凹坑型仿生形态汽车齿轮耐磨性能试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车齿轮是传递行驶动力的主要部件,其耐磨性能的好坏直接影响齿轮的使用寿命。由于汽车齿轮传动本身具有重复性强,连续工作的特点,加之又在循环交变应力的作用下,其齿面啮合区域经常磨损很严重,导致轮齿齿面疲劳失效,发生点蚀、胶合等现象,降低了齿轮的使用寿命,影响汽车的正常运行。因此,如何提高齿轮的耐磨性及延长其使用寿命成为目前汽车齿轮行业急需解决的难题。
     本论文是在已有的仿生耐磨设计与制造技术研究的基础之上,针对汽车齿轮磨损严重的问题,以模型试验为基础,设计制作了凹坑型仿生形态汽车齿轮,从功能表面仿生角度来解决这一问题。
     将齿轮的啮合传动简化成了两个圆柱体的表面既有相对微小滑动,又有啮合滚动的运动形式;在模型试验中,设计了九种不同尺寸与分布的微观凹坑型仿生表面形态,利用激光图形雕刻技术在环块样件的外表面加工形成了九种凹坑型仿生形态,进行了光滑与凹坑型仿生形态环块样件的摩擦磨损对比试验,试验表明仿生形态样件耐磨性可以提高41%。
     利用ANSYS有限元分析软件,完成了光滑与凹坑型仿生形态环块样件接触问题三维数值模拟,得到了光滑与凹坑型仿生形态环块样件接触的等效应力、接触应力与接触渗透量的分布云图,并对比了光滑与凹坑型仿生形态环块样件应力大小,九种凹坑型环块样件接触的等效应力、接触应力与接触渗透量均大于光滑样件。
     采用齿轮疲劳磨损试验机,进行了光滑与凹坑型仿生形态汽车齿轮耐磨性能对比试验研究;通过试验前后齿向与齿形误差值轨迹的对比,定性地分析了光滑与凹坑型仿生形态汽车齿轮磨损特性;通过试验前后齿向误差值与齿形误差量值的对比,定量地分析了光滑与凹坑型仿生形态汽车齿轮磨损量的规律,仿生形态齿轮可以提高耐磨性58%。
     利用ANSYS有限元分析软件,完成了光滑与凹坑型仿生形态齿轮二维与三维接触问题数值模拟,并进行了其接触的等效应力与接触应力的对比分析。等效应力与接触应力最大值均出现在大齿轮齿顶与小齿轮齿根接触位置,凹坑形态齿轮接触面区域的接触应力值明显小于光滑形态齿轮。
     根据齿轮弹性流体动力润滑理论的基本计算公式,运用MATLAB软件,完成了光滑与凹坑型仿生形态齿轮接触等温弹流润滑问题数值计算。
The automobile gear is the main component of transferring power, the quality of anti-wear properties dominates service lives of gear directly. Because of the characteristics of the gear transmission, which usually occurred in the continuous working state, the working condition is very bad. The tooth face wears away seriously, and the gear tooth often runs down because of the mesh abrasion. It is more seriously to appear pitting corrosion, felting, which causes the gear not rotating normally, and the service lives of gear is depressed accordingly. Therefore, how to improve the anti-wear properties and service lives of gear is an currently urgent problem to be solved for gear industry. There are many methods to improve anti-wear properties in the tradition, such as, changing material, heat treatment method, spraying abrasion coatings material, etc..The wear away problem is still very serious, which is payed attention to the bionics scholar.
     It was found that in the bionics, some soil animals, for example, the dung beetle, gryllotalpa and etc., its non-smooth morphology of the body surface showed highly wear-resistant features, The wear mechanism has been confirmed by a large number of scientific experiments, and used effectively in many fields such as mechanics engineering, material science, aviation and navigation in and abroad. According to the problem of serious wearing of the gear, the bionics researchers used the optimizing analysis of the existing model, designed and produced the unsmooth gear to resist the wearing and tried to solve the problem from the configuration and function.
     Nine concave surface morphology have been designed in the experiment of model, and laser texturing technology was used to process the surface of the model in this paper. In the same conditions, comparative experiment has been already completed between smooth model and bionic concave model. According to the measuring result of weight before and afer experiment, the wear value and the wear rate, the wear value and the wear rate of ten different models have been analysed contrastively. the range analysis was adopted for the wear value and the wear rate of nine different models by the way of orthogonal experimental design. In the lubrication condition, the anti-wear properties of bionic concave models were better than that of the smooth model, and the anti-wear mechanism of bionic concave models was analysed.
     The software ANSYS was used to process three-dimensional finite element numerical simulation between smooth model and bionic concave model. Without lubrication condition, the finite element analysis of nine bionic concave models have been completed by ANSYS for contact problem, and the stress nephogram of von mises stress, the stress intensity, contact stress, the contact penetration were displayed respectively, the stress results of smooth model have been compared with the nine bionic concave of form von mises stress, stress intensity, contact stress, contact penetration.
     Wear testing machine of gear was used to carry out the comparative experiment between smooth gears and bionic convave gears of automobile.The surface morphology parameters of the gear were measured before and after experiment, and the curve of error and the error value were got. The comparative analysis has been completed about profile error and tooth trace error before and after abrasion experiment, and the qualitative and quantitative analysis have been completed about the quality of wear resistance.
     The graphics software of CAXA was used to create two-dimensional model of gears. The two-dimensional model was imported to ANSYS, and the finite element model of gears was created. In the same parameter settings, the software of ANSYS was adopted to simulate two-dimensional contact problem between smooth gears and bionic concave gears, and the stress nephogram of the von mises stress and the contact stress were displayed respectively, and the comparative analysis of the von mises stress and the contact stress have been completed. The maximum von mises stress and contact stress appeare at the contact position of the large and small gears, although the von mises stress of bionic concave gears was greater than that of the smooth gear, the contact stress of bionic concave gear was less than that of the smooth gear significantly.
     The graphics software of CATIA was used to create three-dimensional model of gears. The three-dimensional model was imported to ANSYS, and the finite element model of gears was created. In the same parameter settings, the software of ANSYS was adopted to simulate three-dimensional contact problem between smooth gears and bionic concave gears, the stress nephogram of the von mises stress and the contact stress were displayed respectively. The comparative analysis of the von mises stress and the contact stress have been completed. The maximum von mises stress and the contact stress appeare at the contact position of the large and small gears as well, although the von mises stress of bionic concave gears was greater than that of the smooth gear, the contact stress of bionic concave gear was less than that of the smooth gear significantly.
     According to the basic equation of Reynolds for elastic hydrodynamic lubrication of gear, in the lubrication conditions, the basic equations, which is elastic hydrodynamic lubrication of smooth gears and bionic concave gears, was deduced respectively, and the numerical calculation of elastic hydrodynamic lubrication of smooth gears and bionic concave gears have been completed, the relation between the thickness of the film and the pressure of film have been established.
引文
1.乐美豪.中国齿轮制造业的发展预测[J].制造技术与机床,2003,3:11-13
    2.朱龙英.机械设计基础[M].北京:机械工业出版社.2009.
    3.杨永波.齿轮行业的现状及发展趋势[J].产品与市场,2004,10: 32-33
    4.彭俊,周述积,楼芬丽.汽车渗碳齿轮用刚及热处理工艺的现状和发展趋势[J]. 2007,28(1):3-6
    5.刘瑛,侯杰茹.机械设计基础[M].北京:中国电力出版社.2009.
    6.刘群.齿轮材料日新月异[J].研究与应用,2004,1-2:102-104
    7.兰卫国,汤宏智,杨志强.汽车齿轮表面喷丸强化[J].齿轮厂铸锻热-热处理实践,1998,1: 25-27
    8.苏萨威林.喷丸强化[M].北京:机械工业出版社.1960年.
    9.金荣植.载货汽车变速器齿轮材料与热处理质量的改进[J].汽车工艺与材料,2008,4:51-55
    10.顾敏,陈国民.我国齿轮制造中的热处理技术[J].金属热处理,2005,30: 30-37
    11.张熹,崔京玉,章军.浅析齿轮刚及热处理工艺对汽车用齿轮性能的影响[J].钢铁研究学报,2009,21(10): 38-42
    12.关振中.激光加工工艺手册[M].北京:中国计量出版社. 1998.
    13.刘江龙等.高能束热处理[M].北京:机械工业出版社.1997.
    14. W. M. Steen , C. Courtney. Surface heat treatment of steel using a 2kw continuous - wave CO2 laser[J]. Metals Technology. 1979, 6(12) : 456
    15.赵振业.高强度合金抗疲劳应用技术研究和发展[J].中国工程科学, 2005, 7(3): 90-93
    16.李家汉,杜永春,熊建钢.汽车用齿轮激光淬火工艺研究[J].南昌航空工业学院学报(自然科学版),2003,17(3) 56-59
    17. Clauer A H, Fairand B P. Interaction of laser2induced stress waves with metals [C]. Apple of Lasers in Material Processing ( Proceedings of Conference) .Washington , DC , 1979 , (Apr) ,18~20
    18.苗志毅,胡悦华,邵方.齿轮的激光淬火[J].机械传动, 2004, 28(5): 49
    19.黄华梁,玉如峰.激光表面相变硬化齿轮疲劳寿命研究[J].机械传动, 1994, 18(3): 11-12
    20.周建忠,张永康,杨继昌等.齿轮激光淬火技术替代常规渗碳工艺[J].江苏理工大学学报, 2000 , 21(2): 39-43
    21. R.C. Martins, Paulo S. Moura, J.O. Seabra. MoS2/Ti low-friction coating for gears[J]. Tribology international. 2006, 39: 1686–1697
    22. Marco Boniardi, Fabrizio Derrico, Chiara Tagliabue. Influence of carburizing and nitriding on failue of gear-A case study. Engineering Failure Analysis[J]. 2006, 13: 312-339
    23. Baragetti S, Terranova, La Vecchia GM. Variables affecting the fatigue resistance of PVD-coated components[J]. International Journal of Fatigue, 2007, 27: 1541-1550
    24. Vasan S. Sundaram. Diamond like carbon film as a protective coating for high strength steel and titanium alloy[J]. Surface&Coatings Technology, 2006, 201: 2707-2711
    25.李小周,黄华梁.表面合金涂层提高铸铁齿轮的接触疲劳强度研究[J].机械传动,2002, 16(4): 35—36
    26.郑江,张保全,桂志国.现代齿轮技术的发展与我国齿轮制造面临的问题[J].华北工学院学报,1997,18(1):50-54
    27.李小周,黄华梁,温芳.涂镀合金层的合金铸铁齿轮的接触疲劳强度研究[J].机械传动,2002, 36(4): 36-37
    28. Zaretsky E V, Parker R J, Anderson W J . Effect of component different hardeness on rolling -contact fatigue and load capacity. NASA TN22640
    29. Nathalie Limodin, Yves Verreman. Fatigue strength improvement of a 4140 steel by gas nitriding: Influence of notch severity[J]. Materials Science and Engineering A, 2006: 435-436
    30. R.K.Pandey.Failure analysis of coal pulveriser gear box[J].Engineering Failure Analysis, 2007, 14: 541-547
    31. Bayoumi A E, Xue Qufei, Hamdan M N. Effect of cuttingconditions on dynamic properties and surface integrity ofwork materials[J]. Wear, 1991 , 146 : 301-312
    32. Faruk Mendi, Hilal Can, Mustafa Kemal Kulekci. Fatigue properties of polyprophylene involute rack gear reinforced with metallic springs[J]. Materials and Design, 2006, 27: 427-433
    33. Oguz Kayabasi, Fehmi Erzincanli. Shape optimization of tooth profile of a flexspline for a harmonick drive by finite element modeling[J]. Materials and Design, 2007, 28: 441-447
    34.温诗铸.世纪回顾与展望——摩擦学研究的发展趋势[J].机械工程学报,2000,36(6):1-6
    35.王国彪,雷源忠.关注和发展摩擦学,推动经济可持续发展[J].自然科学进展,2005,15(5):571
    36.工业摩擦学的进展[J].表面工程咨询,2004,4(4):6-9
    37.梁小芯.浅谈摩擦学与经济效益的关系[J].机械设计, 2004,31:40-42
    38.张嗣伟.关于我国摩擦学发展方面的探讨[J].摩擦学学报,2001,21(5):321-323
    39.刘维民,薛群基.摩擦学研究及发展趋势[J].中国机械工程,2000,11(1-2):77-79
    40.戴振东,薛群基,王珉.试论摩擦学研究中的科学方法问题[J].南京航空航天大学学报,1998,30(2):235-240
    41.陈海真.基于摩擦学的齿轮传动设计[J].农机化研究,2005,9,5:147-149
    42.曲庆文,钟振远,刘原勇,宋润州.齿轮啮合沿齿面油膜厚度的分布[J].润滑与密封,2005,6:39-41
    43.张嗣伟.摩擦学的进展与展望[J].摩擦学学报,1994,14(1):84-88
    44.曲庆文.齿轮传动的主动摩擦学设计方法[J].润滑与密封,2006, 2(2):37-39
    45.范顺成.齿轮传动设计中的摩擦学问题[J].河北工业大学学报,1998,27(1):77-82
    46. Larsen Basse J. Surface engineering and the new millennium[J]. Surf Eng, 1998, 14 (2) : 81- 83
    47.徐洮,薛群基,田军.氮离子注入SiO 2单晶磨损机理的SEM研究[J].摩擦学学报,1999, 19 (4) : 289-293
    48.张宁,庄大明,王燕华,等.低温离子渗硫层的摩擦学性能研究[J].摩擦学学报,1999, 19 (4) : 348-353
    49.张嗣伟.从第一届世界摩擦学大会看当今摩擦学的发展动向[J].润滑与密封, 1998, 3: 66-68
    50.张绪寿,余来贵,陈建敏.表面工程摩擦学研究进展[J].摩擦学学报. 2000, 20(2):156-160
    51. Bell T. Realizing the potential of duplex surface engineering. In New Directions in Tribology [M]. London: Mech Eng P ress,1997
    52. Ehrhard H. New developments in the field of superhard coatings[J]. Surf Coat Technl, 1995, 74275: 29-35
    53. Chen M Y, L in X, D ravid V P, etal. Synthesis andtribo logical p roperties of carbon nitride as a novel superhard coating and so lid lubricant [J]. T ribology international, 1993, 36 (3) :491-495
    54. M atthew s A, L eyland A. Hybrid techniques in surface engineering[J]. Surf Coat Tech, 1995, 71: 88-92
    55. Subramanian C, Straffo rd K N. Review ofmulticomponent and multilayer coating fo r tribo logical app lications [J]. Wear,1993, 165: 85-95
    56.强颖怀,刘金龙,葛世荣,等.氮碳共渗复合处理45#钢的组织结构及摩擦学性能[J].摩擦学学报, 1998, 18 (3) : 226-231
    57. N.A. Wright1, S.N. Kukureka. Wear testing and measurement techniques for polymer composite gears[J]. Wear,2001, 251:1567–1578
    58. JoséAndréMarin de Camargo, Herman Jacobus Cornelis, Voorwald Maria Odila Hilário Cioffi, Midori Yoshikawa Pitanga Costa. Coating residual stress effects on fatigue performance of 7050-T7451aluminum alloy[J]. Surface & Coatings Technology, 2007, 201: 9448–9455
    59. K. Maoa, W. Lib, C.J. Hookec, D.Waltonc. Friction and wear behaviour of acetal and nylon gears[J]. Wear,2009, 267 :639–645
    60. K. Aslantas, S. Tas_getiren, Y. Yalcin. Austempering retards pitting failure in ductile iron spur gears[J]. Engineering Failure Analysis, 2004, 11: 935–941
    61. M. Izciler, M. Tabur Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel[J]. Wear, 2006, 260:90-98
    62. Anders Flodin, S?ren Andersson. A simplified model for wear prediction in helical gears[J]. Wear, 2001, 249: 285–292
    63. J. Rech. Influence of cutting edge preparation on the wear resistance in high speed dry gear hobbing[J]. Wear, 2006, 261: 505–512
    64. R.C. Martinsa, Paulo S. Mouraa, J.O. Seabrab. MoS2/Ti low-friction coating for gears[J]. Tribology International, 2006, 39 :1686–1697
    65. Fakher Chaari, Tahar Fakhfakh, Mohamed Haddar. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[J]. European Journal of Mechanics A/Solids, 2009, 28: 461–468
    66. Vasan S. Sundaram. Diamond like carbon film as a protective coating for high strength steel and titanium alloy[J]. Surface & Coatings Technology 2006, 201:2707–2711
    67. K. Mao. A new approach for polymer composite gear design[J].Wear, 2007, 262: 432–441
    68. C. James Li, J.D. Limmer. Model-based condition index for tracking gear wear and fatigue damage[J]. Wear, 2000, 241: 26–32
    69. Gwidon P. Gwidon W. Pawel Podsiadlo. Automated classification of wear particles based on their surface texture and shape features[J]. Tribology International, 2008, 41: 34–43
    70. D. Park, A. Kahraman. A surface wear model for hypoid gear pairs[J]. Wear 2009, 267: 1595–1604
    71. K.J. Sharif, H.P. Evans , R.W. Snidle. Prediction of the wear pattern in worm gears[J].Wear, 2006, 261 :666–673
    72. Yoshitsugu Kimura , Masami Sekizawa, Akio Nitanai. Wear and fatigue in rolling contact[J]. Wear, 2002, 253: 9–16
    73. K. Mao. Gear tooth contact analysis and its application in the reduction of fatigue wear[J]. Wear, 2007, 262: 1281–1288
    74.蒯苏苏.摩擦学实践改革的探讨[J].实验技术与管理,1999,16(3):101-103
    75.孙青云.齿轮摩擦学的研究现转与展望[J].机械传动,2003,27(3):9-11
    76.诸文俊,温正忠,范顺成.齿轮传动的摩擦学设计[J].机械科学与技术,1999,18(3):390-391
    77.任露泉.生物表面仿生工程及其应用研究进展与展望[C].全国表面工程学术会议.2006.
    78. Ren, L.Q., Tong, J., Zhang, S.J. and Chen, B.C. Reducing sliding resistance of soil against bulldozing plates by unsmoothed bionics surfaces.[J]. Terramechanics, 1995, 32: 303-309.
    79. Ren, L.Q., Cong, Q., Tong, J. and Chen, B.C. Reducing adhesion of soil against loading shovel using bionic electro-osmosis method[J]. Terramechanics, 2001, 38: 211-219.
    80. Ren, L.Q., Tong, J., Li, J.Q. and Chen, B.C. Soil adhesion and biomimetics of soil-engaging components: a review[J]. Agric. Eng. Res., 2001, 79(3): 239-263.
    81. Ren L.Q., Han Z.W., Li J.Q., Tong J..Comprehensive experimental investigation on bionic non-smooth curved blade surface in anti-adhesion and resistance reduction against soil[J]. Soil and Tillage Research, 2006, 85: 1-12
    82. C.Neinhuis and W.Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79: 667-677
    83. W. Barthlott, C. Neinhuis. Purity of the scared lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8
    84.江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报. 2005,23(2):4-8
    85. Ralf Blossey. Self-cleaning surfaces-virtue reality[J]. Nature materials. 2003, 2:301-306
    86.王淑杰,任露泉,韩志武.植物叶表面非光滑形态及其疏水特性的研究[J].科技通报,2005,21(5):553-556
    87.徐坚.自清洁功能的高分子仿生表面研究取得新进展[J].成果与应用,2005,20(1):45-48
    88.郑黎俊,乌学东,楼增.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699
    89.王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程,2005,21(2):6-10
    90.郭蕴纹.不粘锅形态-材料自洁耦合仿生研究[D].长春.吉林大学生物与农业工程学院.2007.
    91.葛亮.仿生不粘锅粘附性能的研究[D].长春.吉林大学生物与农业工程学院.2005
    92.邱兆美.蝴蝶鳞片微观耦合结构及其光学性能与仿生研究[D].长春.吉林大学生物与农业工程学院.2008.
    93.邬立岩.典型蝴蝶鳞片微结构及其反射光学特性[D].长春.吉林大学生物与农业工程学院.2006.
    94. Tian Limei, Ren Luquan, Han Zhiwu, Zhang Shicun. Experiment about drag reduction of bionic non-smooth surface in low speed[J]. Journal of Bionics Engineering, 2005, 2(1): 15-24
    95. D. W. Bechert, M. Bruse, W. Hage, R. Meyer. Fluid Mechanics of Biological Surfaces and their Technological Application[J]. Naturwissenschaften, 2000, 87: 157-171
    96.杨卓娟.凹坑形仿生非光滑轧辊耐磨性研究[D].长春,吉林大学生物与农业工程学院.2006.
    97.韩志武,任露泉,刘祖斌.激光雕刻加工仿生非光滑表面耐磨性研究.摩擦学学报,2004,24(4):289-293
    98.张志辉.激光仿生耦合处理热作模具的热疲劳性能研究[D].长春.吉林大学材料科学与工程学院.2007.
    99.邓宝清.内燃机活塞缸套系统非光滑效应的仿生研究[D].吉林大学汽车工程学院.2004.
    100.金敬福.仿生结构在润滑条件下耐磨性能的研究[D].长春.吉林大学生物与农业工程学院.2007
    101.赵万友.接触问题的分析方法研究与工程应用[D].西安.西安电子科技大学机电工程学院.2006.
    102.赵霞.接触问题的有限元法分析及其工程应用[D].辽宁工程技术大学机电工程学院.2007
    103.孙林松,王德信,谢能刚.接触问题有限元分析方法综述[J].水利水电科技进展,2001,21(3):18-22
    104.ANSYS公司. ANSYS基本过程手册[M].北京: ANSYS公司, 2000
    105.王玉洁.汽车齿轮表面形态仿生抗疲劳研究[D].长春.吉林大学生物与农业工程学院.2008.
    106.吕尤.汽车齿轮网格形表面形态仿生抗疲劳性能研究[D].长春.吉林大学生物与农业工程学院.2009.
    107.李呼斯勒.基于ANSYS的齿轮运动副有限元结构分析研究[D].内蒙古工业大学.2005.
    108.于少春.变速器齿轮齿面接触分析建模与仿真[D].长春:吉林大学机械学院.2007
    109.刘晖.基于参数化的齿轮传动接触有限元分析[D].大连:大连交通大学硕士学位论文.2006.
    110.杨华生.齿轮接触有限元分析[J].计算力学学报,2003, 20(2):189-194
    111.周长江,唐进元,钟志华,吴长德.齿轮传动齿面摩擦因数计算方法的研究[J].润滑与密封,2006,10:185-191
    112.杨晓宇.齿轮传动系统动力学特性的有限元分析及试验方法研究[D].长春,中国科学院长春光学精密机械与物理研究所.2005.
    113.常志权.汽车变速器齿轮啮合瞬态性能分析研究[D].重庆重庆大学机电工程学院.2005.
    114.Richard G. Budyna.高等材料力学与应用应力分析[M].北京.清华大学出版社.2002.
    115.武丽.有限元分析法及其软件在齿轮接触强度分析中的应用[J].机械管理开发,2007,
    2:74-75
    116.唐进元,周长江,吴运新.齿轮弯曲强度有限元分析精确建模的探讨[J].机械科学与技术.2004,23(10):1146-1150
    117.胡建生.利用CAXA与ANSYS实现圆柱齿轮强度校核[J].辽宁工学院学报,2007,
    27(3):192-194
    118.张卧波.有限元法计算齿轮接触强度的理论研究[J].农业机械学报,1999,30(3):89-92
    119.陈赛克,王毅.基于ANSYS精确模型的齿轮接触疲劳寿命有限元分析[J].机械传动,2006,31(2):81-84
    120.王哲,胡迎锋.齿轮建模与接触应力分析[J].湖北工业大学学报,2006,21(3):56-59
    121.雷镭,武宝林,谢新兵.基于ANSYS有限元软件的直齿轮接触应力分析[J].机械传动,2006,30(2):50-53
    122.李金国,陈琼,刘红.基于CATIA的齿轮三维实体模型的简便实现[J].工艺与设备,2005, 10:89-91
    123.李俊海,吴凤林,任家骏.基于Pro/E的分阶式双圆弧齿轮的建模及有限元分析[J].机械设计,2005, 3:73-75
    124.潘十成,邓效忠,刘发强.基于UG的圆柱齿轮造型和分析研究[J].煤矿机械,2004,10: 36-39
    125.祝恒云.基于UG的直齿圆柱齿轮的绘制研究[J].机械工程与自动化,2004,6:46-48
    126.李常义,潘存云,姚齐水,李伟建.基于ANSYS的渐开线圆柱齿轮参数化几何造型技术研究[J].机电工程,2004,21(9):35-38
    127.关云飞,沈晓明.ANSYS在齿轮设计和计算中的应用[J].机电工程技术,2004,33(2):56-57
    128.马雪洁.基于ANSYS的准双曲面齿轮建模即有限元分析[J].重型机械科技,2004,3:5-8
    129.杨汾爱,龙小乐,鲍务均.斜齿轮的精确建模及有限元分析[J].机电工程技术,2002,31(6):71-73
    130.丁能根.斜齿轮三维有限元网格和接触单元的自动生成[J].合肥工业大学学报(自然科学版),2003,26(5):1094-1097
    131.温诗铸.润滑理论研究的进展与思考.摩擦学学报[J].2007,27(6):498-504
    132.Lee,S.C. Scuffing modelling and experiments for heavily loaded elastohydrodynamic lubrication contacts[D].Northwestern University.1989.
    133.Lim,S.G. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem[D].Case Western Reserve University.1990.
    134.Ciulli,E. Time and frequency domain analysis of experimental EHL transient conditions data[C].11th Nordic Symposium on Tribology.2004:575-584.
    135.Lord,J., Jolkin,A., Larsson,R.,etal.A hybrid film thickness evaluation scheme based on multi-channel interferometry and contact mechanics[J]. Journal of Tribology, 2000, 122:16-22.
    136.Ehret,P., Bauget, F.Observation of Kaneta's dimples in elastohydrodynamic lubrication contacts[J].Journal of Engineering Tribology.2001,215:289-300.
    137.姜培刚.光弹性润滑实验中智能素服伺服控制的研究与应用[D].西安.西安电子科技大学机电工程学院.2009.
    138.温诗铸,黄平.弹性流体动力润滑的计算方法综述[C].第五届全国摩擦学学术会议.1992:159
    139.温诗铸,杨沛然.弹性流体动力润滑[M ].北京:清华大学出版社, 1992.
    140.温诗铸.摩擦学原理[M].北京:清华大学出版社, 1990.
    141.黄平,温诗铸.一种数值求解弹流润滑膜厚和压力的新方法[J].润滑与密封, 1998, 23 (6) 10~14.
    142.杨沛然.流体润滑数值分析[M].北京:国防工业出版社, 1998.
    143.王优强,杨沛然,佟景伟,李鸿琦.渐开线直齿圆柱齿轮非稳态热弹流润滑分析[J].机械工程学报.2004,40(9):10-15
    144.尹昌磊,杨沛然,杨萍.线接触弹流润滑综合数值分析[J].润滑与密封, 2006, 31 (9) : 70~76.
    145.杨萍,崔金磊,杨沛然.一个表面带单粗糙峰的线接触时变微弹流润滑数值分析[J].润滑与密封, 2004, 29(6) : 18– 21
    146.王优强,黄丙习,佟景伟,等.渐开线直齿轮时变热弹流润滑模拟[J].机械强度, 2006, 28 (3) : 363 - 368.
    147.王优强,李洪民,佟景伟.齿轮传动的弹流润滑设计[ J ].煤矿机械, 2003, 24 (6) : 3~5.
    148.王优强,宋开利,衣雪娟,等.渐开线直齿圆柱齿轮非牛顿瞬态弹流润滑分析[J].机械科学与技术, 2005, 24(2) : 179 - 181.
    149.王优强,卞荣.连续波状粗糙度对直齿轮热弹流润滑的影响[J].机械工程学报.2009,45(8):112-118
    150.卞荣,王优强.单粗糙峰对直齿圆柱齿轮热弹流润滑的影响[J].润滑与密封,2009,34(5):38-41
    151.衣雪娟,王优强.渐开线直齿圆柱齿轮等温时变非牛顿弹流润滑分析[J].润滑与密封, 2004 , 29 ( 3 ) :54 - 56.
    152.贺治成,杨萍,王优强.粗糙峰和粗糙谷对直齿圆柱齿轮热弹流润滑的影响[J].润滑与密封, 2007, 32 ( 7) : 87- 90.
    153.卢立新,蔡莹,张和豪.齿轮传动的瞬态弹性流体动力润滑[J].润滑与密封,1997,12
    154.卢立新,阙师鹏,蔡莹,张和豪.齿轮几何参数对齿轮传动弹流润滑性能的影响[J].机械传动, 1998,22(1):24-28
    155.杨丽平,高创宽,贾枫美.齿轮润滑压力和油膜厚度的数值分析[J].太原理工大学学报, 2002,33(3):260-263
    156.王发辉,刘莹.基于弹性流体动力润滑理论的齿轮设计[J].机械设计与研究,2008,24(3):39-42
    157.闫惠荣.齿轮传动弹性流体动压润滑最小油膜厚度计算公式的推导及修正[J].宁夏工学院学报(自然科学版), 1997,19(2):55-57
    158.尹健,罗延科,李屹.考虑弹性流体动压润滑的齿轮传动优化设计[J].机床与液压, 2003,3:197-199
    159.刘力红,张东速.齿轮参数对齿轮润滑性能影响的研究[J].淮南工业学院学报, 1999,19(4):43-46
    160.张钢,李鸣鸣,王中宇,裘卫星.齿轮润滑摩擦特性模拟实验台的研制[J].洛阳工学院学报, 1997,18(4):25-29
    161.周颂东.齿轮的润滑状态及润滑油的选择[J].润滑与密封, 1993, 18 (6) : 28-31.
    162.徐元强,曲晓锋.汽车齿轮的润滑状态及车辆齿轮油的选用[J].润滑与密封,2000,1:61-62
    163.张增强,高创宽,尹晓亮.润滑油粘度对齿轮接触疲劳强度寿命影响的研究[J].机械工程与自动化, 2008,12(6):79-81
    164.A.M. Abdel Haleem, M. Ichimura. Electrodeposition of wide band gap InGaxSyOz thin films for solar cell applications[J]. Materials Science and Engineering B, 2009,164: 180-185
    165.WangJiadao, ChenDarong, Kong Xianmei. Asperity Microcontactand its Influence on Partical Hydrodynam2ic Lubrication of Rough Surface[J]. Tribology, 1999, 19 (4): 362-367.
    166.Yang Peiran. NumericalAnalysis of Fluid Lubricatation[M]. Beijing: National Defence Industry Press, 1998.
    167.Roland Larsson. Transient non-Newtonian elastohydrodynamic lubrication analysis of an involute spur gear[J]. Wear, 1997, 207:67-73.
    168.曲全利,张鹏顺,李树森.弹性流体动力润滑的新研究与发展[J].机械工程师,1988,4:50-51
    169.吴飞科,罗继伟,张磊,王东峰.关于Hertz点接触理论适用范围的探讨[J].轴承, 2007,5(5):1-3
    170.杨树华,杨积东,郑铁生,张文.基于Hertz接触理论的转子碰摩模型[J].应用力学学报, 2003,20(4):61-65
    171.王龙,张建军.表面带单粗糙峰的变载弹流润滑数值模拟[J].煤炭机械,2008,29(8):56-58
    172.王国金,叶元凯,林菁.车辆齿轮油四球机测试结果与承载能力考查[J].石油商技,1999,17(1):8-15
    173.林子光,弹流理论及其应用[M]天津:天津科学技术出版社.1994.
    174.刘秀英.圆柱滚子轴承最小油膜厚度计算公式的推导及应用[J].机械设计,2006,2:66-67
    175.常江.齿轮副的静、动态数值计算与动态光弹性实验研究[D].天津:天津大学机械学院.2005.
    176.高创宽.渐开线齿轮传动的混合弹流润滑研究[D].太原:太原理工大学机械工程学院.2005.
    177.薛恒.齿轮传动的主动摩擦学设计[D].太原:太原理工大学机械工程学院.2007
    178.李朵朵.齿轮传动动态弹流润滑的数值计算模型研究[D].太原:太原理工大学机械工程学院.2004.
    179.杨益梅.齿轮箱的摩擦学优化设计[D].湘潭:湘潭大学机械工程学院.2007
    180.周长江.齿轮应力与变形精确分析中的有限元建模研究[D].长沙:中南大学机电工程学院.2004.
    181.尹晓亮.粗糙表面形貌参数对润滑特性的影响[D].太原:太原理工大学机械工程学院.2008.
    182.谭华.带式啮合介质齿轮传动的实验研究[D].重庆:重庆大学机械工程学院.2005.
    183.杨丽斗.弹流润滑数值分析及其在齿轮传动中的应用[D].太原:太原理工大学硕士学位论文, 2002
    184.孔金平.航空齿轮润滑数值计算[D].南京:南京航空航天大学能源与动力学院.2006.
    185.刘群.混合润滑线接触弹流数值分析及其在直齿轮传动中的应用[D].太原:太原理工大学机械工程学院.2004.
    186.冯桂萍.基于齿面粗糙度的齿轮传动热弹流润滑研究[D].太原:太原理工大学机械工程学院.2005.
    187.刘文吉.滤波驱动机构齿轮副摩擦学性能优化设计[D].重庆:重庆大学机械工程学院.2009.
    188.程香平.基于弹性微极流体润滑理论机械密封混合摩擦的研究[D].兰州:兰州理工大学石油化工学院.2007.
    189.李朝峰.基于多重网格技术的线接触热弹流润滑数值分析[D].太原:太原理工大学机械工程学院.2005.
    190.李龙.正交面齿轮传动的润滑分析[D].南京:南京航空航天大学机电学院.2007.
    191.李廉枫.基于非牛顿流体的齿轮热弹流润滑[D].太原:太原理工大学机械工程学院.2003.
    192.陈於学.基于接触理学的圆柱棍子轴承震动研究[D].武汉:华中科技大学机电工程学院.2005.
    193.王发辉.基于理想模型的齿轮传动弹性流体动力润滑研究[D].南昌:南昌大学机电工程学院.2008.
    194.张文英.渐开线齿轮传动的时变非牛顿热弹流润滑研究[D].太原:太原理工大学机械工程学院.2006.
    195.汪强.脉冲电化学齿轮修行研究及应用[D].大连:大连理工大学.2002.
    196.摩擦化学在线表面强化对齿轮表面强度影响的基础研究[D].重庆:重庆大学机械工程学院.2003.
    197.张增强.润滑油粘度对齿轮接触疲劳寿命影响的研究[D].太原:太原理工大学机械工程学院.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700