用户名: 密码: 验证码:
大型变桨距直驱式风电机组系统建模与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直驱式风电机组由于在运转过程中没有高速旋转部件,省去了主轴上增速齿轮箱等高故障部件,可靠性大大增加,因而成为风电技术领域的重要研究方向和热点,近年来得到快速发展。但是,作为世界上的风能大国,我国尚不完全具备独立开发大型直驱式风电机组的能力,设计、控制部分关键技术仍然依赖国外,因而需要开展系统深入的理论和应用研究。本文围绕大型变桨距直驱式风电机组展开系统建模与变桨距控制等技术研究,旨在掌握关键理论、方法和技术,为风电机组设计与控制提供理论依据。
     本文主要研究内容和成果包括:
     进行了大型风电机组气动分析理论与方法研究,构建了基于BEM修正理论和动态失速模型的气动分析模型。该模型以叶素—动量理论作为大型风电机组气动分析理论,采用Prandtl和Buhl等方式进行了修正;考虑到动态失速对翼型气动性能的影响,提出了一种基于B-L模型的动态失速半经验模型。通过联合BEM修正理论与动态失速半经验模型,得到了一种大型风电机组气动分析模型与算法。
     进行了大型风电机组载荷计算与分析研究,构建了载荷计算模型,主要包括气动载荷、离心力载荷和重力载荷计算模型等。对大型风电机组坐标系进行了定义,推导了不同坐标系之间的变换矩阵;基于前述气动分析理论,建立了大型风电机组气动载荷计算模型;提出了风电机组离心力载荷和重力载荷计算模型,详细推导了气动力、离心力和重力引起的摆振、挥舞和变桨距载荷等计算方法。
     进行了大型变桨距直驱式风电机组能量流系统建模与分析研究,提出了一种能量传递主系统建模方法。该方法采用4层BP神经网络建立风轮气动特性快速计算模型,在此基础上,将风轮模型与风轮—发电机动力学耦合模型、永磁同步发电机模型、AC-DC-AC变流器电气模型和控制模型进行集成,从而构建出大型直驱式风电机组能量传递主系统“风轮—发电机—变流器—电网”的完整模型。基于构建的集成模型,进行了直驱式风电机组动态运行特性研究。
     进行了大型风电机组电动独立变桨距机构动力学建模与控制分析。建立了包括驱动电机电磁转矩方程、机电运动方程、传动轴和三级行星轮运动方程在内的变桨距系统非线性动力学方程。变桨距机构伺服控制以感应电机转子磁场定向矢量控制为基础,采取定子电流、转速和位置反馈三闭环结构。然后,对减速器—叶片子系统以及驱动电机—减速器—叶片系统动力特性和伺服控制特性等进行了分析。
     进行了大型直驱式风电机组系统变桨距控制研究。通过对风电机组变桨距系统进行分析,选取功率、疲劳载荷为目标,推导了相应表达式。分析了基于统一变桨距的大型直驱式风电机组功率控制策略和基于独立变桨距的功率、载荷联合控制策略,建立了系统数值仿真模型,模型包含了前述气动、载荷、能量流和变桨距机构等模块。最后,通过建立的数值仿真模型,对大型直驱式风电机组变桨距控制动态特性进行了分析。
Direct-driven permanent-magnet synchronous generator (PMSG) wind turbines have higher reliability since the high speed rotating parts have been removed. Thus the research of direct-driven PMSG wind turbines has become a hotspot and has obtained fast development for the past few years. However, as the top wind power producing country in the world, China has not complete ability to research, design and develop large scale direct-driven PMSG wind turbines; some design and operation key technologies still depend on import. It is necessary to carry out systematic and deep study on direct-driven PMSG wind turbines. In this thesis, some key theories and technologies about direct-driven PMSG wind turbines, such as system model and pitch control, are studied, which is helpful for optimization design and control for large scale direct-direct PMSG wind turbines. The main research contents and achievements are as follows.
     The aerodynamic analysis theory and method are studied and an aerodynamic analysis model is constructed based on the blade element momentum (BEM) theory and dynamic stall (DS) model. In this model, the blade element momentum theory is employed as the aerodynamic analysis theory and some corrections, such as Prandtl and Buhl models, are carried out. Considering the influence of dynamic stall on the aerodynamic performance of airfoils, a new modified DS semiempirical model is proposed based on the B-L semiempirical dynamic stall model. Then, by combing BEM modified theory with DS semiempirical model, an aerodynamic analysis model and method for large scale wind turbines is constructed.
     The researches on loads calculation and analysis are carried out and loads calculation models including aerodynamic, centrifugal and gravity loads are established. A set of coordinate systems is established to describe large scale wind turbines and the coordinate transformation matrixes are deduced. Based on the above aerodynamic theories, the calculation model of aerodynamic loads for large scale wind turbines is constructed. Then the centrifugal and gravity loads calculation models for large scale wind turbines are proposed; the expressions on edgewise moment, flapwise moment, pitch moment, edgewise force and flapwise force, etc., are deduced in detail.
     The main energy flow system of large scale direct-driven wind turbines is researched; a new modelling method of main energy flow system is presented. The wind-rotor back propagation neural network (BPNN) is proposed which consists of a four-layer network and is used to describe the wind-rotor aerodynamic characteristics. Then, the coupling dynamic model of the wind-rotor and PMSG, AC-DC-AC converter model is established, respectively; the control strategies for the generator-side converter and grid-side converter are constructed, too. The mechanical model, electric model and control model are integrated into the whole simulation model, and the numerical simulation is carried out.
     Model and control of the individual pitch drive system of large scale wind turbines are studied. The nonlinear dynamical equations, including electromagnetic torque equation, electromechanical motion equation, drive shaft and planetary gear motion equations are built. A servo control structure is presented, in which rotor flux field-oriented vector control and three close-loop servo control with current, speed and position feedback are employed. Then, the response characteristics and servo control properties of the individual pitch drive system are analyzed.
     The pitch control for large scale directly-driven wind turbines with permanent magnet synchronous generator is studied. By analysing the pivotal pitch control targets, power and fatigue loads are selected as the control targets and the corresponding expressions are deduced. In succession, the power control strategy based on the collective pitch control (CPC) is constructed; the power and loads joint control strategy are constructed which is based on the individual pitch control (IPC), too. Then the system simulation model is established in which the aforementioned aerodynamics, loads, energy flow and pitch drive models are included. Based on the simulation model the pitch control simulation is carried out and the pitch control dynamic characteristics of different control strategies are obtained.
引文
[1]Summary of wind turbine accident data to 30th september 2011[R]. http://www.caithnesswindfarms.co.uk/.
    [2]World wind energy report 2010[R].http://www.wwindea.org.
    [3]戴庚,徐璋,皇甫凯林,等.垂直轴风力机研究进展[J].流体机械,2010,38(10):39-43.
    [4]李岩.垂直轴风力机应用及其发展前景[J].可再生能源,2009,27(6):118-120.
    [5]高峰.风力发电机组建模与变桨距控制研究[D].北京:华北电力大学,2008.
    [6]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2008.
    [7]姚兴佳,宋俊.风力发电机组原理与应用[M].北京:机械工业出版社,2009.
    [8]MUSIAL W D, BUTTERFIELD C P. Energy from offshore wind[C].Offshore Technology Conference, Houston,Texas, May 1-4,2006.
    [9]MUSIAL W D, BUTTERFIELD C P. Future for offshore wind energy in the united states[C].EnergyOcean Proceedings, Palm Beach, Florida, June 28-29, 2004.
    [10]李晓燕,余志.海上风力发电进展[J].太阳能学报,2004,25(1):78-84.
    [11]黄东风.欧洲海上风电的发展[J].能源工程,2008(2):24-27.
    [12]RADEMAKERS L W M M, BRAAM H, ZAAIJER M B, et al. Assessment and optimization of operation and maintenance of offshore wind turbines [C].Proceedings of the European Wind Energy Conference, Madrid,Spain, June, 2003.
    [13]OBDAM T, RADEMAKERS L, BRAAM H, et al. Estimating costs of operation &maintenance for offshore wind farms[C].European Offshore Wind Energy Conference Berlin, December 4-6,2007.
    [14]HERONEMUS W E. Pollution-free energy from offshore winds[C].8th Annual Conference and Exposition Marine Technology Society, Washington D.C., September 11-13,1972.
    [15]BUTTERFIELD S, MUSIAL W, JONKMAN J, et al. Engineering challenges for floating offshore wind turbines[C].Copenhagen Offshore Wind Conference, Copenhagen, Denmark,2005.
    [16]Thanet offshore wind farm.http://www.vattenfall.co.uk/en/thanet-offshore-wind-farm.htm.
    [17]国家自然科学基金委员会.2011-2020机械工程学科发展战略报告[M].北京:科学出版社,2010.
    [18]Xe72-2000 风力发电机[R]http://www.xemc-wind.cn.
    [19]HANSEN M O L. Aerodynamics of wind turbines,2nd edition[M].UK and USA:Eaethscan,2008.
    [20]LANZAFAME R, MESSINA M. Fluid dynamics wind turbine design:Critical analysis, optimization and application of bem theory[J]. Renewable Energy, 2007,32(14):2291-2305.
    [21]HE C. Development and application of a generalized dynamic wake theory for lifting rotors[D]. Georgia Institute of Technology,1989.
    [22]HARTWANGER D, HORVAT A.3d modelling of a wind turbine using cfd[C].NAFEMS UK Conference Cheltenham, United Kingdom, June 10-11, 2008.
    [23]MORIARTY P, HANSEN A. Aerodyn theory manual[R].National Renewable Energy Laboratory,NREL/TP-500-36881,2005.
    [24]THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter[R].NACA-report-496,1935.
    [25]MCCROSKEY W, CARR L, MCALISTER K. Dynamic stall experiments on oscillating airfoils[J].AIAA Journal,1976,14(1):57-63.
    [26]WILBY P. The aerodynamic characteristics of some new rae blade sections, and their potential influence on rotor performance [J]. Vertica,1980,4(2):121-133.
    [27]LEISHMAN J. Dynamic stall experiments on the naca 23012 aerofoil[J]. Experiments in Fluids,1990,9(1):49-58.
    [28]MCALISTER K, CARR L, MCCROSKEY W. Dynamic stall experiments on the naca 0012 airfoil[R].NASA Technical Paper 1100,1978.
    [29]AKBARI M, PRICE S. Simulation of dynamic stall for a naca 0012 airfoil using a vortex method[J]. Journal of Fluids and Structures,2003,17(6): 855-874.
    [30]EKATERINARIS J, PLATZER M. Computational prediction of airfoil dynamic stall[J]. Progress in aerospace sciences,1998,33(11-12):759-846.
    [31]GUILMINEAU E, QUEUTEY P. Numerical study of dynamic stall on several airfoil sections[J].AIAA Journal,1999,37(1):128-130.
    [32]OSSWALD G, GHIA K, GHIA U. Simulation of dynamic stall phenomenon using unsteady navier-stokes equations [J]. Computer physics communications, 1991,65(1-3):209-218.
    [33]SPENTZOS A, BARAKOS G, BADCOCK K, et al. Investigation of three-dimensional dynamic stall using computational fluid dynamics[J]. AIAA Journal,2005,43(5):1023-1033.
    [34]CARR L. Progress in analysis and prediction of dynamic stall[J]. Journal of Aircraft,1988,25(1):6-17.
    [35]BEDDOES T. Representation of airfoil behaviour[J]. Vertica,1982,7(2): 183-197.
    [36]TAN C, CARR L. The afdd international dynamic stall workshop on correlation of dynamic stall models with 3-d dynamic stall data[R].NASA Technical Memorandum 110375, also USAATCOM Technical Report 96-A-009,1996.
    [37]TARZANIN JR F. Prediction of control loads due to blade stall[J]. Journal of the American Helicopter Society,1972,17(2):33-46.
    [38]GROSS D W, HARRIS F D. Prediction of in-flight stalled air loads from oscillating airfoil data[C].The 25th Annual Forum of the American Helicopter Society, Washington, D.C.,1969.
    [39]BEDDOES T. A synthesis of unsteady aerodynamic effects including stall hysteresis[J]. Vertica,1976,1(2):113-123.
    [40]BEDDOES T. Onset of leading edge separation effects under dynamic conditions and low mach number[C].34th Annual Forum of the American Helicopter Society, Washington DC,1978.
    [41]LEISHMAN J, AERODYNAMICIST S, BEDDOES T, et al. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society,1989, 34(3):3-17.
    [42]LEISHMAN J, NGUYEN K. State-space representation of unsteady airfoil behavior[J]. AIAA Journal,1990,28(5):836-844.
    [43]LEISHMAN J, CROUSE G. State-space model for unsteady airfoil behavior and dynamic stall [C].Proceedings of the AIAA/AHS/ASME Structural Dynamics and Materials Conference,1989.
    [44]GUPTA S, LEISHMAN J. Dynamic stall modelling of the s809 aerofoil and comparison with experiments[J]. Wind Energy,2006,9(6):521-547.
    [45]TRAN C, PETOT D. Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight[J]. Vertica,1981,5(1):35-53.
    [46]TRAN C, FALCHERO D. Application of the onera dynamic stall model to a helicopter rotor blade in forward flight.7th european rotorcraft forum[C].Garmisch-Partenkirchen, September,1981.
    [47]PETERS D. Toward a unified lift model for use in rotor blade stability analyses[J]. Journal of the American Helicopter Society,1985,30:32-42.
    [48]REDDY T, KAZA K, AERONAUTICS N, et al. A comparative study of some dynamic stall models [R].National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.,1987.
    [49]PETOT D. Differential equation modeling of dynamic stall[J]. La Recherche Aerospatiale(English Edition),1989(5):59-72.
    [50]TRUONG V. A 2d dynamic stall model based on a hopf bifurcation[C].19th European Rotorcraft Forum, Como, Italy,1993.
    [51](?)YE S. Dynamic stall-simulated as time lag of separation[C].Proceedings of the 4th IEA Symposium on the Aerodynamic of Wind Turbines,1991.
    [52]LARSEN J, NIELSEN S, KRENK S. Dynamic stall model for wind turbine airfoils[J]. Journal of Fluids and Structures,2007,23(7):959-982.
    [53]HANSEN M, GAUNAA M, MADSEN H. A beddoes-leishman type dynamic stall model in state-space and indicial formulations[R].Ris(?) National Laboratory,2004.
    [54]SHENG W, GALBRAITH R, COTON F. A modified dynamic stall model for low mach numbers[J]. Journal of Solar Energy Engineering,2008,130(3): 031013.
    [55]CHANTHARASENAWONG C. Nonlinear aero elastic behavior of airfoil under dynamic stall[D]. London:University of London,2007.
    [56]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [57]武鑫等译.风能技术[M].北京:科学出版社,2007.
    [58]SARPKAYA T, ISAACSON M, WEHAUSEN J. Mechanics of wave forces on offshore structures[J]. Journal of Applied Mechanics,1982,49(2):466-467.
    [59]LONGUET-HIGGINS M. The effect of non-linearities on statistical distributions in the theory of sea waves[J]. Journal of Fluid Mechanics,1963, 17(3):459-480.
    [60]SHARMA J N, DEAN R G. Development and evaluation of a procedure for simulating a random directional second order sea surface and associated wave forces[R].University of Delaware,1979.
    [61]SHARMA M S R, HENSEL J, BAXTER C D P, et al. Development of a technology type factor for jacket structures for offshore windturbines in rhode island[R].University of Rhode Island,2010.
    [62]AGARWAL P, MANUEL L. Wave models for offshore wind turbines[C].46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7-10, 2008.
    [63]HENDERSON A R, ZAAIJER M B, CAMP T R. Hydrodynamic loading on offshore wind turbines[C].OWEMES Conference, Naples, April 10-12,2003.
    [64]GRAVESEN H, TARP-JOHANSEN N J, V LUND P. Combined loads from wind, waves and ice on offshore wind turbine foundations[C].European Wind Energy Conference, Copenhagen, July 2-6,2001.
    [65]SEIDEL M, MUTIUS M, RIX P, et al. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines [C]. Conference Proceedings Offshore Wind, Copenhagen, October 26-28,2005.
    [66]李德源,刘胜祥,张湘伟.海上风力机塔架在风波联合作用下的动力响应数值分析[J].机械工程学报,2009,45(12):46-52.
    [67]JONKMAN J M, M L BUHL J. Loads analysis of a floating offshore wind turbine using fully coupled simulation[C].WindPower 2007 Conference& Exhibition, Los Anaeles, California, June 3-6,2007.
    [68]MORIARTY P J, BUTTERFIELD S. Effect of turbulence variation on extreme loads prediction for wind turbines[J]. Journal of Solar Energy Engineering, 2002,124(4):387-395.
    [69]BUHL JR M L, JONKMAN J M, WRIGHT A D, et al. Fast user's guide[R].National Renewable Energy Laboratory,2002.
    [70]AGARWAL P, MANUEL L. Empirical wind turbine load distributions using field data[J]. Journal of Offshore Mechanics and Arctic Engineering,2008, 130(1):011006.
    [71]PEERINGA J. Comparison of extreme load extrapolations using measured and calculated loads of a mw wind turbine[C].European Wind Energy Conference, Marseille, France, March 16-19,2009.
    [72]FITZWATER L R M, WINTERSTEIN S R. Predicting design wind turbine loads from limited data:Comparing random process and random peak models[J]. Journal of Solar Energy Engineering,2001,123(4):364-371.
    [73]李本立,宋宪耕,贺德馨,等.风力机结构动力学[M].北京:北京航空航天大学出版社,1999.
    [74]GEYLER M, CASELITZ P. Robust multivariable pitch control design for load reduction on large wind turbines[J]. Journal of Solar Energy Engineering,2008, 130(3):031014.
    [75]PALUCH B, BERLU P. A computer-aided approach of loads prediction for hawt based on flexible multibody dynamics [C].European Wind Energy Conference, Nice, France,1999:270-276.
    [76]LEE D, HODGES D, PATIL M. Multi-flexible-body dynamic analysis of horizontal axis wind turbines[J]. Wind Energy,2002,5(4):281-300.
    [77]李德源,叶枝全,黄小华.风力机旋转叶片动力学方程的neumann级数解法[J].太阳能学报,2007,28(3):280-284.
    [78]刘雄,李钢强,陈严,等.水平轴风力机叶片动态响应分析[J].机械工程学报,2010,46(12):128-134.
    [79]陆萍,秦惠芳,栾芝云.基于有限元法的风力机塔架结构动态分析[J].机械工程学报,2002,38(9):127-130.
    [80]SKAARE B, HANSON T D, NIELSEN F G. Importance of control strategies on fatigue life of floating wind turbines [J]. ASME Conference Proceedings, 2007(42711):493-500.
    [81]LARSEN T J, HANSON T D. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine [J]. Journal of Physics:Conference Series,2007,75(1):012073.
    [82]LACKNER M A, ROTEA M A. Passive structural control of offshore wind turbines[J]. Wind Energy,2011,14(3):373-388.
    [83]LACKNER M A, ROTEA M A. Structural control of floating wind turbines[J]. Mechatronics,2011,21(4):704-719.
    [84]LACKNER M A. Controlling platform motions and reducing blade loads for floating wind turbines [J]. Wind Engineering,2009,33(6):541-554.
    [85]NAMIK H, STOL K, JONKMAN J. State-space control of tower motion for deepwater floating offshore wind turbines [C].27th AIAA/ASME Wind Energy Symposium, Reno, Nevada,2008.
    [86]NAMIK H, STOL K. Individual blade pitch control of floating offshore wind turbines[J]. Wind Energy,2010,13(1):74-85.
    [87]钟掘.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社,2007.
    [88]ANDERSON P, BOSE A. Stability simulation of wind turbine systems[J]. Power Apparatus and Systems, IEEE transactions on,1983(12):3791-3795.
    [89]VEERS P. Three-dimensional wind simulation[R].Sandia National Labs., Albuquerque, NM (USA),1988.
    [90]WELFONDER E, NEIFER R, SPANNER M. Development and experimental identification of dynamic models for wind turbines[J]. Control Engineering Practice,1997,5(1):63-73.
    [91]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [92]HANSEN A, MICHALKE G. Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine[J]. Wind Energy,2008,11(5):537-554.
    [93]STRACHAN N, JOVCIC D. Dynamic modelling, simulation and analysis of an offshore variable-speed directly-driven permanent-magnet wind energy conversion and storage system (wecss)[C].OCEANS 2007-Europe,2007:1-6.
    [94]TAN K, ISLAM S. Mechanical sensorless robust control of wind turbine driven permanent magnet synchronous generator for maximum power operation[J]. International Journal of Renewable Energy Engineering,2001,3(3):379-384.
    [95]金一丁,宋强,刘文华.直驱永磁同步风电机组的建模与仿真分析[J].水电自动化与大坝监测,2008,32(5):47-51.
    [96]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [97]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [98]MORREN J, PIERIK J, DE HAAN S. Voltage dip ride-through control of direct-drive wind turbines[C].39th International Universities Power Engineering Conference, Bristol, UK 2004:934-938.
    [99]杨晓萍,段先锋,田录林.直驱永磁同步风电系统低电压穿越的研究[J].西北农林科技大学学报:自然科学版,2009(8):228-234.
    [100]叶杭冶,潘东浩.风电机组变速与变桨距控制过程中的动力学问题研究[J].太阳能学报,2007,28(12):1321-1328.
    [101]林勇刚,李伟,崔宝玲,等.电液比例变桨距风力机节距角变化率研究[J].浙江大学学报,2008,42(2):193-196.
    [102]BOUKHEZZAR B, SIGUERDIDJANE H. Nonlinear control of variable speed wind turbines for power regulation[C].IEEECCA, Toronto, Ont.,2005: 114-119.
    [103]HORIUCHI N, KAWAHITO T. Torque and power limitations of variable speed wind turbines using pitch control and generator power control [C].Power Engineering Society Summer Meeting, Vancouver, BC, Canada, July 15-19, 2001:3791-3795.
    [104]MULJADI E, BUTTERFIELD C. Pitch-controlled variable-speed wind turbine generation[J]. IEEE Transactions on Industry Applications,2001,37(1): 240-246.
    [105]耿华,杨耕.基于逆系统方法的变速变桨距风机的桨距角控制[J].清华大学学报,2008,48(7):1221-1224.
    [106]BOSSANYI E. Developments in individual blade pitch control[J]. Wind Energy, 2003,6(3):229-244.
    [107]林勇刚,李伟,陈晓波,等.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,26(006):780-786.
    [108]Systems and controls analysis[R].http://www.nrel.gov.
    [109]BURTON T, SHARPE D, JENKINS N, et al. Wind energy handbook[M].New York:John Wiley & Sons Ltd,2005.
    [110]BOSSANYI E. Individual blade pitch control for load reduction[J]. Wind Energy,2003,6(2):119-128.
    [111]BOSSANYI E. Further load reductions with individual pitch control[J]. Wind Energy,2005,8(4):481-485.
    [112]GEYLER M, CASELITZ P. Individual blade pitch control design for load reduction on large wind turbines [C].Proceedings of the European Wind Energy Conference, Milan,2007.
    [113]SELVAM K, KANEV S, VAN WINGERDEN J, et al. Feedback-feedforward individual pitch control for wind turbine load reduction[J]. International Journal of Robust and Nonlinear Control,2008,19(1):72-91.
    [114]LARSEN T J, MADSEN H A, THOMSEN K. Active load reduction using individual pitch, based on local blade flow measurements[J]. Wind Energy, 2005,8(1):67-80.
    [115]WERNICKE J T, BYARS R, SHADDEN J, et al. Production integration of fiber optical sensors embedded in new rotor blades for real time loads feedback[C].European Wind Energy Conference, Milan,2007:1-6.
    [116]顾海港,林勇刚,李伟,等.基于变桨距风力机半物理实验台齿轮箱设计优化[J].太阳能学报,2006,37(2):150-153.
    [117]林勇刚,徐立,李伟,等.电液比例变桨距风力机半物理仿真试验台[J].中国机械工程,2005,16(8):667-670.
    [118]郭洪澈.兆瓦级风电发电机组变桨距系统控制技术研究[D].沈阳:沈阳工业大学,2008.
    [119]金鑫.风力发电机组系统建模与仿真研究[D].重庆:重庆大学,2007.
    [120]BUHL JR M. A new empirical relationship between thrust coefficient and induction factor for the turbulent windmill state[R].NREL/TP-500-36834, National Renewable Energy Laboratory (NREL), Golden, CO.,2005.
    [121]PITT D, PETERS D. Theoretical prediction of dynamic-inflow derivatives[J]. Vertica,1981,5(1):21-34.
    [122]CARR L W, CHANDRASEKHARA M. Compressibility effects on dynamic stall[J]. Progress in aerospace sciences,1996,32(6):523-573.
    [123]SHENG W, GALBRAITH R A M D, COTON F. A new stall-onset criterion for low speed dynamic-stall[J]. Journal of Solar Energy Engineering,2006,128(4): 461-471.
    [124]LEISHMAN J, BEDDOES T. A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method[C].42nd Annual Forum of the American Helicopter Society, Washington DC, June, 1986.
    [125]MINNEMA J. Pitching moment predictions on wind turbine blades using the beddoes-leishman model for unsteady aerodynamics and dynamic stall[D]. Salt Lake City:University of UtahDepartment of Mechanical Engineering,1998.
    [126]PIERCE K G. Wind turbine load prediction using the beddoes-leishman model for unsteady aerodynamics and dynamic stall [D]. The University of Utah,1996.
    [127]The aerodynamic center. Available from:http://www.aerostudents.com/files /flightDynamics/theAerodynamicCenter.pdf.
    [128]BAK C, FUGLSANG P, JOHANSEN J, et al. Wind tunnel tests of the naca 63-415 and a modified naca 63-415 airfoil[R].Ris(?) National Laboratory, Denmark,2000.
    [129]FUGLSANG P, ANTONIOU I, S RENSEN N N, et al. Validation of a wind tunnel testing facility for blade surface pressure measurements[R].Ris(?) National Laboratory,Ris(?)-R-981 (EN),1998.
    [130]EVANS W T, MORT K W. Analysis of computed flow parameters for a set of suddenly stalls in low speed two-dimensional flow[R].NACA TND-85,1959.
    [131]GOURIERES D L. Wind power plants theory and design[M]:Pergamon Press Ltd. Oxford, England,1982.
    [132]VERMEER L, S RENSEN J, CRESPO A. Wind turbine wake aerodynamics[J]. Progress in aerospace sciences,2003,39(6-7):467-510.
    [133]BOSSANYI E. Gh bladed theory manual[R].Garrad Hassan and Partners Ltd,2007.
    [134]SLOOTWEG J, POLINDER H, KLING W. Dynamic modelling of a wind turbine with doubly fed induction generator[C]. Power Engineering Society Summer Meeting,IEEE, Vancouver, BC, Canada,2001:644-649.
    [135]DAI J C, HU Y P, LIU D S, et al. Aerodynamic loads calculation and analysis for large scale wind turbine based on combining bem modified theory with dynamic stall model[J]. Renewable Energy,2011,36(3):1095-1104.
    [136]DAI J, HU Y, LIU D, et al. Aerodynamic loads calculation and analysis for large scale wind turbine based on combing bem modified theory with dynamic stall model[J]. Renewable Energy,2010:DOI:10.1016/j.rene.2010.08.024.
    [137]FERNANDEZ L, GARCIA C, JURADO F. Operating capability as a pq/pv node of a direct-drive wind turbine based on a permanent magnet synchronous generator[J]. Renewable Energy,2010,35(6):1308-1318.
    [138]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008.
    [139]张纯明,姚兴佳,张忠丛,等.模型参考自适应电动变桨距控制[J].控制理论与应用,2008,25(1):148-150.
    [140]VAN ENGELEN T. Design model and load reduction assessment for multi-rotational mode individual pitch control (higher harmonics control) [C]. European Wind Energy Conference, Athens,2006.
    [141]ACKERMANN T, S DER L. Wind energy technology and current status:A review[J]. Renewable and Sustainable Energy Reviews,2000,4(4):315-374.
    [142]郭洪澈.兆瓦级风电机组独立变桨控制技术研究[D].沈阳:沈阳工业大学,2008.
    [143]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95.
    [144]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [145]PARKER R G, AGASHE V, VIJAYAKAR S M. Dynamic response of a planetary gear system using a finite element/contact mechanics model [J]. Journal of Mechanical Design,2000,122(3):304-310.
    [146]张建民,唐水源,冯淑华.机电一体化系统设计[M].北京:高等教育出版社,2001.
    [147]姚骏,廖勇,瞿兴鸿.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [148]应有,许国栋.基于载荷优化的风电机组变桨控制技术研究[J].机械工程学报,2011,47(16):106-111.
    [149]刘超川.兆瓦级风力发电机组独立变桨控制设计及仿真[D].哈尔滨:哈尔滨工业大学,2010.
    [150]李缓.大型风力发电机组独立变桨技术研究[D].沈阳:沈阳工业大学,2011.
    [151]林勇刚.大型风力机变桨距控制技术研究[D].杭州:浙江大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700