利用秀丽线虫研究脑红蛋白的抗氧化损伤作用及细胞骨架蛋白的缺氧应答机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秀丽线虫(Caenorhabditis elegans,C. elegans)是1974年Brenner首次公开报道的模式生物,其优点很多,是进行遗传、基因研究方面的首选模式生物。线虫生长周期短,实验室饲养简便,具备完整的发育和解剖学特征,已完成全基因组测序,基因操作便捷,如转基因、基因突变、RNA干涉等。本研究将线虫应用于Ngb对氧化损伤的作用研究及缺氧状态下细胞骨架的变化分析,旨在促进对低氧应答机制的理解及氧化应激损伤保护的防护基础研究。
     1、利用秀丽线虫研究Ngb抗氧化损伤的作用Ngb是新近发现的氧结合珠蛋白超家族成员,表达于神经系统,具有抗氧化损伤作用。Ngb含有两种重要的氨基酸:组氨酸和半胱氨酸,对Ngb的蛋白质结构及功能具有重要作用。为了探讨Ngb的抗氧化作用及作用机制,我们使用hNgb转基因线虫来进行百草枯(paraquat,PQ)处理,结果显示Ngb具有抗氧化作用。使用免疫共沉淀分析Ngb的相互作用蛋白,但未见明显结果,有可能Ngb是通过自身的重要结构来发挥抗氧化作用。我们还构建了Ngb的双突变表达载体,进行显微注射,以期获得Ngb的突变株系,进一步探讨Ngb抗氧化损伤的作用机制。
     秀丽线虫体内有33种globin,远多于脊椎动物,其中glb-13是人源Ngb(hNgb)的同源物,氨基酸序列具有20%的相似性,有相同的功能域。为了探讨glb-13的抗氧化作用及其发挥作用的信号通路,我们通过线虫的交配构建了线虫重要通路hif-1与daf-16和glb-13的双突变株系,并进行PQ处理来统计成虫率,结果显示glb-13(tm2825)突变株系不能恢复PQ引起的氧化损伤,hif-1的glb-13双突变株系的抗氧化作用低于glb-13(tm2825),说明hif-1在glb-13抗氧化作用的信号通路上可能发挥重要作用。在mRNA水平上,glb-13表达水平上调,与其抗氧化表型吻合,glb-13具有抗氧化应激作用,而glb-13的抗氧化应激作用不受HIF-1调控,可能与DAF-16和Nrf-2相关。同时,我们构建了以glb-13为启动子的表达载体,通过EGFP的可视化显示glb-13在线虫体内的分布与表达,以期获得其转基因株系,从而从蛋白质水平探讨glb-13的抗氧化作用。从Ngb的同源物角度进行Ngb的抗氧化作用研究,反映了Ngb具有抗氧化的作用,因此研究glb-13的功能对于理解Ngb的功能进化性具有重要意义。
     2、利用秀丽线虫研究细胞骨架蛋白在缺氧中的作用机制
     细胞骨架蛋白是支撑细胞的重要结构,不可或缺。细胞骨架蛋白的功能非常广泛且十分重要,参与细胞的基本生命活动,如细胞运动、物质运输和能量转换、细胞分化、信号转导等。其中,细胞骨架在抗缺氧方面的作用同样重要。为了探讨细胞骨架蛋白在缺氧中发挥的作用,选取原肌球蛋白(tropomyosin)突变株系lev-11(x12)研究细胞骨架在缺氧中的作用。结果显示lev-11突变后对缺氧敏感,蛋白水平显示LEV-11上调,说明细胞骨架蛋白能对抗缺氧引起的损伤。
qBrenner first reported C. elegans(Caenorhabditis elegans) as a model organism in 1974. C. elegans has many advantages, and is the preferred model in genetic studies because of short life cycle and lifespan, simple laboratory rearing, characteristics of full development and anatomy. It has completely-sequenced genome and convenient genetic manipulation, such as transgene, gene mutation, RNA interference. Therefore, C. elegans was used in this study to probe the response of Ngb on oxidation injuries and cytoskeleton changes under hypoxia stress.
     1. Anti-oxidative Mechanism of Ngb in C. elegans
     Ngb is a recently discovered as oxygen binding globin and specifically expressed in the nervous system. Ngb has two kinds of important amino acids: histidine and cysteine, which play important roles in the structure and anti-oxidative function of this protein. To investigate the antioxidant role of Ngb and the underlying mechanism, we used the human Ngb (hNgb) transgenic strain of C. elegans to treat with paraquat (PQ). Results showed that Ngb has antioxidant function. We used co-immunoprecipitation to pull down the potential interacting proteins of Ngb, but had no significant results. Ngb may play antioxidant role through its structure. We also constructed the histidine and cysteine double mutants of Ngb expression vector for microinjection, in order to obtain Ngb mutant transgenic strains and further exploring the oxidative mechanism of Ngb.
     C. elegans has 33 globins, which is far more than vertebrates. glb-13 is the homolog of hNgb, which has 20% similarity and the same functional domains. To investigate its antioxidant role and the signaling pathway, we constructed the mutant strain by mating the major pathways of hif-1 and glb-13 double mutant strains, then treated with PQ for adult rate and mRNA expression analysis. Results showed that the glb-13(tm2825) mutant strains can not be restored upon PQ induced oxidative damage. The antioxidative effects of the hif-1 and glb-13 double mutant strains were weaker than that of the strain glb-13(tm2825). Therefore, our result indicated that glb-13 is antioxidant and HIF-1 does not influence the antioxidative function of glb-13, which DAF-16 and Nrf-2 might plays important roles in the antioxidant signaling pathway of glb-13. We also constructed the glb-13 promoter of expression vector to observe the expression and distribution of glb-13 tagged EGFP in C. elegans in order to detect the protein level of glb-13. Taken together, the antioxidant of glb-13 also agreed with the antioxidant role of Ngb. It’s important for understanding the evolution of Ngb.
     2. Hypoxia Response Mechanism of Cytoskeleton in C. elegans
     Cytoskeleton, which support the cell structure, is indispensable for cell functions. Cytoskeleton is involved in cell movement, material transport and energy conversion, cell differentiation, signal transduction. The anti-hypoxia function is equally important. To investigate the role in hypoxia, the tropomyosin mutant strain lev-11(x12) was selected. Our results showed that the lev-11(x12) mutant is sensitive to hypoxia, and the LEV-11 protein level increased under hypoxia stress. Therefore, these data indicated that cytoskeleton can recover the damage induced by hypoxia.
引文
1. Burmester T, Weich B, Reinhardt S, et al. A vertebrate globin expressed in the brain[J]. Nature, 2000, 407(6803):520-523.
    2. Schmidt M, Giessl A, Laufs T, et al. How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina[J]. J Biol Chem, 2003, 278(3):1932-1935.
    3. Zhang C, Li L, Deng M, et al. Coding region cDNA sequence cloning of rat neuroglobin gene, its polymorphism feature and tissue expression profile analysis[J]. J Genet Genomics, 2001, 28(11):997-1001.
    4. Zhang C, Wang C, Deng M, et al. Full-length cDNA cloning of human neuroglobinand tissue expression of rat neuroglobin[J]. Biochem Biophys Res Commun, 2002, 290(5):1411-1419.
    5. Thorsten B, Thomas H. What is the function of neuroglobin? [J]. J Exp Biol, 2009, 212: 1423-1428.
    6.李伟光,任长虹,张成岗.脑红蛋白对活性氧的清除作用及其在神经系统疾病中的功能意义[J].生理科学进展, 2010,41(3):197-200.
    7. Hamdane D, Kiger L, Dewilde S, et al. Hyperthermal stability of neuroglobin and cytoglobin[J]. FEBS J, 2005, 272(8): 2076-2084.
    8. Hamdane D, Kiger L, Dewilde S, et al. Coupling of the heme and an internal disulfide bond in human neuroglobin[J]. Micron, 2004, 35(1-2):59-62.
    9.任长虹,张成岗.秀丽隐杆线虫在神经科学研究中的应用[J].军事医学科学院院刊, 2008, 32(6):575-578.
    10.王亚辉.秀丽隐杆线虫(Caenorhabditis elegans)——一个研究神经系统的最简单模型[J].中国神经科学杂志, 2000, 16(1):60-64.
    11.任长虹,张成岗.秀丽线虫:低氧应答研究的模式生物[J].生理科学进展, 2008, 39(1):84-87.
    12. Mello CC, Kramer JM, Stinchcomb D, et al. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences[J]. EMBO J, 1991, 10(12): 3959-3970.
    13. Sternberg PW. Working in the post-genomic C. elegans world[J]. Cell, 2001, 105(2): 173-176.
    14. David H, Eva G, Sylvia D, et al. Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family[J]. BMC Genomics, 2007, 8:356.
    15. Kimble J, Hodgkin J, Smith T, et al. Suppression of an amber mutation by microinjection of suppressor tRNA in C. elegans[J]. Nature, 1982, 299(5882): 456-458.
    16.李伟光,吴永红,任长虹, et al.突变型脑红蛋白原核表达载体的构建与表达鉴定[J].军事医学,2011, 35(1):25-29.
    17. Brenner S: The genetics of Caenorhabditis elegans[J]. Genetics 1974, 77(1):71-94.
    18. Qu WB, Shen ZY, Zhao DS, et al. MFEprimer: multiple factor evaluation of the specificity of PCR primers[J]. Bioinformatics, 2009, 25(2):276-278.
    19. Mello C, Fire A. DNA transformation[J]. Methods Cell Biol, 1995, 48:451-482.
    20. Thomas C. Transformation and microinjection[M]. Wormbook, USA: 2006, doi/10.1895/wormbook.1.108.1.
    21. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging[J]. Free Radic Biol Med, 2000 , (3-4):222-230.
    22. Balsano C, Alisi A. Antioxidant effects of natural bioactive compounds[J] . Curr Pharm Des, 2009, 15(26):3063-3073.
    23. Herold S, Fago A, Weber RE, et al. Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress[J]. J Biol Chem, 2004, 279(22): 22841-22847.
    24. Fordel E, Thijs L, Martinet W, et al. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions[J]. Gene, 2007, 398(1-2):114-122.
    25. Li RC, Morris MW, Lee SK,et al. Neuroglobin protects PC12 cells against oxidative stress[J]. Brain Res, 2008, 1190:159-166.
    26. Li RC, Pouranfar F, Lee SK, et al. Neuroglobin protects PC12 cells against beta-amyloid-induced cell injury[J]. Neurobiol Aging, 2008, 29(12): 1815-1822.
    27. Khan AA, Wang Y, Sun Y, et al. Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia[J]. Proc Natl Acad Sci U S A, 2006, 103(47):17944-17948.
    28. Liu J, Yu Z, Guo S, et al. Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in culturedneurons[J]. J Neurosci Res, 2009, 87(1): 164-170.
    29.刘鹏,盒跃忠,王浩春,et al.急性百草枯中毒患者预后影响因素的研究[J].中国劳动卫生职业病杂志,2011 ,29(3): 51-54.
    30. Ito S, Kudo K,Imamura T, et al. Detection of drugs and poisons in postmortem tissues-determination of paraquat in tissues of rabbits buried underground[J]. Nippon Hoigoku Zasshi, 1997,51(2):83.
    31. Fordel E, Thijs L, Martinet W, et al. Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death[J]. Neurosci Lett, 2006, 410(2): 146-151.
    32. Wakasugi K, Kitatsuji C, Morishima I. Possible neuroprotective mechanism of human neuroglobin[J]. Ann N Y Acad Sci, 2005, 1053:220-230.
    33.徐文琳,王春丽,张永亮, et al.脑红蛋白与Na+,K+-ATP酶β2亚基的相互作用及作用位点的鉴定[J].生物化学与生物物理学报, 2003, 35(9): 823-828.
    34. Li W, Wu Y, Ren C,et al. The activity of recombinant human neuroglobin as an antioxidant and free radical scavenger[J]. Proteins, 2011, 79(1): 115-125.
    35. Pesce A, Dewilde S, Nardini M, et al. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity[J]. Structure, 2003, 11(9): 1087-1095.
    36. Nicolis S, Monzani E, Ciaccio C, et al. Reactivity and endogenous modification by nitrite and hydrogen peroxide: does human neuroglobin act only as a scavenger?[J]. Biochem J, 2007, 407(1):89-99.
    37. Vinogradov SN, Hoogewijs D, Bailly X, et al. Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life[J]. Proc Natl Acad Sci USA, 2005, 102(32):11385-11389.
    38. Vinogradov SN, Hoogewijs D, Bailly X, et al. A model of globin evolution[J]. Gene, 2007, 398(1-2): 132-142.
    39. David H, Sasha D, Sylvia D, et al. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification[J]. BMC EvolutionaryBiology, 2008, 8: 279.
    40. Shen Z Y, Qu W B, Wang W, et al. MPprimer: a program for reliable multiplex PCR primer design. BMC Bioinformatics, 2010, 11(1): 143.
    41. Ward S, Carrel JS. Fertilization and sperm competition in the nematode Caenorhabditis elegans[J]. Developmental Biology, 1979, 73(2): 304-321.
    42. Apfeld J, Kenyon C. Regulation of lifespan by sensory perception in Caenorhabditis elegans[J]. Nature, 1999, 402(16): 804-809.
    43. Hospital F. Selection in backcross programmes[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1459): 1503-1511.
    44. Vogel KE. Backcross breeding[J]. Methods Mol Biol, 2009, 526: 161-169.
    45. Ailion M, Thomas JH. Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans[J]. Genetics, 2003, 165(1): 127-144.
    46. Jansen G, Hazendonk E, Thijssen KL, et al. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans[J]. Nat Genet, 1997,17(1): 119-121.
    47. Hodgkin J, Horvitz HR, Brenner S. Nondisjunction mutants of the nematode caenorhabditis elegans[J]. Genetics, 1979, 91(1): 67-94.
    48. Shen X, Ellis RE, Lee K, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development [J]. Cell, 2001, 107(7): 893-903.
    49. Gontijo AM, Aubert S, Roelens I, et al. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans [J]. BMC Genet, 2009, 20: 10-14.
    50. Burmester T, Ebner B, Weich B, et al. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues[J]. Mol Biol Evol, 2002, 19(4): 416-421.
    51. Persson A, Gross E, Laurent P, et al. Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans[J]. Nature, 2009, 458(7241):1030-1033.
    52. Geuens E, Hoogewijs D, Nardini M, et al. Globin-like proteins in Caenorhabditis elegans: in vivo localization, ligand binding and structural properties[J]. BMC Biochem, 2010, 11:17.
    53. Yoon J, Herzik MA Jr, Winter MB, et al. Structure and properties of a bis-histidyl ligated globin from Caenorhabditis elegans[J]. Biochemistry, 2010, 49(27): 5662-5670.
    54. Hoogewijs D, Geuens E, Dewilde S, et al. Genome-wide analysis of the globin gene family of C. elegans[J]. IUBMB Life, 2004, 56(11–12):697-702.
    55. Shen C, Nettleton D, Jiang M, et al. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans[J]. J Biol Chem, 2005, 280(21): 20580-20588.
    56. Haddad JJ, Olver RE, Land SC. Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells[J]. J Biol Chem, 2000, 275(28): 21130-21139.
    57. Galanis A, Pappa A, Giannakakis A,et al. Reactive oxygen species and HIF-1 signalling in cancer[J]. Cancer Lett, 2008, 266(1):12-20.
    58. Hong M, Kwon JY, Shim J. Differential hypoxia response of hsp-16 genes in the nematode[J]. J Mol Biol, 2004, 344(2): 369-381.
    59. [59] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
    60. Irwin DC, McCord JM, Nozik-Grayck E, et al. A potential role for reactive oxygen species and the HIF-1alpha-VEGF pathway in hypoxia-induced pulmonary vascular leak[J]. Free Radic Biol Med, 2009, 47(1): 55-61.
    61. Scott BA, Avidan MS, Crowder CM. Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2[J]. Science, 2002, 296(5577):2388-23891.
    62. Chávez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans[J]. Genetics, 2007, 176(3): 1567-1577.
    63. Libina N, Berman JR, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan[J]. Cell, 2003, 115(4):489-502.
    64. Nguyen T,Nioi P, Pickett CB. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress[J]. J Biol Chem, 2009, 284(20): 13291–13295.
    65.翟中和,王忠喜,丁明孝.细胞生物学[M].北京:高等教育出版社,2006: 319-357.
    66. Roberts-Lewis JM, Siman R. Spectrin proteolysis in the hippocampus: a biochemical marker for neuronal injury and neuroprotection[J]. Ann N Y Acad Sci, 1993, 679:78–86.
    67. Hu RJ, Bennett V. In vitro proteolysis of brain spectrin by calpain I inhibits association of spectrin with ankyrin-independent membrane binding site(s) [J]. J Biol Chem, 1991, 266: 18200–18205.
    68. Lee A, Morrow JS, Fowler VM. Caspase remodeling of the spectrin membrane skeleton during lens development and aging[J]. J Biol Chem, 2001, 276: 20735–20742.
    69. Bouvry D, Planès C, Malbert-Colas L, et al. Hypoxia-induced cytoskeleton disruption in alveolar epithelial cells[J]. Am J Respir Cell Mol Biol, 2006, 35(5): 519-527.
    70. Kayyali US, Pennella CM, Trujillo C, et al. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2[J]. J Biol Chem, 2002, 277(45): 42596-42602.
    71. Arai A, Vanderklish P, Kessler M, et al. A brief period of hypoxia causes proteolysisof cytoskeletal proteins in hippocampal slices[J]. Brain Res, 1991, 555(2):276-280.
    72. Li H, Ren C, Shi J, et al. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress[J]. Proteome Sci, 2010, 8:49.
    73. Vibert PJ, Haselgrove JC, Lowy J, et al. Structural changes in actin-containing filaments of muscle[J]. J Mol Biol, 1972, 71(3): 757-767.
    74. Marston S, Burton D, Copeland O, et al. Structural interactions between actin, tropomyosin, caldesmon and calcium binding protein and the regulation of smooth muscle thin filaments[J]. Acta physiologica Scandinavica, 1998, 164(4): 401-414.
    75. Beisel KW, Kennedy JE. Identification of novel alternatively spliced isoforms of the tropomyosin-encoding gene, TMnm, in the rat cochlea[J]. Gene, 1994 , 143(2): 251-256.
    76. Pittenger MF, Kazzaz JA, Helfman DM. Functional properties of non-muscle tropomyosin isoforms[J]. Curr Opin Cell Biol, 1994, 6(1): 196-104.
    77. MacLeod AR, Houlker C, Reinach FC, et al. A muscle-type tropomyosin in human fibroblasts: evidence for expression by an alternative RNA splicing mechanism[J]. Proc Natl Acad Sci U S A, 1985, 82(23): 7835-7839.
    78. Williams BD, Waterston RH. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations[J]. J Cell Biol, 1994, 124(4): 475-490.
    1. Fletcher DA,Mullins RD. Cell mechanics and the cytoskeleton[J]. Nature, 2010,463(7280): 485-492.
    2. Bermudes D, Hinkle G, Margulis L. Do prokaryotes contain microtubules?[J]. Microbiol Rev, 1994, 58(3): 387–400.
    3. van den Ent F, Amos LA, L?we J. Prokaryotic origin of the actin cytoskeleton[J]. Nature, 2001, 413(6):39-44.
    4. Jones LJ, Carballido-López R, Errington J. Control of cell shape in bacteria:helical, actin-like filaments in Bacillus subtilis[J]. Cell, 2001, 104(6):913-922.
    5. Pogliano J. The bacterial cytoskeleton[J]. Curr Opin Cell Biol, 2008, 20(1): 19-27.
    6. Van den Ent F,Loèwe J. Crystal structure of the cell division protein FtsA from Thermotoga maritima[J]. EMBO J, 2000, 19 (20), 5300-5307.
    7. Erickson HP. Evolution of the cytoskeleton[J]. Bio Essays, 2007, 29(7): 668-677.
    8. Ausmees N, Kuhn JR, Jacobs-Wagner C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape[J]. Cell, 2003, 115(6): 705-713.
    9. van Hemert MJ, Deelder AM, Molenaar C,et al. Self-association of the spindle pole body-related intermediate filament protein Fin1p and its phosphorylation-dependent interaction with 14-3-3 proteins in yeast[J]. J Biol Chem, 2003, 278(17): 15049-15055.
    10. Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing?[J]. Nat Rev Mol Cell Biol, 2005, 6(7): 583-589.
    11. Gourlay CW, Carpp LN, Timpson P, et al. A role for the actin cytoskeleton in cell death and aging in yeast[J]. J Cell Biol, 2004, 164(6): 803-809.
    12. Cioca DP, Kitano K. Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells[J]. Cell Mol Life Sci, 2002, 59(8): 1377-1387.
    13. Odaka C, Sanders ML,Crews P. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway[J].Clin Diagn Lab Immunol, 2000, 7(6): 947-952.
    14. Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis[J]. Cell Death Differ, 2002, 9(5): 493-504.
    15. Silacci P, Mazzolai L, Gauci C, et al. Gelsolin superfamily proteins: key regulators of cellular functions[J]. Cell Mol Life Sci, 2004, 61(19-20): 2614-2623.
    16. Ohtsu M, Sakai N, Fujita H, et al. Inhibition of apoptosis by the actin regulatory protein gelsolin[J]. EMBO J, 1997, 16(15): 4650-4656.
    17. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis[J]. Science, 1997, 278(5336): 294-298.
    18. Bernstein BW, Chen H, Boyle JA, et al. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons[J]. Am J Physiol Cell Physiol, 2006, 291(5): C828-839.
    19. Yuste R,Bonhoeffer T. Genesis of dendritic spines:insights from ultrastructural and imaging studies[J]. Nature Rev Neurosci, 2004, 5(1):24-34.
    20. Chi P, Greengard P, Ryan TA. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies[J]. Neuron, 2003, 38(1): 69-78.
    21. Pilo Boyl P, Di Nardo A, Mulle C, et al. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior[J]. EMBO J, 2007, 26(12): 2991-3002.
    22. Ferrero AJ, Cereseto M, Sifonios LL, et al. Cytoskeleton of hippocampal neurons as a target for valproic acid in an experimental model of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2007, 31(7): 1419-1428.
    23. Mitsuyama F, Futatsugi Y, Okuya M, et al. Microtubules to Form Memory. Ital J Anat Embryol, 2008, 113(4): 227-235.
    24. Bamburg JR, Bloom GS. Cytoskeletal Pathologies of Alzheimer Disease[J]. Cell Motil Cytoskeleton, 2009, 66(8): 635–649.
    25. Omary MB, Coulombe PA, McLean WH. Intermediate filament proteins and their associated diseases[J]. N Engl J Med, 2004, 351(20): 2087-2100.
    26. Mila S, Albo AG, Corpillo D, et al. Lymphocyte proteomics of Parkinson's disease patients reveals cytoskeletal protein dysregulation and oxidative stress[J]. Biomark Med, 2009, 3(2): 117-128.
    27. Cuadrado-Tejedor M,Sesma MT,Gimenez-Aaaya JM,et al. Changes in cytoskeletal gene expression linked to MPTP-treatment in mice[J]. Neurobiol Dis, 2005, 20(3): 666-672.
    28. Kaminska M, Havrylenko S, Decottignies P, et al. Dynamic Organization of Aminoacyl-tRNA Synthetase Complexes in the Cytoplasm of Human Cells[J]. J Biol Chem, 2009, 284(20): 13746-13754.
    29. Stapulionis R, Kolli S, Deutscher MP. Efficient mammalian protein synthesis requires an intact F-actin system[J]. J Biol Chem, 1997, 272(40): 24980-24986.
    30. Gross SR, Kinzy TG. Improper organization of the actin cytoskeleton affects protein synthesis at initiation[J]. Mol Cell Biol, 2007, 27(5): 1974-19789.
    31. Vijayaraj P, Kr?ger C, Reuter U, et al. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor[J]. J Cell Biol, 2009, 187(2): 175-184.
    32. Sotelo-Silveira J, Crispino M, Puppo A, et al. Myelinated axons containβ-actin mRNA and ZBP-1 in periaxoplasmic ribosomal plaques and depend on cyclic AMP and F-actin integrity for in vitro translation[J]. J Neurochem, 2008, 104(2): 545-557.
    33. Aronov S , Aranda G, Behar L , et al. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules[J]. J Cell Sci, 2002, 115(Pt 19): 3817-3827.
    34. Latham VM, Yu EH, Tullio AN, et al. A Rho-dependent signaling pathway operating through myosin localizes beta-actin mRNA in fibroblasts. Curr Biol, 2001,11(13): 1010-1016.
    35. Owen CH, DeRosier DJ,Condeelis J. Actin crosslinking protein EF-1a of Dictyostelium discoideum has a unique bonding rule that allows square-packed bundles[J]. J Struct Biol, 1992, 109(3): 248-254.
    36. Pittman YR, Kandl K, Lewis M, et al. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha[J]. J Biol Chem, 2009, 284(7): 4739-4747.
    37. Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes[J]. Trends Cell Biol, 2005, 15(7): 371-377.
    38. Edwards DC, Sanders LC, Bokoch GM, et al. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics[J]. Nat Cell Biol, 1999, 1(5): 253-259.
    39. Benink HA, Bement WM. Concentric zones of active RhoA and Cdc42 around single cell wounds[J]. J Cell Biol, 2005 ,168(3): 429-439.
    40. Krylova O, Messenger MJ, Salinas PC. Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3beta[J]. J Cell Biol, 2000, 151(1): 83-94.
    41. Mimori-Kiyosue Y, Shiina N, Tsukita S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells[J]. J Cell Biol, 2000, 148(3): 505-518.
    42. Ciani L, Salinas P. c-Jun N-terminal kinase (JNK) cooperates with Gsk3b to regulate Dishevelled-mediated microtubule stability[J]. BMC Cell Biol, 2007, 8:27.
    43. Tamada Y, Nakajima E, Nakajima T, et al. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia[J]. Brain Res, 2005, 1050(1-2): 148-155.
    44. Lee MS, Kwon YT, Li M, et al. Neurotoxicity induces cleavage of p35 to p25 bycalpain[J]. Nature, 2000, 405(6784):360-364.
    45. Arai A, Vanderklish P, Kessler M, et al. A brief of hypoxia causes proteolysis of cytoskeletal proteins in hippocampal slices[J]. Brain Res, 1991, 555(2): 276-280.
    46. Kayyali US, Pennella CM, Trujillo C, et al. Cytoskeletal Changes in Hypoxic Pulmonary Endothelial Cells Are Dependent on MAPK-activated Protein Kinase MK2[J]. J Biol Chem, 2002, 277(45): 42596-42602.
    47. Alli E, Bash-Babula J,Yang JM, et al. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer[J]. Cancer Res, 2002, 62(23): 6864-6869.
    48. Johnsen JI, Aurelio ON, Kwaja Z, et al. p53-mediated negative regulation of stathmin/Op18 expression is associated with G(2)/M cell-cycle arrest[J]. Int J Cancer, 2000, 88(5): 685-691.
    49. Baldassarre G, Belletti B, Nicoloso MS, et al. p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion[J]. Cancer cell, 2005, 7(1): 51-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700