Mitoflash可以在线虫早期预测其寿命
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衰老是生物体的系统功能逐渐下降的过程,这个过程是从繁殖后代开始的。遗传、环境和随机因素都会影响生物体的衰老过程,并能够在一定程度上决定生物体的寿命。线粒体对于生物能学、自由基代谢和细胞死亡是非常重要的。毫不惊奇地是,线粒体在很多著名的衰老理论如生存速率理论、自由基理论和线粒体衰老理论等中占据着中心的位置。为了更好的理解线虫在衰老过程中的生理机能变化,希望找到一个能够在线虫青年期指示衰老速度的生物标志物,我们借助cpYFP荧光蛋白和使用荧光体内成像技术直接监测单个线粒体内自发的、爆发性的超氧阴离子自由基产生,即线粒体“超氧炫”(mitoflash)。研究表明“超氧炫”的活性与能量代谢、自由基产生、电子传递、基础活性氧水平等密切相关。
     我们发现线粒体中的“超氧炫”频率可以预测线虫的寿命。我们从线虫成年第1天开始对线虫的“超氧炫”进行每天检测,发现线虫体内的“超氧炫”活性对代谢状态和氧化损伤高度敏感,并发现野生型线虫咽部肌肉细胞的“超氧炫”在第2-3天和第8.5-9.5天出现两个峰值,这两个峰值出现的时间恰好分别对应线虫的生育高峰和开始有个体死亡的阶段。在长寿或者短寿的突变体线虫中,这两个峰的位置和强度都有明显的特征性变化,暗示了线粒体的功能活性与衰老有着密切的关系。我们的实验结果表明遗传突变体线虫成年第3天的“超氧炫”活性可以在很大程度上反映其寿命,数据分析得知第3天的超氧炫频率与寿命呈负相关,而第9天的“超氧炫”频率与寿命没有相关性。生活在相同环境下具有相同遗传背景的线虫个体的寿命也是有长有短,一般来说,这些差异是由随机因素引起的。我们意外地发现野生型线虫独立个体成年第3天的“超氧炫”频率与单条线虫的寿命之间也存在负相关关系。另外我们用药物处理线虫使其寿命缩短,发现处理后的线虫成年第3天的“超氧炫”活性增强。以上结果表明线虫成年第3天的“超氧炫”频率可以预测线虫的寿命长短变化。这意味着虽然我们可以在线虫老年阶段改变它们的衰老过程,但是在生物机体最旺盛的时候衰老的速度很大程度上已经被决定了。
Aging is a gradual and systemic functional decline of an organism sometime after reproduction begins. Genetic, environmental, and stochastic factors all influence aging and determine how long animals eventually live. Mitochondria are pivotal to bioenergetics, free radical metabolism, and cell death. Not surprisingly, mitochondria take a central position in several prominent aging theories, e.g. the rate of living theory, the free radical theory, and the mitochondrial theory of aging. To better understand the physiology of mitochondria during the process of aging in C. elegans, and in the hope of identifying an early biomarker of aging, we used in vivo fluorescence imaging to characterize a physiological phenomenon directly related to superoxide production inside mitochondria. This phenomenon, called mitochondrial superoxide flash or mitoflash, is an intermittent, quantal mitochondrial activity that is linked to energy metabolism and free radical production. The mitoflash production requires the integrity of the mitochondrial electron transport chain (ETC), and the mitoflash frequency is highly sensitive to the metabolic status of the cell and a variety of insults including oxidative stress. Thus, mitoflash serves as a frequency-coded biological oscillator reflecting mitochondrial function in intact cells and even in live animals.
     We have found that mitoflash can serve as a novel predictor of lifespan in C. elegans. By in vivo imaging of the pharyngeal-muscle mitoflash events during the lifetime of C. elegans, we found that the mitoflash activity in wild-type (WT) animals was highly sensitive to changes in metabolic states and oxidative stress, and displayed a robust early peak on adult day2-3and a later one on day8.5-9.5. Surprisingly, genetic mutations in diverse signaling pathways inversely modified lifespan and the mitoflash activity on adult day3. Furthermore, the day-3mitoflash activity also negatively correlated with the lifespan of individual WT worms whose lifespan variations are presumably due to epigenetic fluctuations. Drug treatment that shortened lifespan tended to enhance the day-3mitoflash. This is the first time that an early biomarker has been found that can predict the average lifespans of different mutants of the same species, and the lifespans of individual animals from an isogenic population in the same environment. That day-3mitoflash frequency is a predictor of C. elegans lifespan supports the notion that the rate of aging, although adjustable in later life, has been set to a considerable degree before reproduction ceases.
引文
Adachi, H., Fujiwara, Y., and Ishii, N. (1998). Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. The journals of gerontology Series A, Biological sciences and medical sciences 53, B240-244.
    Aerts, A.M., Zabrocki, P., Govaert, G., Mathys, J., Carmona-Gutierrez, D., Madeo, F., Winderickx, J., Cammue, B.P., and Thevissen, K. (2009). Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS letters 583,113-117.
    Albertson, D.G., and Thomson, J.N. (1976). The pharynx of Caenorhabditis elegans. Philosophical transactions of the Royal Society of London Series B, Biological sciences 275,299-325.
    Alexeyev, M.F. (2009). Is there more to aging than mitochondrial DNA and reactive oxygen species? The FEB S journal 276,5768-5787.
    Ames, B.N., Shigenaga, M.K., and Hagen, T.M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America 90,7915-7922.
    Antunes, F., Salvador, A., Marinho, H.S., Alves, R., and Pinto, R.E. (1996). Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free radical biology & medicine 21,917-943.
    Arantes-Oliveira, N., Apfeld, J., Dillin, A., and Kenyon, C. (2002). Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295,502-505.
    Arkblad, E.L., Tuck, S., Pestov, N.B., Dmitriev, R.I., Kostina, M.B., Stenvall, J., Tranberg, M., and Rydstrom, J. (2005). A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free radical biology & medicine 38,1518-1525.
    Avery, L., and Horvitz, H.R. (1989). Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3,473-485.
    Avery, L., and Thomas, J.H. (1997). Feeding and Defecation. In C. elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, eds. (Cold Spring Harbor (NY)).
    Ayyadevara, S., Engle, M.R., Singh, S.P., Dandapat, A., Lichti, C.F., Benes, H., Shmookler Reis, R.J., Liebau, E., and Zimniak, P. (2005). Lifespan and stress resistance of Caenorhabditis elegans are increased by expression of glutathione transferases capable of metabolizing the lipid peroxidation product 4-hydroxynonenal. Aging cell 4,257-271.
    Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120,483-495.
    Barja, G., Cadenas, S., Rojas, C., Perez-Campo, R., and Lopez-Torres, M. (1994). Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free radical research 21,317-327.
    Barja, G., and Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 14,312-318.
    Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology. Physiological reviews 87,245-313.
    Berman, J.R., and Kenyon, C. (2006). Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124,1055-1068.
    Bishop, N.A., and Guarente, L. (2007). Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447,545-549.
    Blum, J., and Fridovich, I. (1983). Superoxide, hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Archives of biochemistry and biophysics 222,35-43.
    Boveris, A. (1977). Mitochondrial production of superoxide radical and hydrogen peroxide. Advances in experimental medicine and biology 78,67-82.
    Boveris, A., and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. The Biochemical journal 134,707-716.
    Boveris, A., Oshino, N., and Chance, B. (1972). The cellular production of hydrogen peroxide. The Biochemical journal 128,617-630.
    Braeckman, B.P., Houthoofd, K., and Vanfleteren, J.R. (2009). Intermediary metabolism. WormBook:the online review of C elegans biology,1-24.
    Brand, M.D. (2000). Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Experimental gerontology 35,811-820.
    Broue, F., Liere, P., Kenyon, C., and Baulieu, E.E. (2007). A steroid hormone that extends the lifespan of Caenorhabditis elegans. Aging cell 6,87-94.
    Brys, K., Castelein, N., Matthijssens, F., Vanfleteren, J.R., and Braeckman, B.P. (2010). Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans. BMC biology 8,91.
    Brys, K., Vanfleteren, J.R., and Braeckman, B.P. (2007). Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Experimental gerontology 42,845-851.
    Cabreiro, F., Ackerman, D., Doonan, R., Araiz, C., Back, P., Papp, D., Braeckman, B.P., and Gems, D. (2011). Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free radical biology & medicine 51,1575-1582.
    Cassano, P., Lezza, A.M., Leeuwenburgh, C., Cantatore, P., and Gadaleta, M.N. (2004). Measurement of the 4,834-bp mitochondrial DNA deletion level in aging rat liver and brain subjected or not to caloric restriction diet. Annals of the New York Academy of Sciences 1019,269-273.
    Castello, P.R., Drechsel, D.A., and Patel, M. (2007). Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. The Journal of biological chemistry 282,14186-14193.
    Chance, B., Sies, H., and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological reviews 59,527-605.
    Cheong, M.C., Na, K., Kim, H., Jeong, S.K., Joo, H.J., Chitwood, D.J., and Paik, Y.K. (2011). A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity. The Journal of biological chemistry 286,7248-7256.
    Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., and Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292,104-106.
    Dillin, A., Crawford, D.K., and Kenyon, C. (2002a). Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298,830-834.
    Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002b). Rates of behavior and aging specified by mitochondrial function during development. Science 298,2398-2401.
    Dong, M.Q., Venable, J.D., Au, N., Xu, T., Park, S.K., Cociorva, D., Johnson, J.R., Dillin, A., and Yates, J.R., 3rd (2007). Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317, 660-663.
    Fang, H., Chen, M., Ding, Y., Shang, W., Xu, J., Zhang, X., Zhang, W., Li, K., Xiao, Y., Gao, F., et al. (2011). Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell research 21,1295-1304.
    Feng, J., Bussiere, F., and Hekimi, S. (2001). Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Developmental cell 1,633-644.
    Franks, D.M., Izumikawa, T., Kitagawa, H., Sugahara, K., and Okkema, P.G. (2006). C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Developmental biology 296,409-420.
    Fujii, M., Ishii, N., Joguchi, A., Yasuda, K., and Ayusawa, D. (1998). A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA research:an international journal for rapid publication of reports on genes and genomes 5,25-30.
    Gems, D., and McElwee, J.J. (2005). Broad spectrum detoxification:the major longevity assurance process regulated by insulin/IGF-1 signaling? Mechanisms of ageing and development 126,381-387.
    Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V., and Antebi, A. (2001). A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Developmental cell 1,841-851.
    Ghazi, A., Henis-Korenblit, S., and Kenyon, C. (2007). Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proceedings of the National Academy of Sciences of the United States of America 104,5947-5952.
    Giannakou, M.E., and Partridge, L. (2004). The interaction between FOXO and SIRT1:tipping the balance towards survival. Trends in cell biology 14,408-412.
    Giglio, M.P., Hunter, T., Bannister, J.V., Bannister, W.H., and Hunter, G.J. (1994). The manganese superoxide dismutase gene of Caenorhabditis elegans. Biochemistry and molecular biology international 33,37-40.
    Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio, M., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122,221-233.
    Gredilla, R., Sanz, A., Lopez-Torres, M., and Barja, G. (2001). Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 15,1589-1591.
    Green, K., Brand, M.D., and Murphy, M.P. (2004). Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53 Suppl 1, S110-118.
    Greer, E.L., and Brunet, A. (2008). Signaling networks in aging. Journal of cell science 121,407-412.
    Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., and Brunet, A. (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current biology:CB 17,1646-1656.
    Guarente, L., and Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature 408, 255-262.
    Hagen, T.M., Yowe, D.L., Bartholomew, J.C., Wehr, C.M., Do, K.L., Park, J.Y., and Ames, B.N. (1997). Mitochondrial decay in hepatocytes from old rats:membrane potential declines, heterogeneity and oxidants increase. Proceedings of the National Academy of Sciences of the United States of America 94, 3064-3069.
    Hamilton, B., Dong, Y., Shindo, M., Liu, W., Odell, I., Ruvkun, G., and Lee, S.S. (2005). A systematic RNAi screen for longevity genes in C. elegans. Genes & development 19,1544-1555.
    Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., and Kenyon, C. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS genetics 4, e24.
    Hansen, M., Hsu, A.L., Dillin, A., and Kenyon, C. (2005). New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS genetics 1,119-128.
    Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S.J., and Kenyon, C. (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging cell 6,95-110.
    Harman, D. (1956). Aging:a theory based on free radical and radiation chemistry. Journal of gerontology 11, 298-300.
    Harman, D. (1972). The biologic clock:the mitochondria? Journal of the American Geriatrics Society 20,145-147.
    Hartman, P., Ponder, R., Lo, H.H., and Ishii, N. (2004). Mitochondrial oxidative stress can lead to nuclear hypermutability. Mechanisms of ageing and development 125,417-420.
    Hauptmann, N., Grimsby, J., Shih, J.C., and Cadenas, E. (1996). The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Archives of biochemistry and biophysics 335,295-304.
    Hayakawa, T., Noda, M., Yasuda, K., Yorifuji, H., Taniguchi, S., Miwa, I., Sakura, H., Terauchi, Y., Hayashi, J., Sharp, G.W., et al. (1998). Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. The Journal of biological chemistry 273,20300-20307.
    Henderson, L.M., and Chappel, J.B. (1996). NADPH oxidase of neutrophils. Biochimica et biophysica acta 1273,87-107.
    Henderson, S.T., Bonafe, M., and Johnson, T.E. (2006). daf-16 protects the nematode Caenorhabditis elegans during food deprivation. The journals of gerontology Series A, Biological sciences and medical sciences 61,444-460.
    Henderson, S.T., and Johnson, T.E. (2001). daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current biology:CB 11,1975-1980.
    Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P.C., Cervera, P., and Le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421,182-187.
    Honda, S., Ishii, N., Suzuki, K., and Matsuo, M. (1993). Oxygen-dependent perturbation of life span and aging rate in the nematode. Journal of gerontology 48, B57-61.
    Honda, Y., and Honda, S. (1999). The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 13,1385-1393.
    Honjoh, S., Yamamoto, T., Uno, M., and Nishida, E. (2009). Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457,726-730.
    Houthoofd, K., Braeckman, B.P., Johnson, T.E., and Vanfleteren, J.R. (2003). Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Experimental gerontology 38,947-954.
    Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. (2002a). Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Experimental gerontology 37,1015-1021.
    Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. (2002b). Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Experimental gerontology 37,1371-1378.
    Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., De Vreese, A., Van Eygen, S., and Vanfleteren, J.R. (2002c). No reduction of metabolic rate in food restricted Caenorhabditis elegans. Experimental gerontology 37,1359-1369.
    Hsu, A.L., Feng, Z., Hsieh, M.Y., and Xu, X.Z. (2009). Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiology of aging 30,1498-1503.
    Huang, H., and Frohman, M.A. (2009). Lipid signaling on the mitochondrial surface. Biochimica et biophysica acta 1791,839-844.
    Hunter, T., Bannister, W.H., and Hunter, G.J. (1997). Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. The Journal of biological chemistry 272, 28652-28659.
    Hwangbo, D.S., Gershman, B., Tu, M.P., Palmer, M., and Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429,562-566.
    Imlay, J.A., and Fridovich, I. (1991). Assay of metabolic superoxide production in Escherichia coli. The Journal of biological chemistry 266,6957-6965.
    Ishii, N., Fujii, M., Hartman, P.S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., and Suzuki, K. (1998). A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394,694-697'.
    Ishii, N., Goto, S., and Hartman, P.S. (2002). Protein oxidation during aging of the nematode Caenorhabditis elegans. Free radical biology & medicine 33,1021-1025.
    Ishii, N., Takahashi, K., Tomita, S., Keino, T., Honda, S., Yoshino, K., and Suzuki, K. (1990). A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutation research 237,165-171.
    Jensen, L.T., and Culotta, V.C. (2005). Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. The Journal of biological chemistry 280,41373-41379.
    Jia, K., Chen, D., and Riddle, D.L. (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131,3897-3906.
    Jia, K., and Levine, B. (2007). Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3,597-599.
    Keane, P.C., Kurzawa, M., Blain, P.G., and Morris, C.M. (2011). Mitochondrial dysfunction in Parkinson's disease. Parkinson's disease 2011,716871.
    Keaney, M., Matthijssens, F., Sharpe, M., Vanfleteren, J., and Gems, D. (2004). Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free radical biology & medicine 37,239-250.
    Keeney, P.M., Xie, J., Capaldi, R.A., and Bennett, J.P., Jr. (2006). Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. The Journal of neuroscience:the official journal of the Society for Neuroscience 26,5256-5264.
    Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366,461-464.
    Kenyon, C.J. (2010). The genetics of ageing. Nature 464,504-512.
    Kirkwood, T.B., and Austad, S.N. (2000). Why do we age? Nature 408,233-238.
    Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y, and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392,605-608.
    Klass, M., Nguyen, P.N., and Dechavigny, A. (1983). Age-correlated changes in the DNA template in the nematode Caenorhabditis elegans. Mechanisms of ageing and development 22,253-263.
    Kops, G.J., de Ruiter, N.D., De Vries-Smits, A.M., Powell, D.R., Bos, J.L., and Burgering, B.M. (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398,630-634.
    Korshunov, S.S., Skulachev, V.P., and Starkov, A.A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS letters 416,15-18.
    Ku, H.H., Brunk, U.T., and Sohal, R.S. (1993). Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free radical biology & medicine 15,621-627.
    Kubli, D.A., and Gustafsson, A.B. (2012). Mitochondria and mitophagy:the yin and yang of cell death control. Circulation research 111,1208-1221.
    Kuhlbrodt, K., Janiesch, P.C., Kevei, E., Segref, A., Barikbin, R., and Hoppe, T. (2011). The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nature cell biology 13,273-281.
    Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 95,13091-13096.
    Lamb, M.J. (1968). Temperature and lifespan in Drosophila. Nature 220,808-809.
    Lambert, A.J., and Brand, M.D. (2007). Research on mitochondria and aging,2006-2007. Aging cell 6,417-420.
    Lapierre, L.R., and Hansen, M. (2012). Lessons from C. elegans:signaling pathways for longevity. Trends in endocrinology and metabolism:TEM 23,637-644.
    Lebovitz, R.M., Zhang, H., Vogel, H., Cartwright, J., Jr., Dionne, L., Lu, N., Huang, S., and Matzuk, M.M. (1996). Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 93,9782-9787.
    Lee, S.J., Murphy, C.T., and Kenyon, C. (2009). Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell metabolism 10,379-391.
    Lee, S.S., Lee, R.Y., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature genetics 33,40-48.
    Lin, K., Dorman, J.B., Rodan, A., and Kenyon, C. (1997). daf-16:An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278,1319-1322.
    Lints, F.A. (1989). The rate of living theory revisited. Gerontology 35,36-57.
    Llopis, J., McCaffery, J.M., Miyawaki, A., Farquhar, M.G., and Tsien, R.Y. (1998). Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America 95,6803-6808.
    Lopez-Torres, M., Gredilla, R., Sanz, A., and Barja, G. (2002). Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free radical biology & medicine 32,882-889.
    Maassen, J.A., LM, T.H., Van Essen, E., Heine, R.J., Nijpels, G., Jahangir Tafrechi, R.S., Raap, A.K., Janssen, G.M., and Lemkes, H.H. (2004). Mitochondrial diabetes:molecular mechanisms and clinical presentation. Diabetes 53 Suppl 1, S103-109.
    Mango, S.E. (2007). The C. elegans pharynx:a model for organogenesis. WormBook:the online review of C elegans biology,1-26.
    McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of biological chemistry 244,6049-6055.
    McElwee, J., Bubb, K., and Thomas, J.H. (2003). Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging cell 2,111-121.
    McElwee, J.J., Schuster, E., Blanc, E., Thomas, J.H., and Gems, D. (2004). Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. The Journal of biological chemistry 279,44533-44543.
    Melov, S., Lithgow, G.J., Fischer, D.R., Tedesco, P.M., and Johnson, T.E. (1995). Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic acids research 23, 1419-1425.
    Melov, S., Schneider, J.A., Day, B.J., Hinerfeld, D., Coskun, P., Mirra, S.S., Crapo, J.D., and Wallace, D.C. (1998). A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nature genetics 18,159-163.
    Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P.P., Lanfrancone, L., and Pelicci, P.G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402,309-313.
    Miquel, J. (1998). An update on the oxygen stress-mitochondrial mutation theory of aging:genetic and evolutionary implications. Experimental gerontology 33,113-126.
    Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R.Y. (1999). Dynamic and quantitative Ca2+measurements using improved cameleons. Proceedings of the National Academy of Sciences of the United States of America 96,2135-2140.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388,882-887.
    Moraes, C.T. (2001). What regulates mitochondrial DNA copy number in animal cells? Trends in genetics: TIG 17,199-205.
    Morris, J.Z., Tissenbaum, H.A., and Ruvkun, G. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382,536-539.
    Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424,277-283.
    Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America 98,3197-3202.
    Nakano, H., Nakajima, A., Sakon-Komazawa, S., Piao, J.H., Xue, X., and Okumura, K. (2006). Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell death and differentiation 13,730-737.
    Navarro, A., and Boveris, A. (2007). The mitochondrial energy transduction system and the aging process. American journal of physiology Cell physiology 292, C670-686.
    Nicholls, D.G. (2002). Mitochondrial function and dysfunction in the cell:its relevance to aging and aging-related disease. The international journal of biochemistry & cell biology 34,1372-1381.
    Nicholls, D.G. (2004). Mitochondrial membrane potential and aging. Aging cell 3,35-40.
    Nohl, H., and Hegner, D. (1978). Do mitochondria produce oxygen radicals in vivo? European journal of biochemistry/FEBS 82,563-567.
    Oh, S.W., Mukhopadhyay, A., Dixit, B.L., Raha, T., Green, M.R., and Tissenbaum, H.A. (2006). Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature genetics 38,251-257.
    Okimoto, R., Macfarlane, J.L., Clary, D.O., and Wolstenholme, D.R. (1992). The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130,471-498.
    Olsen, A., Vantipalli, M.C., and Lithgow, G.J. (2006). Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans. Science 312,1381-1385.
    Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273,1392-1395.
    Osellame, L.D., Blacker, T.S., and Duchen, M.R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best practice & research Clinical endocrinology & metabolism 26,711-723.
    Pagliarini, D.J., and Dixon, J.E. (2006). Mitochondrial modulation:reversible phosphorylation takes center stage? Trends in biochemical sciences 31,26-34.
    Pamplona, R., Portero-Otin, M., Riba, D., Ledo, F., Gredilla, R., Herrero, A., and Barja, G. (1999). Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse. Aging (Milano)11,44-49.
    Pan, K.Z., Palter, J.E., Rogers, A.N., Olsen, A., Chen, D., Lithgow, G.J., and Kapahi, P. (2007). Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging cell 6,111-119.
    Panowski, S.H., Wolff, S., Aguilaniu, H., Durieux, J., and Dillin, A. (2007). PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447,550-555.
    Parker, W.D., Jr., Parks, J.K., and Swerdlow, R.H. (2008). Complex I deficiency in Parkinson's disease frontal cortex. Brain research 1189,215-218.
    Patergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., et al. (2011). Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell communication and signaling:CCS 9,19.
    Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C., and Barja, G. (1998). The rate of free radical production as a determinant of the rate of aging:evidence from the comparative approach. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology 168,149-158.
    Petriv, O.I., and Rachubinski, R.A. (2004). Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. The Journal of biological chemistry 279,19996-20001.
    Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M.R., et al. (2007). Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315,659-663.
    Raffaello, A., De Stefani, D., and Rizzuto, R. (2012). The mitochondrial Ca2+ uniporter. Cell calcium 52,16-21.
    Raha, S., and Robinson, B.H. (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical sciences 25,502-508.
    Rea, S.L. (2005). Metabolism in the Caenorhabditis elegans Mit mutants. Experimental gerontology 40,841-849.
    Rhee, S.G. (2006). Cell signaling. H2O2, a necessary evil for cell signaling. Science 312,1882-1883.
    Robida-Stubbs, S., Glover-Cutter, K., Lamming, D.W., Mizunuma, M., Narasimhan, S.D., Neumann-Haefelin, E., Sabatini, D.M., and Blackwell, T.K. (2012). TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell metabolism 15,713-724.
    Sanz, A., Pamplona, R., and Barja, G. (2006). Is the mitochondrial free radical theory of aging intact? Antioxidants & redox signaling 8,582-599.
    Scheffler, I.E. (2007). Structure and Morphology. Integration into the Cell. In Mitochondria (John Wiley & Sons, Inc.), pp.18-59.
    Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., Ladiges, W., Wolf, N., Van Remmen, H., et al. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308,1909-1911.
    Schulz, T.J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell metabolism 6,280-293.
    Sgro, C.M., and Partridge, L. (1999). A delayed wave of death from reproduction in Drosophila. Science 286, 2521-2524.
    Shmookler Reis, R.J., Xu, L., Lee, H., Chae, M., Thaden, J.J., Bharill, P., Tazearslan, C., Siegel, E., Alla, R., Zimniak, P., et al. (2011). Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. In Aging, pp.125-147.
    Sohal, R.S. (2002). Role of oxidative stress and protein oxidation in the aging process. Free radical biology & medicine 33,37-44.
    Sohal, R.S., Agarwal, S., Candas, M., Forster, M.J., and Lal, H. (1994a). Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mechanisms of ageing and development 76,215-224.
    Sohal, R.S., Agarwal, S., and Sohal, B.H. (1995). Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mechanisms of ageing and development 81,15-25.
    Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., and Lal, H. (1994b). Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mechanisms of ageing and development 74,121-133.
    Sohal, R.S., and Orr, W.C. (1992). Relationship between antioxidants, prooxidants, and the aging process. Annals of the New York Academy of Sciences 663,74-84.
    Sohal, R.S., Svensson, I., Sohal, B.H., and Brunk, U.T. (1989). Superoxide anion radical production in different animal species. Mechanisms of ageing and development 49,129-135.
    Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273,59-63.
    St-Pierre, J., Buckingham, J.A., Roebuck, S.J., and Brand, M.D. (2002). Topology of superoxide production from different sites in the mitochondrial electron transport chain. The Journal of biological chemistry 277, 44784-44790.
    Steinkraus, K.A., Smith, E.D., Davis, C., Carr, D., Pendergrass, W.R., Sutphin, G.L., Kennedy, B.K., and Kaeberlein, M. (2008). Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging cell 7,394-404.
    Stephen C. Bondy, K.M. (2010). Intervention with Multiple Micronutrients Including Dietary and Endogenous Antioxidants for Healthy Aging. In Aging and Age-Related Disorders (Humana Press).
    Suda, H., Shouyama, T., Yasuda, K., and Ishii, N. (2005). Direct measurement of oxygen consumption rate on the nematode Caenorhabditis elegans by using an optical technique. Biochemical and biophysical research communications 330,839-843.
    Taub, J., Lau, J.F., Ma, C., Hahn, J.H., Hoque, R., Rothblatt, J., and Chalfie, M. (1999). A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 399,162-166.
    Taub, J., Lau, J.F., Ma, C., Hahn, J.H., Hoque, R., Rothblatt, J., and Chalfie, M. (2003). A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 421,764.
    Tawe, W.N., Eschbach, M.L., Walter, R.D., and Henkle-Duhrsen, K. (1998). Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic acids research 26,1621-1627.
    Togo, S.H., Maebuchi, M., Yokota, S., Bun-Ya, M., Kawahara, A., and Kamiryo, T. (2000). Immunological detection of alkaline-diaminobenzidine-negativeperoxisomes of the nematode Caenorhabditis elegans purification and unique pH optima of peroxisomal catalase. European journal of biochemistry/FEBS 267, 1307-1312.
    Tsuruzoe, K., Araki, E., Furukawa, N., Shirotani, T., Matsumoto, K., Kaneko, K., Motoshima, H., Yoshizato, K., Shirakami, A., Kishikawa, H., et al. (1998). Creation and characterization of a mitochondrial DNA-depleted pancreatic beta-cell line:impaired insulin secretion induced by glucose, leucine, and sulfonylureas. Diabetes 47,621-631.
    Valverde, J.R., Marco, R., and Garesse, R. (1994). A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria. Proceedings of the National Academy of Sciences of the United States of America 91,5368-5371.
    Van Raamsdonk, J.M., and Hekimi, S. (2010). Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship? Antioxidants & redox signaling 13,1911-1953.
    Vanfleteren, J.R. (1993). Oxidative stress and ageing in Caenorhabditis elegans. The Biochemical journal 292 (Pt 2),605-608.
    Vanfleteren, J.R., and De Vreese, A. (1995). The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 9,1355-1361.
    Vanfleteren, J.R., and De Vreese, A. (1996). Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans. The Journal of experimental zoology 274,93-100.
    Vellai, T., Takacs-Vellai, K., Zhang, Y, Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics:influence of TOR kinase on lifespan in C. elegans. Nature 426,620.
    Walker, G., Houthoofd, K., Vanfleteren, J.R., and Gems, D. (2005). Dietary restriction in C. elegans:from rate-of-living effects to nutrient sensing pathways. Mechanisms of ageing and development 126,929-937.
    Wang, E., Wong, A., and Cortopassi, G. (1997). The rate of mitochondrial mutagenesis is faster in mice than humans. Mutation research 377,157-166.
    Wang, J., and Kim, S.K. (2003). Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130,1621-1634.
    Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., Zheng, M., et al. (2008). Superoxide flashes in single mitochondria. Cell 134,279-290.
    Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes & development 15,2922-2933.
    Wood, W.B., and Johnson, T.E. (1994). Aging. Stopping the clock. Current biology:CB 4,151-153.
    Yakes, F.M., and Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 94,514-519.
    Yang, W., and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS biology 8, e1000556.
    Yang, W., Li, J., and Hekimi, S. (2007). A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177,2063-2074.
    Yasuda, K., Adachi, H., Fujiwara, Y., and Ishii, N. (1999). Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of Caenorhabditis elegans. The journals of gerontology Series A, Biological sciences and medical sciences 54, B47-51; discussion B52-43.
    Yasuda, K., Ishii, T., Suda, H., Akatsuka, A., Hartman, P.S., Goto, S., Miyazawa, M., and Ishii, N. (2006). Age-related changes of mitochondrial structure and function in Caenorhabditis elegans. Mechanisms of ageing and development 127,763-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700