无传感器永磁同步电机的位置辨识与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机广泛应用于工业和民用等多个领域。它的优点包括功率密度高、功率因数高、效率高、可靠性高等。由于转子上没有电刷,它维护起来也比较方便。由于转子采用了永磁体,因此永磁同步电动机在高温下有退磁的风险,这是它的一个缺点。另外在控制时需要对转子的位置进行检测,而高精度的位置传感器价格也较高,因此成本等原因也妨碍了永磁同步电动机在一些领域的进一步应用。无位置传感器控制技术不仅可以降低系统成本,还由于简化了设计而提高了系统的可靠性。特别是在某些场合,如高速、微型、水下等,有时无法安装位置传感器。因此永磁同步电动机的无位置传感器控制(以下简称无传感器控制)具有重要意义。永磁同步电动机按转子的结构分永磁体内置式和永磁体表贴式同步电动机。表贴式永磁同步电动机成本更低些,因此应用得更广泛些。但由于表贴式永磁同步电动机弱凸极性,因此其无传感器控制难度更大些。本文主要研究表贴式永磁同步电动机的无传感器控制技术,但研究结论其实完全可以适用于内置式永磁同步电动机。
     首先,在大量阅读国内外相关参考文献的基础上,对永磁同步电动机的无传感器控制技术进行了综述。主要包括该技术的研究进展和目前的国内外研究现状;另外阐述了表贴式永磁同步电动机的无传感器控制技术的优点,在工业等一些相关领域的应用前景等;对适用于零速、低速、高速的永磁同步电动机的无传感器控制技术进行了分类和比较。
     第二章首先全面推导了永磁同步电动机的数学模型,在此基础上研究了一种转子静止状态下的初始位置辨识方法。转子初始位置的辨识在很多场合具有重要意义。该方法分两个步骤:第一步先向静止坐标轴注入静止的幅值正弦变化电压矢量,并根据离线测试的数据通过查表得出转子的初始位置;第二步向转子d轴注入静止的幅值正弦变化电压矢量,通过正负半周电流的大小来判断转子d轴的正方向。该方法的辨识精度较高。
     第三章研究了一种低速下转子位置的辨识方法。该方法向三相坐标系注入三相高频旋转的电压矢量,并通过对采样到的三相高频电流幅值进行分析,得出转子位置。该方法成立的前提是认为转子位置不同时各相电流响应的幅值也不相同,因为各相磁路的饱和程度会相应发生改变。本章的特色在于提出了一种新的高频电压注入方法:基于载波信号的高频注入方法,也就是利用三相高频PWM载波信号互差120度(而不是常用的0度)从而自动得到频率为开关频率的高频相电压矢量。该方法只适用于低速,因为在高速下基波电压不断变大,注入的高频电压的幅值将相应衰减,使高频电流幅值不断衰减,衰减到一定程度就无法从中辨识出位置信息了。
     第四章研究了一种高速下位置跟踪的无传感器控制技术。其原理为认为定子电压的d轴分量在稳态下应该为0。设计了一个锁相环,锁相环的输入为代表位置信息的角度,输出为转速,转速的积分为位置,这样构成了一个闭环辨识回路。另外,同时研究了一种单位功率因数的控制方法,即令输出的电压矢量与电流矢量同相位,其优点在于避免了对电机参数的信息要求,简化了编程过程。
     第五章研究了超高速下永磁同步电动机的弱磁控制方法及其在无传感器控制系统中的应用。在转速超过额定点以后,由于反电动势大于逆变器所能提供的最大电压,因此需要向负d轴注入一个励磁电流,即进行弱磁控制,从而使转速能够进一步上升。研究了SVPWM过调制技术以及提供负励磁电流的依据-零矢量作用时间。研究了弱磁算法在无传感器控制方法下的适用性。
     最后介绍了实验平台,包括以TMS320F28335为核心的硬件控制平台和软件平台。该控制系统是全数字化控制系统,所有环节包括速度环、位置环、以及位置辨识算法均由软件完成。给出了一些软件编程的思路和框图。本文对以上各种位置辨识方法在实验平台上进行了试验验证,证明了本文所提出的算法均是有效的。
Permanent Magnet (PM) machine is widely used in both industrial and civilian applications because of the advantages which it inherits, such as high power density, high power factor, high efficiency and high reliability. Also, the maintaining of PM machine is convenient due to the brushless rotor structure. But the risk of irreversible demagnetizing of PM under high temperature is a tough problem. What's more, the expensive position sensor hinders the application of PM machine in some areas. Position senseless control is important for industrial applications because it can reduce price and enhance reliability of the system, especially suitable for the occasions which the position sensors can not be installed, i.e. very high-speed machine, micro machine and under-water machine. Based on the rotor PM structures, the PM machine can be classified to Surface Mounted (SM) machine and Interior Permanent Magnet (IPM) machine. The SM machine has relative wide used because it is cheaper. But the low saliency ratio brings more difficulty in senseless control than IPM machine. In this paper, the senseless control strategy is developed on SM machine, but the method can also be applied to IPM machine.
     In Chapter 1, the review of PM machine senseless control strategy has been done. Mainly includes the research state of this strategy both at home and abroad; the advantage of senseless control method in SM machine and its prospects in industrial applications. Then, the senseless control technologies of PM machine at zero speed, low speed and high speed has been categorized and compared.
     In Chapter 2, the mathematic model of PM machine has been derived in detail, based on it, one of the initial position identification methods has been studied. This method includes two steps:firstly, inject immobile sine wave voltage to standstill coordinate, the rotor initial position can be get from an off line look up table; second step is injecting the same voltage to d axis, the positive direction of d axis is obtained by judging the amplitude of current of both positive and negative cycles. This method has high precision which is meaningful in many applications.
     Chapter 3 introduced a kind of rotor position identification algorithm at low speed. In this method, three-phase high frequency voltage vector has been injected into coordinate; the rotor position is identified by analyzing three-phase current amplitude. This method is based on the presupposition that the current response will change while the rotor position changes because of the variation of flux saturation of three phases. The novelty of this part is a kind of new method of high frequency voltage injection has been proposed. This technology is called carrier wave based high frequency voltage injection. The high frequency voltage vector is got by using 120 degree delayed (not the usual one with 0 degree) three-phase PWM carrier wave. But because of the voltage fundamental wave component is increasing with the rising of speed, the high frequency voltage signal will be hard to detect, so this method is only suitable for low speed operation.
     In Chapter 4, the technology of senseless control at high speed has been developed. Assuming the d axis voltage component is zero at steady state. A closed loop of position is designed by using a phase-locked loop (PLL) with the input and output are position and speed respectively. On the other hand, a kind of unit power factor control strategy has been studied. This method needs no machine parameters, so the programming can be simplified.
     In Chapter 5, the PM machine field weakening control method at ultra high speed and its applications in senseless control system has been studied. For getting higher speed than rated speed, the negative d axis current should be applied to PM machine for the controllable terminal voltage based on the inverter. The SVPWM over modulation method has been developed; the needed negative excitation current is analyzed based on the operation time of zero vector. Also, the applicability of proposed field weakening strategy in senseless control is discussed.
     At last, the experimental platform is introduced. This full digital control system is based on TI TMS320F28335, all of the speed control loop, position loop and position identification algorithm are implemented by software. The programming flow chart is given. The results prove the proposed control strategy can be come to pass by commercial DSP chip.
引文
[1]李钟明,刘卫国,刘景林等.稀土永磁电机.国防工业出版社,1999
    [2]陈峻峰.永磁电机.机械工业出版社,1982
    [3]Min-Ho Park, Hong-Hee Lee. Sensorless vector control of permanent magnet synchronous motor using adaptive identification. Conference of IEEE IECON Annual Meeting,1989:209-214.
    [4]Peter Vas. Sensorless Vector and Direct Torque Control. Oxford University Press, 1998.
    [5]Corley M J, Lorenz R D. Rotor Position and Velocity Estimation for a Permanent Magnet Synchronous Machine at Standstill and High Speeds. IEEE IAS Annual Meeting.1996, (1):36-41.
    [6]Limei Wang, Lorenz R D. Rotor Position Estimation for Permanent Magnet Synchronous Motor Using Saliency-tracking Self-sensing Method. IEEE IAS Annual Meeting.2000, (1):445-450.
    [7]P. L. Jansen, Lorenz R D. Transducerless Field Orientation Concepts Employing Saturation Induced Saliencies in Induction Machines. IEEE IAS Annual Meeting. 1995, (1):174-181.
    [8]Marco Linke, Ralph Kennel, Joachim Holtz. Sensorless Speed and Position Control of Synchronous Machines using Alternating Carrier Injection. IEEE IAS Annual Meeting.2003, (1):1211-1217.
    [9]Linke M, Kennel R, Holtz J. Sensorless Position Control of Permanent Magnet Synchronous Machines without Limitation at Zero Speed. Proceeding of the IECON. 2002, (1):674-679.
    [10]Ji-Hoon Jang, Seung-Ki Sul, Jung-Ik Ha. Sensorless Drive of Surface-mounted Permanent Magnet Motor by High-frequency Signal Injection Based on Magnetic Saliency. IEEE Trans.on IA.2003,39(4):1031-1039.
    [11]梁艳,李永东.无传感器永磁同步电动机矢量控制系统概述.电气传动.2003,(4):4-9.
    [12]文永明,沈传文,苏彦民.基于无位置传感器的永磁电机控制技术综述.微电机.2002,35(6):32-35.
    [13]王丽梅,郭庆鼎.基于转子凸极跟踪的永磁同步电动机转子位置的自检测方法.电工技术学报.2001,(2):14-17.
    [14]胡家兵,贺益康等.基于磁饱和凸极效应的面贴式PMSM零速下无传感器技术.中国电机工程学报.2006,26(10):152-157.
    [15]秦峰,贺益康.永磁同步电机转子位置的无传感器自检测.浙江大学学报(工学版),2004,38(4):465-469.
    [16]秦峰,贺益康.两种高频注入法的无传感器运行研究.中国电机工程学报,2005,25(5):116-121.
    [17]刘毅,贺益康.基于传感器集成概念的永磁同步电机转子位置检测.电工电能新技术,2004,23(4):60-64.
    [18]万健如,郭永林,程传更.永磁同步电动机无位置传感器滑模变结构控制.电气应用.2006,25(8):75-78.
    [19]张剑,许镇琳,温旭辉.新型无位置传感器永磁同步电动机状态估计及其误差补偿方法研究.电工技术学报.2006,21(1):7-11.
    [20]陈益广;李响,傅涛.基于推广卡尔曼滤波算法的永磁同步电机无位置传感器控制.微电机.2005,38(5):3-6.
    [21]梁艳,李永东.无传感器永磁同步电机矢量控制中转子初始位置的估算方法.电工技术杂志.2003,2:10-13.
    [22]吴春华,陈国呈,孙承波.基于滑模观测器的无传感器永磁同步电机矢量控制系统.电工电能新技术.2006,25(2):1-3.
    [23]R. Dhaouadi. Design and Implementation of an Extended Kalman Filter for the State Estimation of a Permanent Magnet Synchronous Motor. IEEE Trans. Power Electron. 1991,6 (3):491-497.
    [24]S. Bolognani. Sensorless Full-digital PMSM Drive With EKF Estimation of Speed and Rotor Position. IEEE Trans. On Industrial Electronics.1999,46 (1):184-191.
    [25]Binns K J, Shimmin D W, Al-Aubidy K M, Implicit rotor-position sensing using motor windings for a self-commutating permanent-magnet drive system. IEE Proceedings B Electric Power Applications.1991,138(1):28-34.
    [26]刘毅,贺益康,秦峰,等.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J].中国电机工程学报,2005,25(17):121-126.
    [27]Mohamed Boussak. Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive[J]. IEEE Trans.on Power Electronics,2005,20(6): 1413-1422.
    [28]梁艳,李永东.无传感器永磁同步电机矢量控制中转子初始位置的估算方法[J].电工技术杂志,2003,22(2):10-13.
    [29]Consoli A, Scarcella G, Testa A. Industry application of zero-speed sensorless control techniques for PM synchronous motors[J]. IEEE Transactions on Industry Applications,2001,37(2):513-521.
    [30]Kim J S. New stand-still position detection strategy for PMSM drive without rotational transducers[C]. Sapporo, Japan:APEC'94,9th Annual Applied Power Electronics Conference and Exposition,1994:363-369.
    [31]田明秀,王丽梅,郑建芬.永磁同步电机无传感器转速和位置控制方案[J].沈阳工业大学学报,2005,27(5):518-521.
    [32]Maidu M, Bose B K. Rotor position estimation scheme of a permanent magnet synchronous machine for high performance variable speed drive[C]. IEEE IAS Annual Meeting, Houston, USA,1992, 1: 48-53.
    [33]French C, Acamley P. Control of permanent magnet motor drives using a new position estimation technique[J]. IEEE Trans. on Ind.,1996,32(5):1089-1097.
    [34]Wang limei, Lorenz R D. Rotor position estimation for permanent magnet synchronous motor using saliency-tracking self-sensing method[C]. IEEE IAS Annual Meeting, Rome, ITALY,2000.
    [35]秦峰,贺益康.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [36]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105.
    [37]Bado A, Bolognani S, Zigliotto M. Effective estimation of speed and rotor position of a PM synchronous motor drive by a Kalman filtering technique[C]. PESC '92 Record.23rd Annual IEEE, Toledo, SPAIN,1992, (1):951-957.
    [38]林飞,张春朋,宋文超,等.基于扩张状态观测器的感应电机转子磁链观测[J].中国电机工程学报,2003,23(4):145-147.
    [39]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35.
    [40]Tursini, Petrella. Adaptive sliding-mode observer for speed sensorless control of induction motors[J]. Industry Applications, IEEE Transactions on,2000,36(5): 1380-1387.
    [41]陈坚,电力电子学—电力电子变换和控制技术[M]。北京,高等教育出版社。
    [42]H.W.van der Brock, H.C.Skudenly, and G.V.Stanke, Analysis and realization of PWM based on voltage space vectors[J]. IEEE Trans. on Ind. App.1988,24(1):142-150,
    [43]Joachim Holtz, W. Lotzkat.,and A.M.Khambadkone. On continuous control of PWM inverters in the overmodulation range including the six-step mode[J].IEEE Trans, on Ind. Elect.,1993,8(4):546-553..
    [44]S.Bolognani and M.Zigliotto, Novel digital continuous control of SVM inverters in the overmodulation range[J].IEEE Trans, on Ind.App.1997,33(2):525-530.
    [45]D.-C. Lee, and G.-M. Lee. A novel overmodulation technique for space-vector PWM inverters [J]. IEEE Trans.on Power Elect.,1998,13(6):1144-1151.
    [46]A.M.Have,R.J.Kerkman and T.A.Lipo. Carrier based PWM VSI overmodulation strategies:Analysis, comparison and design. IEEE Trans.on Power Elec.1998,13(4):674-688
    [47]M.Z.Ahmad.etal, Overmodulation and field weakening in direct torque control of induction motor drives[C].First international Power and Energy Conference PECon 2006,Nov.28-29,2006,Putrajaya,Malaysia:465-469.
    [48]梁振鸿,温旭辉.应用过调制技术扩展永磁同步电机运行区域[J].电工电能新技术.2003,22(1):39-42.
    [49]Y.S.Kim,Y.K.Choi and J.H.Lee. Speed-sensorless vector control for permanent-magnet synchronous motors based on instantaneous reactive power in the wide-speed region [J]. IEE Proc.Electr.Power Appl.,152(5):1343-1349.
    [50]Ji-Hoon Jang; Seung-Ki Sul. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency[J]. Industry Applications, IEEE Transactions on,2003,39(4):1031-1039.
    [51]Yan Liang, Yongdong Li. Sensorless control of PM synchronous motors based on MRAS method and initial position estimation [C]. Electrical Machines and Systems, ICEMS 2003,2003 (1):96-99.
    [52]Park Min Ho, Lee Hong Hee. Sensorless vector control of permanent magnet synchronous motor using adaptive identification[C].15th Annual Conference of IEEE on Industrial Electronics Society,1989 (1):209-214.
    [53]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制[J].中国电机工程学报,2007,27(9):59-63.
    [54]夏长亮,王明超,史婷娜,等.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128.
    [55]张剑,温旭辉,刘钧,华旸.一种基于DSP的PMSM转子位置及速度估计新方法[J].中国电机工程学报,2006,26(12):144-148.
    [56]邹继斌,徐永向,于成龙.正弦波无刷直流电机的新型转子位置检测方法[J].中国电机工程学报,2002,22(12):47-55.
    [57]Koji Tanaka, Takahiro Yuzawa, Rintaro Moriyama, Ichiro Miki. Initial Rotor Position Estimation for Surface Permanent Magnet Synchronous Motor[J]. Industry Applications Conference Record of IEEE.2001:2592-2597.
    [58]Binns K J, Shimmin D W, Al-Aubidy K M, Implicit rotor-position sensing using motor windings for a self-commutating permanent-magnet drive system[J]. IEE Proceedings B Electric Power Applications.1991,138(1):28-34.
    [59]Linke M, Kennel R, Holtz J. Sensorless Position Control of Permanent Magnet Synchronous Machines without Limitation at Zero Speed[C]. Proceeding of the IECON.2002, (1):674-679.
    [60]Marco Linke, Ralph Kennel, Joachim Holtz. Sensorless Speed and Position Control of Synchronous Machines using Alternating Carrier Injection[C]. IEEE IAS Annual Meeting.2003, (1):1211-1217.
    [61]Mengjia, Jin, Luk, P.C.K. A neural network based initial position detection method to permanent magnet synchronous machines. Conference Proceedings-IPEMC, 2007:1878-1882.
    [62]Shinn-Ming Sue, Ching-Tsai Pan, Yuan-Chuen Hwang, new field-weakening control scheme for surface mounted permanent-magnet synchronous motor drives. Second IEEE Conference on Industrial Electronics and Applications,2007:1515-1520.
    [63]Lenke, R.U., De Doncker, R.W. Field weakening control of interior permanent magnet machine using improved current interpolation technique. IEEE Power Electronics Specialists Conference,2006:5-8.
    [64]Vaclavek, P. Blaha, P. Interior permanent magnet synchronous machine field weakening control strategy-the analytical solution.47th Annual Conference of the Society of Instrument and Control Engineers of Japan,2008:753-757.
    [65]Zhouyun Zhang, Jun Gun, Shi Wei, Guoqing Xu. Field-weakening control of PMBM based on instantaneous power theory. IEEE International Conference on Vehicular Electronics and Safety,2007:250-254.
    [66]Shinn-Ming Sue, Ching-Tsai Pan. Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives. IEEE Transactions on Industrial Electronics,2008:340-347.
    [67]Vaclavek, Pavel, Blaha, Petr. Interior permanent magnet synchronous machine field weakening control strategy-The analytical solution. Proceedings of SICE Annual Conference 2008-International Conference on Instrumentation, Control and Information Technology,2008:753-757.
    [68]张昌凡,王耀南,何静.永磁同步伺服电机的变结构智能控制[J].中国电机工程学报,2002,(07):13-17.
    [69]Yamazaki, K., Ohki, S., Nezu, A.,Ikemi, T. Development of interior permanent magnet motors reducing harmonic iron losses under field weakening control. IEEJ Transactions on Industry Applications,2007:837-843.
    [70]Lenke, Robert U., De Doncker, Rik W., Kwak, Mu-Shin, Kwon, Tae-Suk, Sul, Seung-Ki. Field weakening control of interior permanent magnet machine using improved current interpolation technique. IEEE Annual Power Electronics Specialists Conference,2006:361-366.
    [71]Ji-Liang Shi, Tian-Hua Liu, Shih-Hsien Yang. Field weakening with nonlinear controller design for an interior permanent magnet synchronous motor.32nd Annual Conference on IEEE Industrial Electronics,2006:1411-1416.
    [72]汪海波,周波,方斯琛.永磁同步电机调速系统的滑模控制[J].电工技术学报,2009,(09):71-77.
    [73]Wei Guo, Chengning Zhang, Yugang Dong. Design and experiments of a deep-slot permanent magnet synchronous motor for field-weakening applications. Proceeding of International Conference on Electrical Machines and Systems,2007:818-823.
    [74]Abroshan, Mohammad, Malekian, Kaveh, Milimonfared, Jafar, Varmiab, B. Abdi. An optimal direct thrust force control for interior permanent magnet linear synchronous motors incorporating field weakening. International Symposium on Power Electronics, Electrical Drives, Automation and Motion,2008:130-135.
    [75]史婷娜,张典林,夏长亮,陈炜,万健如.基于遗传整定的永磁交流伺服系统模糊免 疫PID控制器[J].电工技术学报,2008,(07):45-50.
    [76]Akatsu, K., Arimitsu, M., Wakui, S.. Design and control of a field intensified interior permanent magnet synchronous machine. Transactions of the Institute of Electrical Engineers of Japan,2006:827-834.
    [77]Yamazaki, K., Ohki, S., Nezu, A., Ikemi, T. Development of interior permanent magnet motors - reduction of harmonic iron losses by optimizing rotor structures. IEEE International Electric Machines and Drives Conference,2007:489-494.
    [78]Gonzalez-Lopez D.A., Tapia J.A., Wallace R., Valenzuela A. Design and test of an axial flux permanent-magnet machine with field control capability. IEEE Transactions on Magnetics,2008:2168-2173.
    [79]Shah Nirav P., Hirzel Andrew. Field weakened axial-gap surface permanent magnet motor for automobile traction use without gear ratio change. IEEE Vehicle Power and Propulsion Conference,2008:1022-1026.
    [80]张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007,(36):36-40.
    [81]刘家曦,李铁才,杨贵杰.永磁同步电机转子位置与速度预估[J].电机与控制学报,2009,(05):690-694.
    [82]祝晓辉,李颖晖.基于扰动滑模观测器的永磁同步电机矢量控制[J].电机与控制学报,2007,(05):456-46].
    [83]孙海军,赵成明,李俊,郭庆鼎,李润霞.灰色预测法PMSM无传感器控制系统[J].电机与控制学报,2007,(06):604-608.
    [84]Xiangen Chen, Shanmao Gu, Shengwen Ye, etc. Study on initial rotor position identification of Permanent Magnet Synchronous Motor Based on High Frequency Signal Injection. CAR 2010,2010:397-401.
    [85]HongRyel Kim, JuBeom Son, JangMyung Lee. Enhancement of the speed response of PMSM sensorless control using a new adaptive sliding mode observer. Transactions of the Korean Institute of Electrical Engineering, volume 59, issue 1, 2010:160-7.
    [86]Shuai Guo, Jinbao He. Sensorless control of PMSM based on adaptive sliding mode observer, International Journal of Modeling, Identification and Control, volume 7, issue 4,2009:321-4.
    [87]Urbanski K. Sensorless control of PMSM high dynamic drive at low speed range. ISIE 2011,2011:728-32.
    [88]Carriere S, Caux S, Fadel M, Alonge F. Velocity sensorless control of a PMSM actuator directly driven an uncertain two-mass system using RKF tuned with an evolutionary algorithm. EPE/PEMC 2010,2010:213-20.
    [89]Vaclavek P, Blaha P. Lyapunov function based design of PMSM state observer for sensorless control. ISIEA 2009,2009:331-6.
    [90]Hao Zhu, Xi Xiao, Yongdong Li. A simplified high frequency injection method for PMSM sensorless control. IEEE 6th International Power Electronics and Motion Control Conference,2009:401-5.
    [91]Jianyong Su, Tiecai Li, Guijie Yang. PMSM sensorless control based on four-order hybrid sliding mode observer. Proceedings of the CSEE, v.29, n.24,2009:98-103.
    [92]Jianyong Su, Tiecai Li, Guijie, Yang. Chattering phenomenon analysis and suppression of sliding mode observer in PMSM sensorless control. Transactions of China Electro technical Society, v.24, n.8,2009:58-64.
    [93]Guen Bo Lee, Jun Seong Park, Young Ahn Kwon. High-performance sensorless control of PMSM using back-EMF and reactive power. ICCAS-SICE 2009,2009: 407-11.
    [94]Bobek V, Dobrucky B, Pavlanin R, Sevcik P. VHFIM Sensorless Control of PMSM. ISIE 2010,2010:1536-41.
    [95]Forster M, Berger G, Petzoldt J, Rabenstein A. Sensorless control for PMSM using an 8bit microcontroller and dc-link current measurement. PCIM 2010,2010:209-13.
    [96]Hammel W, Kennel, R M. Position sensorless control of PMSM by synchronous injection and demodulation of alternating carrier voltage. SLED 2010,2010:56-63.
    [97]Genduso F, Miceli R, Rando C, Galluzzo G R. Back EMF Sensorless-Control Algorithm for High-Dynamic Performance PMSM. IEEE Transactions on Industrial Electronics, v.57, n.6,2010:2092-100.
    [98]Andreescu G D, Schlezinger C. Enhancement sensorless control system for PMSM drives using square-wave signal injection. SPEEDAM 2010,2010:1508-11.
    [99]Myoungho Kim, Seung-Ki Sul. An Enhanced Sensorless Control Method For PMSM In Rapid Accelerating Operation. IPEC,2010:2249-53.
    [100]Raggl K, Warberger B, Nussbaumer T, Burger S, Kolar J W. Robust angle-sensorless control of a PMSM bearingless pump. IEEE Transactions on Industrial Electronics, v. 56, n.6,2009:2076-2085.
    [101]Accetta A, Cirrincione M, Pucci M. I Sensorless control of PMSM by a linear neural network:TLS EXIN neuron. ECON 2010,2010:974-8.
    [102]Yisong Lv, Xuchun Li, Ji He, Zhengli Wu. An efficiency optimization method for sensorless control of sinusoidal PMSM. Transactions of China Electrotechnical Society, v.25, n.6,2010:12-17.
    [103]Vesely L, Zbranek P. Sensorless Control of PMSM with Low Change of Inductance. IMAFIS,2010:213-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700