矢量控制感应电动机转速辨识方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应电机的无速度传感器矢量控制系统不仅是现代交流传动控制的一个重要研究方向,而且也是研究的热点问题,其核心问题是如何准确地获取电机的转速信息。
    本文采用在转子磁场定向的条件下,基于全阶磁链观测器的转速估计。因为观测器在估计转速时利用的是电机的额定参数,而电机的参数(定子电阻、转子电阻、励磁电感)由于环境温度的变化、铁心损耗和主磁饱和的影响将发生变化,所以必然有估计误差产生。本文的工作就是研究电机参数变化的影响及其补偿的方法。
    首先本文研究了在理想电机模型下,感应电机各种参数发生变化时对速度估计的影响。研究后发现定子电阻的影响可以忽略,而转子电阻的变化对速度估计的影响是较大的,因此对转子电阻要进行补偿,一般采用在线辨识的方法。本文利用转速和转子电阻的自适应率对转子电阻的变化进行补偿,仿真结果证明了这种方法的有效性。
    以往建立感应电机动态数学模型时,通常忽略了电机的铁耗,但在电机中铁耗是真实存在的。对于铁耗的影响,本文建立了考虑铁耗的感应电机仿真模型后,研究了铁耗造成的估计误差,并利用两种方法对误差进行补偿,一种是修改控制器结构的方法,另一种是修改观测器结构的方法,最终都较好地消除铁耗对速度估计的影响。
    为了验证理论研究的正确性,本文将实验中的电机采样信号(电压和电流)转换为数字量后加在观测器上估计转速,并把结果和实际电机转速作了对比,结果表明稳态下两者很好地一致。
Sensorless vector control system of induction motor is not only an important aspect but also a hotspot of investigation in modern AC drive. The key problem is that how we can get the speed of motor accurately.
     Speed estimation utilized in this paper is based on the way of full order flux observer. The observer makes use of motor parameters to estimate speed, but these parameters (stator and rotor resistance, magnetizing inductance) will vary because of the change of environmental temperature, iron loss and main flux saturation. So parameter variation will lead to the error of estimation, the purpose of this paper is to study the influence and the compensation of parameter variation.
     Firstly, this paper has discussed the impact of variable parameter variation on speed estimation in the case of idealized motor model and found that the effect of stator resistance can be ignored but the effect of rotor resistance is so large enough that we have to consider the way of compensation which is on-line estimation in common. By using rotor resistance and rotor speed adaptive schemes, rotor resistance variation is compensated effectively which has been proven by simulation.
     In the past, the establishment of dynamic mathematical model neglected iron loss generally, but iron loss exists truly. After establishing induction motor simulation model with iron loss, this paper has investigated effect of iron loss and proposed two schemes to compensate estimated error due to iron : one modified the structure of controller, the other modified the structure of observer, both schemes eliminated the detuning effect of iron.
     In order to validate the theoretical investigation, experimental motor sampled signal (the voltage and the current) is conversion to digital quantity and given to observer for estimating speed. The comparative results of estimated speed and actual speed show that both are in good agreement.
引文
[1] L.Ben-Brahim, A.Kawamura, A fully digitized field-oriented controlled induction motor drive using only current sensors, IEEE Trans. IE, 1992, 39(3) : 241-249
    [2] T.Kanmachi, I.Taahashi, Sensor-less speed control of an induction motor with no influence of secondary resistance variation, IAS Ann. Mtg. 1993 : 408-413
    [3] A.Ferrah, K.G.Bradley, G.M.Asher, Sensorless speed detection of inverter fed induction motors using rotor slot harmonics and fast fourier transform, Conf. Rec. IEEE-IAS, 1992 : 279-286
    [4] C.Schauder, Adaptive speed identification for vector control of induction motors without rotational transducers, IEEE Trans. IA, 1992, 28(5) : 1054-1061
    [5] F.Z.Peng, T.Fukao, Robust speed identification for speed-sensorless vector control of induction, IEEE Trans. IA, 1994, 30(5) : 1234-1240
    [6] L.Ben-Brahim, R.Kurosawa, Identification of induction motor speed using neural networks, IEEE PCC-Yokohama, 1993 : 689-694
    [7] Y.R.Kim, S.K.Sul, M.H.Park, Speed sensorless vector control of induction motor using an extended Kalman filter, IEEE Trans. IA, 1994, 30(5) : 1225-1233
    [8] H.Kubota, K.Matsuse, T.Nakano, DSP-based speed adaptive flux observer of induction motor, IEEE Trans. IA, 1993, 29(2) : 344-348
    [9] G.Yang, T.H.Chin, Adaptive-speed identification scheme for vector controlled speed sensorless inverter-induction motor drive, IEEE Trans. IA, 1993, 29(4) : 820-825
    [10] 夏超英, 交直流传动系统的自适应控制, 北京, 机械工业出版社,1998
    [11] H.Kubota, K.Matsuse, Speed sensorless field-oriented control of induction motor with rotor resistance adaptation, IEEE Trans. IA, 1994, 30(5) : 1219-1224
    [12] J.Maes, J.A.Melkebeek, Speed-sensorless direct torque control of induction motors using adaptive flux observer, IEEE Trans. IA, 2000, 36(3) : 778-785
    [13] 冯垛生, 曾岳南, 无速度传感器矢量控制原理与实践, 北京, 机械工业出版社, 1998
    [14] 翟轶强, 王秀芝, 许镇琳, 施萍, 马小亮, 无速度传感器矢量控制系统中转子阻抗与转速的同时辨识, 电气传动, 1999, 2 : 8-10
    [15] J.Jung, K.Nam, A vector control scheme for EV induction motor with a series iron loss model, IEEE Trans. IE, 1998, 45(4) : 617-624
    [16] E.Levi, M.Sokola, A.Boglietti, M.Pastorelli, Iron loss in rotor-flux-oriented induction machine : identification, assessment, of deturning, and compensation, IEEE Trans. PE, 1996, 11(5) :
    
    698-709
    [17] K.Matsuse, S.Taniguchi, T.Yoshizumi, K.Namiki, A speed-sensorless vector control of induction motor operation at high efficiency taking core loss into account, IEEE Trans. IA, 2001, 37(2) : 548-557
    [18] E.Levi, A unified approach to main flux saturation modelling in d-q axis models of induction machines, IEEE Trans. EC, 1995, 10(3) : 455-461
    [19] E.Levi, M.Wang, A speed estimator for high performance sensorless control of induction motors in the field weakening region, IEEE Trans. IE, 2002, 17(3) : 365-377
    [20] E.Levi, S.Vukosavic, V.Vukosavic, Saturation compensation schemes for vector controlled induction motor drives, IEEE PESC 1990 : 591-598
    [21] E.Levi, Impact of cross-saturation on accuracy of saturated induction machine models" IEEE Trans. EC, 1997, 12(3) : 211-216
    [22] H.Kubota, K.Matsuse, T.Nakano, New adaptive flux observer of induction motor for wide speed range motor drive, Conf. Rec. IECON, 1990 : 921-926
    [23] E.Levi, Main flux saturation modelling in d-q axis models of induction machines using mixed current-flux state-space models, ETEP, 1996, 6(3) : 207-215
    [24] J.S.Choi, W.M.Kim, Y.S.Kim, Speed sensorless control of induction motor considering the flux saturation, APEC, 2000(1) : 148-153
    [25] E.Levi, Impact of iron loss on behavior of vector controlled induction machines, IEEE Trans. IA, 1995, 31(6) : 1287-1296
    [26] L.Huang, Y.Tadokoro, K.Matsuse, Deadbeat flux level control of direct-field-oriented high-horsepower induction servo motor using adaptive rotor flux observer, IEEE Trans. IA, 1994, 31(6) : 954-962
    [27] H.Kubota, K.Matsuse, Compensation for core loss of adaptive flux observer-based field-oriented induction motor drives, IECON, 1992 : 67-71
    [28] T.Mizuno, J.Takayama, T.Ichioka, M.Terashima, Decoupling control method of induction motors taking stator core loss into consideration, IPEC, 1990 : 69-74
    [29] J.W.Choi, D.W.Chung, S.K.Sul, Implementation of field oriented induction machine considering iron losses, Conf. Rec. IAS 1996 : 375-379
    [30] I.Boldea, S.A.Nasar, Unified treatment of core losses and saturation in the orthogonal-axis model of electric machine" IEE Proc. 1987, 134, B(6) : 355-363
    [31] J.Hu, B.Wu, New integration algorithms for estimating motor flux over a wide speed range, IEEE Trans. PE, 1998, 13(5) : 969-977
    [32] R.J.Kerkman, B.J.Seibel, T.M.Rowan, D.W.Schlegel, A new flux and stator resistance identifier
    
    for AC drive systems, IEEE Trans. IA, 1996, 32(3) : 585-593
    [33] H.Tajima, Y.Hori, Speed sensorless field-orientation control of the induction machine, IEEE Trans. IA, 1993, 29(1) : 175-180
    [34] P.L.Jansen, R.D.Lorenz, D.W.Novotny, Observer-based direct field orientation: analysis and comparison of alternative methods, IEEE Trans. IA, 1994, 30(4) : 945-953
    [35] T.Ohtani N.Takada,, K.Tanaka, Vector control of induction motor without shaft encoder, IEEE Trans. IA, 1992, 28(1) : 157-164
    [36] M.Marchesoni P.Segarich, E.Soressi, A simple approach to flux and speed observation in induction motor drives, IEEE Trans. IE, 1997, 44(4) : 528-535
    [37] 邱阿瑞, 尹雁, 王光辉, 李永东, 基于DSP的无速度传感器异步电机矢量控制系统, 清华大学学报, 2001, 41(3) : 21-24
    [38] 王长江, 李发海, 无速度传感器感应电动机矢量控制系统的设计, 电气传动, 1996, 1 : 7-12
    [39] 东雷, 李永东, 柴建云, 吴继雄, 王文森, 无速度传感器异步电动机极低转速下的磁通位置观测, 电工技术学报, 2001, 16(5) : 20-23
    [40] 曾岳南, 冯垛生, 章云, 陈伯时, 电压控制型异步电动机无速度传感器的矢量控制方法, 控制理论与运用, 1999, 16(2) : 279-282
    [41] 张伟, 黄进, 异步电动机无速度传感器矢量控制的转速估计, 中小型电机, 2000, 27(1) : 35-37
    [42] 陈硕, M.Tsuji, 基于磁通观测器的感应电机无速度传感器矢量控制系统, 电工技术学报, 2001, 16(4) : 30-33
    [43] 余功军等, 无速度传感器矢量控制变频调速器的研究, 电力电子技术, 1999, 5 : 15-25
    [44] 何志伟, 王勇, 薛峰, 感应电机自适应速度辨识及其在直接转矩控制系统中的运用, 电气传动, 1999, 3 : 16-19
    [45] 陈峰, 徐文立, 王旭, 无速度传感器基于Lyapunov稳定性的异步电机非线性控制, 电气传动, 2000, 2 : 18-22
    [46] 李磊, 胡育文, 一种新型的磁链与速度观测器在异步电机直接转矩控制系统中的应用, 电气传动, 2001, 3 : 26-28
    [47] 王焕刚, 徐文立, 杨耕, 感应电机无速度传感器控制的自适应转速估计, 电气传动, 2002, 1 : 6-9
    [48] 郑萍, 王明渝, 感应电机无速度传感器矢量控制的速度估算器的研究, 电工技术学报, 2001, 16(5) : 24-29
    [49] 李汉强, 全状态观测器异步电机矢量控制系统极点配置, 武汉交通大学学报, 2000, 24(3) : 225-228
    [50] 李磊, 胡育文, 基于DSP的新型无速度传感器直接转矩控制系统的研究, 电机与控制学报,
    
    2001, 5(1) : 27-31
    [51] 李磊, 胡育文, 基于速度自适应磁链状态观测器的感应电机直接转矩控制系统研究, 电工技术学报, 2001, 16(4) : 25-29
    [52] M.Wang, Parameter variation effects in sensorless controlled induction machines, Ph.D. thesis, Liverpool John Moores Univ., Liverpool, U.K., 1999
    [53] 李磊, 异步电机无速度传感器直接转矩控制系统的研究与实践, 学位论文, 南京航空航天大学, 2001
    [54] 李永东, 交流电机数字控制系统, 北京, 机械工业出版社, 2002
    [55] 薛定宇, 反馈控制系统设计与分析——MATLAB语言应用, 北京, 清华大学出版社, 2000
    [56] 于长官, 现代控制理论, 哈尔滨, 哈尔滨工业大学出版社, 1997
    [57] 陈伯时, 电力拖动自动控制系统, 北京, 机械工业出版社, 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700