi法研究了几种影响C. elegans寿命的基因。构建了四个RNA干扰载体:R148.3a、Cnfκb (C. elegans nfκb like)、sqv-4、helicase。将四种食物喂食线虫,研究其对线虫寿命的影响。
     R148.3a (RNAi)菌喂食的线虫呈现出产卵数目下降,寿命缩短的特点,并且会使N2、daf-2(e1370)、daf-16(mu86)突变体的免疫力下降。
     Cnfκb (RNAi)菌喂食N2线虫并不能使其寿命发生明显变化,但却会使其免疫力下降,易于被金黄色葡萄球菌感染。同时Cnfκb缺失使免疫力下降的作用依赖于daf-16,当daf-16突变时,Cnfκb不能使daf-16突变体的免疫力进一步下降。helicase(RNAi)菌喂食的线虫,产卵数目较对照N2下降,寿命缩短了2.9天。同时helicase功能的缺失会使线虫幼虫部分致死。
     sqv-4(RNAi)菌喂食的线虫,产卵数目大幅度下降,并有很强的胚胎致死能力,所产的卵大多数无法孵化成幼虫。同时sqv-4干扰后,线虫的寿命会缩短约1.5天。
     lin-28(n1119)突变体寿命相对于N2延长了8%,lin-4(e912)突变体寿命相对于N2缩短了47%,let-7(n2853)寿命相对N2缩短了36%。然而双突变体lin-28(n719); lin-4(e912)的寿命相对于lin-28(n1119)无明显改变,说明lin-28位于lin-4下游。
Caenorhabditis elegans was used in this paper to study the factors affecting lifespan.
     We studied the toxic effects of three heavy metals Cd~(2+), Pb~(2+) and Zn~(2+) on C. elegans. The results indicated that: after C. elegans exposed to the three heavy metals 24hs, the toxicity of three heavy metals was Pb~(2+)> Cd~(2+)>Zn~(2+), LC 50 of three heavy metals was 41774μg·L~(-1), 65945μg·L~(-1) and 113323μg·L~(-1) respectively; after exposed to the three heavy metals 48hs, the toxicity of the three metals was: Pb~(2+)>Cd~(2+)>Zn~(2+), LC 50 of three heavy metals was 31567μg·L~(-1),38679μg·L~(-1) and 63423μg·L~(-1) respectively; after exposed to the three heavy metals 72hs, the toxicity of the three metals was Cd~(2+)≈Pb~(2+)>Zn~(2+), LC50 of three heavy metals was 24669μg·L~(-1), 24946μg·L~(-1) and 40668μg·L~(-1) respectively. In the three metals, the toxicity of Cd~(2+) changed most with the time and the toxicity of the Pb~(2+) changed least with the time. The toxicity of Pb~(2+) changed most with the concentration and the toxicity of Zn~(2+) changed least with the concentration.
     The experiments of concentration effects in combination of two metals presented that: the toxic effect of Cd~(2+) and Zn~(2+) in combination was additional in low concentration and was antagonistic in high concentration; the toxic effect of Pb~(2+) and Zn~(2+) in combination was additional in all concentration in our experiment; the toxic effect of Cd~(2+) and Pb~(2+) was additional in low concentration and synergistic in high concentration.
     Using additive index method to know the time effects in the combination, we found that: when Cd~(2+) and Zn~(2+) were mixed in 1: 2 in weight, the AI of 24h, 48h and 72 h were minus and the combination effects were antagonistic; when Pb~(2+) and Zn~(2+) were mixed in 1: 2 in weight, the AI of 24h, 48h and 72 were minus and the combination effects were antagonistic; when Cd~(2+) and Pb~(2+) were mixed in 1: 1 in weight, the AI of 24h was positive and the combination effect was synergistic but the AI of 48h and 72 h were minus and the combination effects were antagonistic.
     Transgenic worm PC72 was used as a biomonitor for the heavy metal contamination which has a high sensitivity. Results indicated: in all metals, the staining ratio changed with the lethal ratio and prolonging the processing time could enhance the staining ratio. We used score method to estimate the effect and found that score changed with the staining ratio. Compared with lethality method, staining method was more quick and sensitive.
     The staining method also got a good result in the practice of monitoring the pollution of sea water in Xiamen. The staining ratio and the lethal ratio had correlation. The staining method could shorten the experiment time and enhance the sensitivity.
     We used RNAi to study the genes which could affect the lifespan of C. elegans. Four RNAi vectors: R148.3a, Cnfkb (C. elegans nfkb homologus), sqv-4 and helicase were constructed.
     The result of R148.3a RNAi showed that lost function of R148.3a could reduce the egg number, shorten the lifespan and decrease the immunity in N2, daf-2(e1370) and daf-16(mu86) mutants.
     Cnfkb was a homologus of human nfκb light polypeptide gene in C.elegans. The similarity of this gene to nfκb was 31. 09%. Feeding N2 with Cnfκb RNAi bacteria could not change the lifespan but decreased N2 immunity, and the worm easy infected with S. aureus. The ability of cnfkb reduced the immunity depended on daf-16. Lost function of Cnfkb by RNAi couldn’t reduce the lifespan of daf-16(mu86) mutant further.
     Nematodes fed on helicase (RNAi) bacteria laid less eggs and the lifespan of the nematode was 2.9 days shorter than normal nematode. Lost function of helicase by RNAi also made some larvae die at early stage.
     When the nematodes were fed on sqv-4 (RNAi) bacteria, the number of eggs nematodes laid was reduced dramaticly. Lost function of sqv-4 the worm has the high embryo lethality. 96. 7 % of the eggs couldn’t become larva and died in the early stage. At same time the lifespan of the sqv-4 mutant by RNAi was 1.5 day shorter than N2.
     The lifespan of lin-28(n1119) mutant was 8% longer than N2. The lifespan of lin-4(e912) mutant was 47% shorter than N2. The lifespan of let-7(n2853) mutant is 36% shorter than N2. The double mutant lin-28(n719);lin-4(e912) mutant lived no longer than lin-28(n1119) mutant. This implies that lin-28 works downstream of lin-4.
引文
[1] Jazwinski, S. M.Aging and longevity genes [J].Acta Biochimica Polonica.2000, 47: 269-279.
    [2] Smelick, C. and Ahmed, S. Achieving immortality in the C. elegans germline [J].Ageing Research Reviews.2005, 4:67-82.
    [3] Walker, G. A.,White T. M., Mccoll, G., et al. Heat shock protein accumulation is upregulated in a long lived mutant of Caenorhabditis elegans[J].Journals of Gerontology Series a Biological Sciences and Medical Sciences.2001,56: B281-B287.
    [4] Mutwakil, M. H. A. Z., Reader, J. P., Holdich, D. M., et al. Use of stress inducible transgenic nematodes as biomarkers of heavy metal pollution in water samples from an English river system[J]. Archives of Environmental Contamination and Toxicology.1997, 32:146-153.
    [5]Johnson, T. E., Lithgow, G. J. and Murakami, S.Hypothesis: Interventions that increase the response to stress offer the potential for effective life prolongation and increased health [J]. Journals of Gerontology Series a Biological Sciences and Medical Sciences.1996, 51: 392-395.
    [6]David, H. E., Dawe, A. S., Depomerai, D. I., et al. Construction and evaluation of a transgenic hsp16:: GFP::lacZ Caenorhabditis elegans strain for environmental monitoring[J].Environmental Toxicology and Chemistry.2003, 22:111-118.
    [7]Guven, K., Power R. S., Avramides, S., et al.The toxicity of dithiocarbamate fungicides to soil nematodes, assessed using a stress inducible transgenic strain of Caenorhabditis elegans [J]. Journal of Biochemical and Molecular Toxicology.1999, 13:324-333.
    [8] Jewitt, N., Anthony, P., Lowe, K. C., et al. Oxygenated perfluorocarbon promotes nematode growth and stress sensitivity in a two phase liquid culture system[J].Enzyme and Microbial Technology.1999, 25:349-356.
    [9] Shimada, H., Tominaga, N., Kohra, S., et al. Metallothionein gene expression in the larvae of Caenorhabditis elegans is a potential biomarker for cadmium and mercury [J]. Trace Elements and Electrolytes.2003, 20:240-243.
    [10]徐端正.生物统计在实验和临床药理学中的应用[Z].北京:科学出版社,2004.
    [11]许厚恩.中国污染物有毒危险性评价[Z].北京:北京医科大学中国协和医科大学联合出版社,1997.
    [12]程时等.定量电镜观察锌对镉损伤肝脏的保护作用[J].中华预防医学杂志.1988, 11:185.
    [13] Chu, K.W., Chan, S. K. and Chow, K.L. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain [J].Aquatic Toxicology. 2005, 74:320-332.
    [14] Bliss, C. I. The toxicity of poisons applied jointly [J].Ann. Appl. Biol. 1939, 26: 585-615.
    [15] Walker, D. W., Mccoll, G., Jenkins, N. L., et al. Natural selection evolution of lifespan in C. elegans[J].Nature.2000,405:296-297.
    [16] Hughes, K.A. and Reynolds, R.M. Evolutionary and mechanistic theories of aging [J].Annual Review of Entomology.2005, 50:421-445.
    [17] Khazaeli, A. A., Van, W. V. and Curtsinger, J. W.The relationship between lifespan and adult body size is highly strain specific in Drosophila melanogaster [J].Experimental Gerontology.2005, 40:377-385.
    [18] Hulbert, A. J., Clancy, D.J., Mair, W., et al. Metabolic rate is not reduced by dietary restriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster[J].Experimental Gerontology.2004,39:1137-1143.
    [19] Wagner, G.Towards a life prolonging pill small molecules with antiageing properties [J].Current Drug Targets.2006,7:1531-1537.
    [20] Viney, M. E., Gardner, M. P. and Jackson, J.A.Variation in Caenorhabditis elegans dauer larva formation [J].Development Growth & Differentiation.2003, 45:389-396.
    [21] Vijg, J. and Suh, Y.Genetics of longevity and aging [J].Annual Review of Medicine.2005, 56: 193-212.
    [22] Keaney, M. and Gems, D. Caloric restriction and insulin/IGF signalling in Caenorhabditis elegans [J].Mechanisms of Ageing and Development.2002, 123:447-447.
    [23] Kenyon, C. The plasticity of aging: Insights from long lived mutants [J]. Cell.2005, 120:449-460.
    [24] Kimura, K. D., Tissenbaum, H. A., Liu, Y. X., et al. daf-2, an insulin receptor like gene that regulates longevity and diapause in Caenorhabditis elegans[J].Science.1997,277:942-946.
    [25] Paradis, S. and Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor [J].Genes & Development.1998,12: 2488-2498.
    [26] Mangahas, P. M. and Zhou, Z.Clearance of apoptotic cells in Caenorhabditis elegans [J]. Seminars in Cell & Developmental Biology .2005, 16: 295-306.
    [27] Wolkow, C. A., Munoz, M. J., Riddle, D. L., et al. Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin like signaling pathway [J]. Journal of Biological Chemistry.2002, 277:49591-49597.
    [28] Hertweck, M., Gobel, C. and Baumeister, R.C.elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and lifespan [J]. Developmental Cell.2004,6: 577-588.
    [29] Berdichevsky, A., Viswanathan, M., Horvitz, H. R., et al. C. elegans SIR-2. 1 interacts with 14-3-3 proteins to activate DAF-16 and extend lifespan [J]. Cell.2006, 125: 1165-1177.
    [30] Lee, R. Y. N., Hench, J. and Ruvkun, G.Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin like signaling pathway [J]. Current Biology.2001, 11:1950-1957.
    [31] Hamilton, B., Doug, Y. Q., Shindo, M., et al.A systematic RNAi screen for longevity genes in C. elegans [J].Genes & Development.2005,19:1544-1555.
    [32] Murphy, C. T. The search for DAF-16/FOXO transcriptional targets: Approaches and discoveries [J].Experimental Gerontology.2006, 41:910-921.
    [33] Murphy, C. T., Mccarroll, S. A., Bargmann, C. I., et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans[J].Nature.2003,424:277-284.
    [34] Wiener, J. H., Khattra, J. S., Mckay, S., et al. Analysis of long lived C. elegans daf-2 mutants using serial analysis of gene expression[J].Genome Research.2005,15:603-615.
    [35] Berry, L. W., Westlund, B. and Schedl, T.Germline tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors [J].Development. 1997 , 124: 925-936.
    [36] Pinkston, J. M., Garigan, D., Hansen, M., et al. Mutations that increase the lifespan of C. elegans inhibit tumor growth [J].Science.2006,313: 971-975.
    [37] Boylston, W. H., DeFord, J. H. and Papaconstantinou, J.Identification of longevity associated genes in long lived Snell and Ames dwarf mice [J].Age.2006,28:125-144.
    [38] Walker, G. A. and Lithgow, G. J.Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin like signals [J].Aging Cell .2003, 2:131-139.
    [39] Hsu, A. L., Murphy, C. T. and Kenyon, C.Regulation of aging and age related disease by DAF-16 and heat shock factor [J].Science.2003, 300:1142-1145.
    [40] Apfeld, J., Connor, G. O., McDonagh, T., et al. The AMP activated protein kinase AAK-2 links energy levels and insulin like signals to lifespan in C. elegans [J]. Genes & Development.2004,18: 3004-3009.
    [41] Wang, M. C., Bohmann, D. and Jasper, H.JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila [J]. Dev. Cell.2003, 5:811-816.
    [42] Oh, S.W., Mukhopadhyay, A., Svrzikapa, N., et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16[J]. Proceedings of the National Academy of Sciences of the United States of America.2005, 102:4494-4499.
    [43] An, J.H. and Blackwell, T. K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response [J].Genes & Development.2003, 17:1882-1893.
    [44] An, J.H., Vranas, K., Lucke, M., et al. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase 3[J].Proceedings of the National Academy of Sciences of the United States of America.2005,102: 16275-16280.
    [45] Arantes-Oliveira, N. Apfeld, J., Dillin, A., et al. Regulation of lifespan by germline stem cells in Caenorhabditis elegans [J].Science.2002,295:502-505.
    [46] Yu, H. and Larsen, P.L. DAF-16 dependent and independent expression targets of DAF-2 insulin receptor like pathway in Caenorhabditis elegans include FKBPs [J].Journal of Molecular Biology.2001, 314:1017-1028.
    [47] Volloch, V. and Kaplan, D.Matrix mediated cellular rejuvenation [J]. Matrix Biology.2002,21: 533-543.
    [48] Lee, S.S., Lee, R.Y.N., Fraser, A.G., et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity [J].Nature Genetics.2003, 33:40-48.
    [49] Aguilaniu, H., Durieux, J. and Dillin, A.Metabolism, ubiquinone synthesis, and longevity [J].Genes & Development.2005, 19:2399-2406.
    [50] Walker, G., Houthoofd, K., Vanfleteren, J.R., et al. Dietary restriction in C. elegans: From rate of living effects to nutrient sensing pathways [J].Mechanisms of Ageing and Development.2005, 126:929-937.
    [51] Bordone, L. and Guarente, L. Calorie restriction, SIRT1 and metabolism: Understanding longevity [J]. Nature Reviews Molecular Cell Biology.2005, 6:298-305.
    [52] Houthoofd, K., Braeckman, B.P., Lenaerts I., et al. No reduction of metabolic rate in food restricted Caenorhabditis elegans [J].Experimental Gerontology.2002, 37:1359-1369.
    [53] Clancy, D.J., Gems, D., Harshman, L.G., et al. Extension of lifespan by loss of CHICO, a Drosophila insulin receptor substrate protein[J]. Science.2001, 292:104-106.
    [54] Walker, G.A., Walker, D.W. and Lithgow, G.J.Genes that determine both thermotolerance and rate of aging in Caenorhabditis elegans [J].Stress of Life.1998, 851:444-449.
    [55] Viswanathan, M., Kim, S. K., Berdichevsky, A., et al.A role for SIR-2.1 regulation of ER stress response genes in determining C.elegans lifespan [J].Developmental Cell.2005,9:605-615.
    [56] Wessells, R.J. and Bodmer, R. Age related cardiac deterioration: Insights from Drosophila [J]. Frontiers in Bioscience.2007, 12:39-52.
    [57] Wang, Y.M. and Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR-2 and DAF-16/FOXO [J]. Mechanisms of Ageing and Development.2006, 127:48-56.
    [58] Meissner, B., Boll, M., Daniel, H., et al. Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans[J].Journal of Biological Chemistry. 2004, 279: 36739-36745.
    [59] Raices, M., Maruyama, H., Dillin, A., et al. Uncoupling of longevity and telomere length in C. elegans [J]. Plos Genetics.2005, 1:295-301.
    [60] Wadhwa, R., Deocaris, C.C., Widodo, N., et al. Imminent approaches towards molecular interventions in ageing[J].Mechanisms of Ageing and Development.2005, 126:481-490.
    [61] Schaffitzel, E. and Hertweck, M. Recent aging research in Caenorhabditis elegans [J]. Experimental Gerontology.2006, 41:557-563.
    [62] Xiong, A.S., Yao, Q.H., Peng, R.H., et al. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato[J]. Plant Cell Reports.2005, 23:639-646.
    [63] Wadhwa, R., Kaul, S.C., Miyagishi M., et al. Vectors for RNA interference [J].Current Opinion in Molecular Therapeutics.2004,6:367-372.
    [64] Guo, S., Kemphues, K.J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J].Cell.1995, 81:610-620.
    [65] Montgomery, M.K., Xu, S.F. and Fire, A. RNA as a target of double stranded RNA mediated genetic interference in Caenorhabditis elegans [J]. Proceedings of the National Academy of Sciences of the United States of America.1998, 95:15502-15507.
    [66] Baulcombe, D.C. RNA makes RNA makes no protein [J].Current. Biology.1999, 9:599-601.
    [67] Misquitta, L. and Paterson, B.M. Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilis in embryonic somatic muscle formation [J]. Proceedings of the National Academy of Sciences of the United States of America.1999, 96:1451-1456.
    [68] Kennerdell, J.R.and Carthew, R.W. Use of dsRNA mediated genetic interference to demonstrate that frizzled and frizzled act in the wingless pathway [J].Cell and Tissue Research. 1998,95:1017-1026.
    [69] Li, Y.X., Farrel, M.J., Liu, R., et al. Double stranded RNA injection produces null phenotypes in zebrafish [J]. Develop Biology.2000, 217:394-405.
    [70] Wianny, F. and Goetz, M.Z. Specific interference with gene function by double stranded RNA in early mouse development [J]. Nature Cell Biology.2000, 21:15-18.
    [71] Chu, K.W. and Chow, K.L. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative [J].Aquatic Toxicology.2002, 61:53-64.
    [72]孔志明.环境毒理学[Z].南京:南京大学出版社,2006.
    [73]徐镜波.环境毒理学[Z].长春:东北师范大学出版社,2000.
    [74] Waalkes, M.P. Association of the anticarcinogenic effects of single dose cadmium in the B6C3F1 mouse liver with tumor specific necrosis [J]. The toxicologist.1994, 14:33.
    [75] Guven, K. and Duce, J. Evaluation of a stress inducible transgenic nematode strain for rapid aquatic toxicity testing [J]. Aquatic Toxicology.1994, 29:119–137.
    [76] Mutwakil, M.H.A.Z., Steele, T.J.G., Lowe, K.C., et al. Surfactant stimulation of growth in the nematode Caenorhabditis elegans[J].Enzyme and Microbial Technology.1997, 20:462-470.
    [77] Hamilton, B., Dong, Y. Q., Shindo, M, et al. A systematic RNAi screen for longevity genes in C. elegans [J]. Genes and Development.2005, 19:1544-1555.
    [78] Boehm, M. and Slack, F. A developmental timing microRNA and its target regulate lifespan in C. elegans [J]. Science.2005, 310:1954-1957.
    [79] Berman, J.R. and Kenyon, C. Germcell loss extends C. elegans lifespan through regulation ofDAF-16 by kri-1 and lipophilic hormone signaling [J]. Cell.2006, 124: 1055-1068.
    [80] Barsyte, D., Lovejoy, D.A. and Lithgow, G.J. Longevity and heavy metal resistance in daf-2 and age-1 long lived mutants of Caenorhabditis elegans [J]. Faseb Journal.2001, 15:627-634.
    [81] Jonassen, T., Larsen, P.L. and Clarke, C.F. A dietary source of coenzyme Q is essential for growth of long lived Caenorhabditis elegans clk-1 mutants [J].Proceedings of the National Academy of Sciences of the United States of America.2001, 98:421-426.
    [82] Mckay, S.Gene expression profiling of cells, tissues and developmental stages of the nematode C. elegans.Cold Spring Harbor Symposium on Quantitative Biology [J].2004,68:159-169.
    [83] Hwang, H.Y. and Horvitz, H.R. The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated [J]. Proceedings of the National Academy of Sciences of the United States of America.2002, 99:14224-14229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700