乙型肝炎病毒L60V、I97L变异核壳蛋白对HepG2细胞HLA-A表达和细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     HBV感染后的肝病表现有很宽的临床谱,包括无症状携带状态、急性自限性肝炎、慢性活动性肝炎以及暴发性肝炎等。HBV感染者免疫清除病毒的主要效应细胞为CD_8~+T细胞(CTL)、Th细胞和B细胞,其中CTL介导的细胞特异性免疫是主要途径,决定着感染者的临床结局。免疫因素并不能完全解释HBV感染者复杂的临床转归,HBV变异是另一个影响临床结局的重要因素。近年来,很多HBV变异株被分离和鉴定,并对其生物学特性进行了广泛而深入的研究。核壳蛋白是宿主细胞免疫的核心靶位,在病毒清除和病理损伤过程中起着重要作用,因此HBV/C区基因变异和氨基酸的改变格外引人关注。累计文献和资料,核壳蛋白常见的变异包括P5T、V13A、S35A、L59V、P68L、P130T和P135Q等,这些位点变异对肝细胞损伤无明显影响作用,主要见于无症状携带者,可能是不同地理环境病毒自然进化的结果;核壳蛋白L60V(AA60的亮氨酸被缬氨酸替代)和197L(AA97的异亮氨酸被亮氨酸替代)变异常见于活动性乙型肝炎,L60V、197L变异是否加重肝损伤及其作用机制尚不清楚。通过构建L60V、197L变异HBV全基因表达质粒,转染HepG2细胞,结果表明L60V、197L变异HBV株与野毒株HBV对细胞HLA-Ⅰ表达有不同影响作用;L60V、197L变异HBV全基因重组腺病毒载体注射到小鼠体内的研究表明,L60V、197L变异病毒株更容易免疫逃避。目前关于核壳蛋白功能研究尚少见。野毒株、L60V、197L变异核壳蛋白对细胞HLA-Ⅰ表达的影响作用尚不清楚。HBV全基因组对诱导的细胞凋亡有抵抗作用,但野毒株、L60V、197L变异核壳蛋白对诱导的细胞凋亡是否存在影响尚不清楚。
     目的
     研究野毒株核壳蛋白、L60V、197L变异核壳蛋白对HepG2细胞HLA-A表达的影响;研究野毒株核壳蛋白、L60V、197L变异核壳蛋白对诱导HepG2细胞凋亡的影响,通过细胞水平的研究以探讨C区热点变异核壳蛋白与野毒株可能存在的功能差异。
     方法
     [1]野毒株C区基因的获得:以P3.8Ⅱ为模板,PCR反应扩增野毒株核壳蛋白基因全长,两端带有EcoRⅠ和BamHⅠ酶切位点。扩增的PCR产物通过琼脂糖凝胶试剂盒回收纯化产物。将纯化的PCR产物与pMD18—T载体连接,转化DH5α克隆扩增,筛选阳性克隆,提取质粒pMD18—HBV/C区基因酶切鉴定。
     [2]野毒株核壳蛋白表达载体pEGFP-WT的构建:将pEGFP-C1质粒转化扩增,EcaRⅠ和BamHⅠ双酶切,琼脂糖电泳后回收大片段;质粒pMD18—HBV/C区基因EcoRⅠ和BamHⅠ双酶切,琼脂糖电泳后回收小片段。将酶切后的pEGFP-C1质粒与HBV/C区基因进行连接。连接产物转化DH5α克隆扩增,筛选阳性克隆,提取质粒,获得野毒株表达载体pEGFP-WT,酶切和测序鉴定。
     [3]pEGFP-L97和pEGFP-V60重组载体的获得:通过Quick Change试剂盒在pEGFP-WT的基础上采用特异性引物进行定点突变,PCR反应产物DpnI酶切,转化XL2-Blue超级感受态细胞,铺板挑取突变克隆,筛出新合成的含突变子链的重组载体,酶切测序鉴定。
     [4]重组载体的转染:用Lipofectamine 2000~(TM)将pEGFP-C1、pEGFP-WT、pEGFP-V60和pEGFP-L97转染HepG2细胞,6小时后更换为无抗生素的含10%小牛血清的DMEM培养液,24小时后用含G418的培养液筛选。待形成阳性单细胞克隆群落后,用尖吸管吸取单克隆阳性细胞培养,筛选获得阳性细胞培养连续传代3次,建立稳定的细胞株。
     [5]EGFP-核壳蛋白融合蛋白的鉴定:转染后用荧光显微镜观察有无荧光,以观察转染是否成功。Western blot鉴定核壳蛋白的表达,UVI凝胶成像系统分析条带灰度值,用核壳蛋白/β-actin代表核壳蛋白的相对表达量。
     [6]HLA-A mRNA和蛋白表达的检测:常规方法提取细胞总RNA,按照RT-PCR试剂盒说明书进行逆转录反应和PCR扩增。经琼脂糖凝胶电泳,用凝胶分析系统对PCR产物进行定量分析。流式细胞术检测HLA-A蛋白的表达。将固定好的细胞每管加入一抗并处理标本,通过流式细胞仪进行检测,每个样品管检测5000个细胞。
     [7]细胞株凋亡的诱导和检测:经Act-D及TNF-α诱导刺激各组HepG2细胞凋亡,刺激时间16h、32h、48h,使用流式细胞术,利用碘化丙啶染色,检测具有亚G1期DNA含量的细胞比例,代表凋亡细胞数;使用激光共聚焦显微镜,利用Hoechst染色观察32h时各组凋亡细胞核的变化。
     [8]细胞株凋亡相关通路信号蛋白表达检测:空质粒、pEGFP-WT、pEGFP-V60、pEGFP-L97表达HepG2细胞株培养48h时,提取总蛋白,Western blot检测IKK-α、IκB-α、NF-κB P65、Caspase-8和caspase-3蛋白在各组中的表达。
     结果
     [1]PCR成功扩增野毒株核壳蛋白基因;成功将PCR产物连接到pMD18载体;将双酶切后的HBV/C区基因切下并连接到pEGFP-C1上,成功构建野毒株核壳蛋白表达载体pEGFP-WT,酶切和测序鉴定符合实验所需;利用特异性引物成功地在pEGFP-WT基础上实行了定点突变,获得带EGFP与野毒株、L60V、197L变异核壳蛋白的融合蛋白表达重组载体pEGFP-V60和pEGFP-L97,并经测序证实。
     [2]pEGFP-V60、pEGFP-L97、pEGFP-WT载体和空质粒pEGFP-C1表达细胞株的构建、筛选和鉴定:HepG2细胞的G418最低有效全致死剂量为200gg/mL,确定筛选用浓度为400gg/mL,维持浓度为300μg/mL。通过Lipofectamine转染空质粒、pEGFP-V60、pEGFP-L97和pEGFP-WT进入HepG2细胞,G418筛选2周,挑取阳性细胞单克隆株。荧光显微镜显示EGFP在各细胞系强表达;Western blot检测各细胞系核壳蛋白表达量无明显差别(p>0.05)。
     [3]pEGFP-V60、pEGFP-L97、pEGFP-WT和空质粒pEGFP-C1组HepG2细胞株HLA-A mRNA和蛋白表达结果:RT-PCR检测结果表明,空质粒表达HepG2细胞株没有检测到HLA-A mRNA表达,pEGFP-L97组细胞株HLA-A mRNA表达明显高于pEGFP-WT组细胞株,而pEGFP-V60组细胞株HLA-A mRNA表达明显低于pEGFP-WT组细胞株(p<0.05)。流式细胞术检测表明,pEGFP-V60组细胞株HLA-A表达水平明显低于pEGFP-WT组细胞株,而pEGFP-L97组细胞株HLA-A表达明显高于pEGFP-WT组细胞株(p<0.05)。
     [4]流式细胞术检测pEGFP-V60、pEGFP-L97、pEGFP-WT载体和空质粒pEGFP-C1组HepG2细胞株凋亡结果:在16h,32h,48h时,pEGFP-V60、pEGFP-L97和pEGFP-WT组细胞株凋亡率均明显低于空白质粒组细胞株(p均<0.05);16h时pEGFP-L97组细胞株凋亡比例明显高于pEGFP-WT组细胞株(p<0.05),32h时pEGFP-V60组细胞株凋亡比例明显高于pEGFP-WT组细胞株(p<0.05)。48h时,pEGFP-V60、pEGFP-L97组细胞株的凋亡率均明显高于pEGFP-WT组细胞株(p均<0.05)。未加刺激因素的各组细胞株在0h时和48h时的凋亡率均无明显变化。
     [5]激光共聚焦检测细胞凋亡结果:32h时pEGFP-V60、pEGFP-L97组细胞株凋亡比例均明显高于pEGFP-WT组细胞株(p均<0.05),但低于空白质粒组细胞株(p<0.05),与流式细胞术的结果相一致。
     [6]pEGFP-V60、pEGFP-L97、pEGFP-WT载体和空质粒pEGFP-C1组HepG2细胞株凋亡相关信号通路蛋白检测:各组细胞株NF-κB、IKK-α、IκB-α蛋白表达没有明显差别;但pEGFP-WT组细胞株caspase-3,8表达低于pEGFP-V60、pEGFP-L97组细胞株;且三组细胞株caspase-3,8表达均低于空白质粒组细胞株。
     结论
     [1]我们成功地克隆了EGFP与野毒株核壳蛋白以及L60V、197L变异核壳蛋白融合表达载体;野毒株核壳蛋白以及L60V、197L变异核壳蛋白细胞株HBcAg表达量无明显差异,能够进一步进行各种核壳蛋白功能差异的研究。
     [2]核壳蛋白能够刺激HepG2细胞HLA-A mRNA和蛋白的表达;与野毒株核壳蛋白相比,L60V变异核壳蛋白具有下调HepG2细胞HLA-AmRNA和蛋白表达作用,而197L变异核壳蛋白具有上调作用。其机制有待进一步研究。
     [3]野毒株核壳蛋白具有抑制诱导的HepG2细胞凋亡作用;与野毒株核壳蛋白相比,L60V、197L变异核壳蛋白具有促进细胞凋亡的作用。
     [4]L60V、197L变异核壳蛋白促进HepG2细胞凋亡作用,可能与L60V、197L变异核壳蛋白上调caspase-3,8表达有关。
BACKGROUND
     Hepatitis B virus (HBV) is a major human infectious pathogen.Many HBV carriers will develop chronic liver diseases, includingcirrhosis and primary hepatocellular cancer (PHC). The spectrum ofinfection ranges from fulminant hepatitis, acute self-limited hepatitis, andchronic hepatitis to asymptomatic carder (AsC) state. Studies have alsoshown that the immune response to HBV remains vigorous long after theepisode of acute HBV infection. Main effective cells to eliminate theHBV include CTL, Th and B cells. The cellular immune responsemediated by CTL is the most critical factor and plays a key role todetermine the clinical outcomes. The clinical outcomes of viral infectionresult from the interaction of viruses and their hosts. Over the past decade,increasing attention has been focused on the contribution of variant HBVstrains to the clinical outcomes of HBV infection, and some importantmutations, which display significant biological functions, have beenidentified, but the underlying mechanisms that are responsible for thediversity of clinical syndromes are not fully understood. It is generallyaccepted that HBV is not directly cytopathic for the infected hepatocyte.Instead, the hepatocellular damage and subsequent viral clearance ismediated by immune response. Core gene mutations are epidemiologicallyassociated with hepatitis activity. Several studies have reported that coregene mutations are more frequently detected in patients with fulminant orsevere hepatitis, but less so in patients with acute self-limited hepatitisand asymptomatic carriers. Thus, it has been suggested that mutations inthe core gene are significantly associated with active liver disease.Mounting evidences showed the hot-spot variations in hepatitis B viruscore gene included P5T, V13A, S35A, L59V, P68L, P130T and P135Qand, these common mutations were detected frequently in the HBV occultcarriers. The high frequency of L60V, I97L mutants in core region weredemonstrated in patients with active hepatitis, but the relationshipbetween these two mutant spots and the disease progress remains elusive. In a recent study, I97L, L60V and wild-type replication-competent HBVgenomes transferred into liver cells have different influence on thecellular expression of HLA-Ⅰ. Other evidences show these mutations inthe core gene might change the immune recognition sites of HBcAgthereby eliciting or evading immune clearance. I97L, L60V and wild-typeHBV strains have different influence on the cellular expression of HLA-Ⅰ.Some reports have demonstrated the influence of wild-type HBV strains,envelope protein and core protein on the apoptosis of HepG2 undergoingapoptosis induced by several cytotoxic agents. But compared with thewide-type core protein, whether core proteins with the hot-spot mutantshave the different influence on the cellular expression of HLA-Ⅰand theHepG2 undergoing apoptosis induced by some factors is still elusive. Wechose two hot-spot mutations in the C gene, L60V and I97L, to studytheir effect on the cellular expression of HL-A and the apoptosis incomparison with the wild-type core protein.
     AIM
     To investigate whether the wide-type, L60V and I97L mutant HBcproteins could have different influence on the cellular expression ofHLA-Ⅰ; To study whether the wide-type, L60V and I97L mutant HBcproteins could have different influence on the HepG2 undergoingapoptosis induced by TNF-αand Act-D and further research the possiblesignaling pathway for them to inhibit the occurrence of apoptosis of theHepG2 cells.
     METHODS
     [1] The full-length HBV/C gene cDNA was obtained by PCR from atemplate (p3.8Ⅱplasmid containing 1.2 copies HBV gene) and a pair ofprimers were inserted into the enzyme cutting sites. After PCR, the PCRproduct was purified by gel extraction kit and the purified cDNA of HBcgene was cloned using general T-carrier pMD18-T to obtain clonedcarrier pMD18-HBWC, which was then transformed into DH5α, selected,amplified and then verified by PCR and the double enzyme cutting.
     [2] The construction of the wild-type HBc protein expressionvector(pEGFP-WT): pEGFP-C1 plasmid was digested by doubleenzymes and then purified by gel extraction kit. pMD18-HBV/C was also digested by double enzyme cutting and then HBV/C cDNA was obtainedand purified from pMD 18-T-HBVP22~e by enzyme cutting. We connectedHBV/C cDNA and pEGFP- by T4 ligase, then the product was clonedinto DH5α, and at last the positive clones were selected and verified byPCR, enzyme cutting and sequencing.
     [3] The construction of the L60V and I97L mutant HBc proteinexpression vector(pEGFP-V60 and pEGFP-97): We achieved these twovectors by site-mutagenesis on base of pEGFP-WT. Point mutations weremade in using QickChange site-directed mutagenesis kit. After PCR, themethylated parental DNA template without mutation was digested withDpnI restriction enzyme. Then the circular, nicked dsDNA wereTransformed into DH5αsupercompetent cells and repaired. The positiveclones transformed with the mutant plasmid were selected from the LBplates and subsequently the plasmid was extracted and verified by PCR,enzyme cutting and sequencing.
     [4] The transfection of the recombinant vectors: The eukaryoticexpression carriers, pEGFP-C1, pEGFP-WT, pEGFP-V60 andpEGFP-L97, were transfected into HepG2 cell strains by lipofectine2000respectively and then the positive cells were screened by G418.
     [5] The identification of the fusion EGFP-core proteins: Theexpression of the fusion EGFP-core proteins were verified usingfluorescence microscope observation and western-blot method. Thequantification was made by analytic software.
     [6] The detection of HLA-A mRNA and protein expression: TotalRNA was extracted by the rountine way and the HLA-A gene expressionwas detected by the reverse-transcriptase PCR. The products wereelectrophoresis by agrose and the results were quantified by the analyticsoftware.The HLA-A protein expression was measured by FlowCytometry (FCM).
     [7] Detection and induction of the apoptosis of the various HepG2cell strains: The stimulating duration is 16h, 32h and 48h, respectively.The proportion of cells containing sub-G1 DNA was examined by FlowCytometry (FCM) and propidium iodide (PI) staining. This proportion isused to represent the number of apoptotic cells. Laser Scanning Confocal Microscopy and Hoechst staining are carried out to observe the change ofthe nucleus of apoptotic cells in 32h.
     [8] The detection of the signal proteins in various groups: Wecollected the cells in 48h and detected the signaling proteins containingIKK-α、IκB-α. NF-κB P65、Caspase-8 and caspase-3 by western blotmethod.
     RESULTS
     [1] The wide-type HBV/C gene and clone carrier pMD18-HBV/Chave been obtained successfully, pEGFP-WT, containing the wide-typeHBV/C gene and enhanced green fluorescent protein gene, has been alsosuccessfully obtained, pEGFP-V60 and pEGFP-L97vectors aresuccessfully constructed by site-mutagenesis.
     [2] The G418 lowest lethal agent is 200μg/ml. The cells transfectedwith pEGFP-C1, pEGFP-WT, pEGFP-V60 and pEGFP-L97 vectors werethen selected using G418 at the concentration of 400μg/ml for two weeks,and the single clone selected showed the existence of the EGFP-fusionprotein by the fluorescence microscope observation respectively; and theexpression of the EGFP-wild-type core protein, L60V and I97L coreproteins, was detected by western blot. The quantitation of these threefusion proteins shows no marked difference(p>0.05).
     [3] For the expression of the three fusion proteins, EGFP-wide-typecore protein, L60V and I97L core proteins detected by western blot, thereare no marked difference among these groups (p>0.05)
     [4] The results of HLA-A mRNA and protein expression in variousgroups: In various groups, the results from RT-PCR show no expressionin the pEGFP-C1 group and obvious expression in the other groups.Compared with the pEGFP-WT group, The expression of HLA-A mRNAin the pEGFP-L97 one is markedly high (p<0.05), but that in thepEGFP-V60 one is markedly low (p<0.05). The results from FlowCytometry (FCM) show the same tendency.
     [5] The results of the apoptosis from various groups induced byTNF-αand Act-D: The results from flow cytometry and PI staining showthat the proportion of cell apoptosis in other three groups is markedly lowrespectively at various time points compared with the pEGFP-C1 group. In 16h, the proportion of cell apoptosis in the pEGFP-L97 group ismarked higher than that in the pEGFP-WT one. In 32h, the proportion ofcell apoptosis in the pEGFP-V60 group is marked higher than that in thepEGFP-WT one. In 48h, the proportion of cell apoptosis in thepEGFP-V60 group or pEGFP-L97 one is marked higher than that in thepEGFP-WT one respectively. The results from the control HepG2 cells,the pEGFP-C1 group, the pEGFP-L97 group and the pEGFP-V60group, which were not induced by any factors, show no difference in Ohand 48h.
     [6] The results of apoptotic detection by laser scanning confocalmicroscopy: The proportion of cell apoptosis in the pEGFP-L97 orpEGFP-V60 group is markedly high respectively compared with thepEGFP-WT group in 32h, but lower than that in the pEGFP-C1 one.
     [7] The results of the signaling proteins concerning the inducedapoptosis: The expression of NF-κb, IKK-α, IKB-αproteins are notmarkedly influenced in various groups, but caspase-3, 8 aredownregulated in the pEGFP-WT, pEGFP-L97 and pEGFP-V60 groupscompared with pEGFP-C1 one. The expression of caspase-3 andcaspase-8 is markedly low in the pEGFP-WT group in comparison withthe pEGFP-L97 and pEGFP-V60 ones.
     CONCLUSIONS
     [1] The expression vectors of wide-type core protein, L60V and I97Lmutant core proteins are established; The stable cell clones expressingnearly the same quantitation of the three fusion core proteins could beused to further research their functional difference.
     [2] The core proteins could upregulate the cellular expression ofHLA-A mRNA and protein. Compared with the wild-type core protein,The expression of HLA-A mRNA and protein in the I97L one is markedlyupregulated, but that in the L60V one is markedly downregulated and themechanism is still elusive.
     [3] The core proteins could downregulated the induced apoptosis ofHepG2 cells. The cell clones expressing mutant L60V, I97L core proteinsare prone to apoptosis compared with the one expressing the wild-typecore protein.
     [4] L60V or I97L core protein upregulates the cellular caspase-3 andcaspase-8 expression, which contributes to the upregulated apoptosis ofHepG2 cells transfected with L60V or I97L core protein.
引文
[1] Hou J, Liu ZH, Gu F. Epidemiology and Prevention of Hepatitis B Virus Reviews Infection[J]. Int J Med Sci. 2005, 2: 64-73.
    [2] Alter M. Epidemiology of hepatitis B in Europe and worldwide[J]. J Hepatol. 2003, 39: S64-S69.
    [3] 骆抗先主编。乙型肝炎基础与临床[M]。第二版,人民卫生出版社。2001:151—165。
    [4] Steven AC, Conway JF, Cheng N, et al. Structure, assembly, and antigenicity of hepatitis B virus capsid proteins[J]. Adv Virus Res. 2005, 64: 125-164.
    [5] Ning B, Shih C. Nucleolar localization of human hepatitis B virus capsid protein[J]. J Virol. 2004, 78(24):13653-13668.
    [6] Milich DR, Chen MK, Hughes JL, et al. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence[J]. J Immunol. 1998, 160(4): 2013-21.
    [7] Le Pogam S, Chua PK, Newman M, et al. Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165-173)[J]. J Virol. 2005, 79(3): 1871-1887.
    [8] Tang TJ, Vukosavljevic D, Janssen HL, et al. Aberrant composition of the dendritic cell population in hepatic lymph nodes of patients with hepatocellular carcinoma[J]. Hum Pathol. 2006, 37(3): 332-338.
    [9] Newman M, Suk FM, Cajimat. M, et al. Stability and morphology comparisons of self-assembled virus-like particles from wild-type and mutant human hepatitis B virus capsid proteins[J]. J Virol. 2003, 77(24): 12950-60.
    [10] 侯金林,骆抗先,章廉。慢性乙型肝炎病毒感染者肝细胞膜HLA-Ⅰ抗原表达及其意义[J]。中华内科杂志,1990,29(5):29-31.
    [11] Nayersina R, Fowler P, Guilhot S, et al. HLA-A2 restricted cytotoxic T lymphocyte to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection[J]. J Immumol, 1993, 150(10): 4659-4671.
    [12] Zhou DX, Taraboulos A, Ou JH, et al. Activation of class I major histocompatibility complex gene expression by hepatitis B virus[J]. J Virol, 1990, 64(8): 4025-4028.
    [13] Tang TJ, Kwekkeboom J, Mancham S, et al. Intrahepatic CD8+ T-lymphocyte response is important for therapy-induced viral clearance in chronic hepatitis B infection[J]. J Hepatol. 2005, 43(1): 45-52.
    [14] 陈伟红,林裕龙,骆抗先,等。乙型肝炎病毒前C区变异对HepG2细胞HLA-I表达的影响[J]。中华肝脏病杂志,2002,10(5):351-353。
    [15] Bozkaya H, Ayola B, Lok AS. High rate of mutations in the hepatitis B core gene during the immune clearence phase of chronic hepatitis B infection [J]. Hepatology. 1996, 24 (1): 32-37.
    [16] Szmaragd C, Foster GR, Manica A, et al. Genome-wide characterisation of hepatitis B mutations involved in clinical outcome[J]. Heredity. 2006, 97(6): 389-97.
    [17] Inoue K, Ogawa O, Yamada M, et al. Possible association of vigorous hepatitis B virus replication with the development of fulminant hepatitis[J]. J Gastroenterol. 2006, 41 (4): 383-7.
    [18] 梁蔚芳,何海棠,刘志华,等。乙型肝炎病毒前C/C区及其调控基因变异的研究[J]。解放军医学杂志。2005,30(4):331-334
    [19] Liu CJ, Kao JH, Lai MY, et al. Precore/core promoter mutations and genotypes of hepatitis B virus in chronic hepatitis B patients with fulminant or subfulminant hepatitis[J]. J Med Virol. 2004, 72(4):545-50.
    [20] Imamura T, Yokosuka O, Kurihara T, et al. Distribution of hepatitis B viral genotypes and mutations in the core promoter and precore regions in acute forms of liver disease in patients from Chiba, Japan[J]. Gut. 2003, 52 (11): 1630-1637.
    [21] Yuan TT, Tai PC, Shih C. Subtype-independent immature secretion and subtype dependent replication deficiency of a highly frequent, naturally occurring mutation of human hepatitis B virus core antigen[J]. J Virol, 1999, 73 (12):10122-10128.
    [22] Suk FM, Lin MH, Newman M, et al. Replication advantage and host factor-independent phenotypes attributable to a common naturally occurring capsid mutation (I97L) in human hepatitis B viru[J]. J Virol. 2002, 76(23): 12069-12077
    [23] Liu Z, Luo K, He H, et al. Hot-spot mutations in hepatitis B virus core gene: eliciting or evading immune clearance[J]? J Viral Hepat. 2005, 12(2): 146-153.
    [24] Baumert TF, Yang C, Schurmann P, et al. Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes[J]. Hepatology. 2005, 41(2):247-56.
    [25] Lu YW, Chen WN. Human hepatitis B virus X protein induces apoptosis in HepG2 cells: role of BH3 domain[J]. Biochem Biophys Res Commun. 2005, 338(3):1551-1556.
    [26] Kim WH, Hong F, Jaruga B, et al. Hepatitis B virus X protein sensitizes primary mouse hepatocytes to ethanol-and TNF-alpha-induced apoptosis by a caspase-3-dependent mechanism[J]. Cell Mol Immunol. 2005, 2(1): 40-48.
    [27] Gottlob K, Fulco M, Levrero M, et al. The hepatitis B virus HBx protein inhibits caspase 3 activity[J]. J Biol Chem. 1998, 273(50): 33347-33353.
    [28] Ghavami S, Hashemi M, Kadkhoda K, et al. Apoptosis in liver diseases detection and therapeutic applications[J]. Med Sci Monit. 2005, 11(11): RA337-345.
    [29] Zhou F, Ajuebor MN, Beck PL, et al. CD154-CD40 interactions drive hepatocyte apoptosis in murine fulminant hepatitis[J]. Hepatology. 2005, 42(2): 372-380.
    [30] 刘定燮。乙型肝炎病毒S区及C区蛋白对几种细胞毒性剂的诱导肝癌细胞株凋亡的影响。[博士学位论文].广州:第一军医大学,2001
    [31] Kim HS, Loughran PA, Kim PK, et al. Carbon monoxide protects hepatocytes from TNF-alpha/Actinomycin D by inhibition of the caspase-8-mediated apoptotic pathway[J]. Biochem Biophys Res Commun. 2006, 344(4): 1172-1178.
    [32] Seeger C, Mason W. Hepatitis B virus biology[J]. Microbiol Mol Biol Rev, 2000, 64 (1): 51-68.
    [33] 萨姆布鲁克J,拉赛尔DM著。分子克隆实验指南[M],第三版。科学出版社,2002:1218-1261。
    [34] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science[J]. 1994, 263(5148): 802-805.
    [35] Hanazono Y, Yu JM, Dunbar CE, et al. Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther[J]. 1997, 8(11): 1313-1319.
    [36] Tsien RY. The green fluorescent protein[J]. Annu Rev Biochem. 1998, 67: 509-544.
    [37] Chen M, Sallberg M, Hughes J, et al. Immune tolerance split between hepatitis B virus precore and core proteins[J]. J Virol. 2005, 79(5): 3016-3027.
    [38] Yang HJ, Chen M, Cheng T, et al. Expression and immunoactivity of chimeric particulate antigens of receptor binding site-core antigen of hepatitis B virus[J]. World J Gastroenterol. 2005, 11(4): 492-497.
    [39] Wang HC, Chang WT, Chang WW, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes[J]. Hepatology, 2004, 41(4): 761-770
    [40] Garofalo R, Mei F, Espejo R, et al. Respiratory syncytial virus infection of human respiratory epithelial cells up-regulates class I MHC expression throuth the induction of IFN-β and IL-1α[J]. J Immunol. 1996, 157 (5): 2506-2513.
    [41] Jamaluddin M, Wang S, Garofalo RP, et al. IFN-beta mediates coordinate expression of antigen-processing genes in RSV-infected pulmonary epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol. 2001, 280 (2): L248-257.
    [42] Gao J, De BP, Banerjee AK. Human parainfluenza virus type 3 up-regulates major histocompatibility complex class Ⅰ and Ⅱ expression on respiratory epithelial cells: involvement of a STAT1 and CIITA-independent pathway[J]. J Virol. 1999, 73 (2): 1411-1418.
    [43] Azizi A, Ghorbani M, Soare C, et al. Synergistic effect of combined HIV/HCV immunogens: a combined HIV-1/HCV candidate vaccine induces a higher level of CD8+ T cell-immune responses in HLA-A2.1 mice[J]. Curr HIV Res. 2007, 5(2): 211-219.
    [44] Mealey RH, Lee JH, Leib SR, et al. A single amino acid difference within the alpha-2 domain of two naturally occurring equine MHC class I molecules alters the recognition of Gag and Rev epitopes by equine infectious anemia virus-specific CTL[J]. J Immunol. 2006, 177(10): 7377-7390.
    [45] Nijenhuis M, Hammerling GJ. Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site[J]. J Immunol, 1996, 157:5467-5477.
    [46] Cerundolo V, Alexander J, Anderson K, et al. Presentation of viral antigen controlled by a gene in the major hisyocompatibility complex[J]. Nature, 1990, 345 (6274): 449-452.
    [47] Gandhe SS, Chadha MS, Walimbe AM, et al. Hepatitis B virus: prevalence of precore/core promoter mutants in different clinical categories of Indian patients[J]. J Viral Hepat. 2003, 10(5):367-82.
    [48] 陈伟红,何海棠,张明霞,等。乙型肝炎病毒核壳蛋白变异株在HepG2细胞HLA-1表达[J]。世界华人消化杂志,2003,11(5):508-510。
    [49] Chen Y, Cheng M, Tian Z. Hepatitis B virus down-regulates expressions of MHC class I molecules on hepatoplastoma cell line. Cell Mol Immunol. 2006, 3(5): 373-378.
    [50] 王洪,周吉军,夏杰,等。慢性HBV感染肝炎突发患者外周血病毒抗原表位肽特异性CTL的数量研究[J]。世界华人消化杂志,2005,13(1):85-88。
    [51] 石统东,边疆,万瑛,等。乙型肝炎病毒HBcAg免疫优势CTL表位多肽在HBV转基因小鼠体内的免疫学功能研究[J]。免疫学杂志,2003,19(3):186-189。
    [52] 夏天,郝妍,王小华,等。抗原肽运载体TAP2基因与乙型肝炎病毒感染预后的相关性研究[J]。中华微生物学和免疫学杂志,2005,25(4):331-337。
    [53] Eleflheriadis T, Voyatzi S, Antoniadi G, et al. Major histocompatibility complex class I restricted T-cell autoreactivity in human peripheral blood mononuclear cells[J]. Cell Immunol. 2006, 240(1): 62-67.
    [54] 陈伟红,丁劲,宫卫东,等。乙型肝炎病毒上调HepG2细胞表面HLA-Ⅰ表达的机制[J]。细胞与分子免疫学杂志,2004,20(1):74—77。
    [55] 周最明,郭亚兵,骆抗先。乙型肝炎病毒变异对其特异性CTL反应的影响[J]。中华肝脏病杂志,2002,34(1):27-30。
    [56] 龚非力。医学免疫学[M],科学出版社,2003:129—141。
    [57] Xing T, Li L, Cao H, et al. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure. Clin Exp Immunol. 2007, 147(1):184-188.
    [58] Sijts AJAM, Ruppert T, Rehermann B, et al. Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes[J]. J Exp Med. 2000, 191 (3): 503-514.
    [59] Whitten TM, Quets A, Schloemer RH. Identification of hepatitis B virus factor that inhibits expression of the beta interferon gene[J]. J Virol. 1991, 65 (9): 4699-4704.
    [60] Lara-Pezzi E, Marta PL,Gomez-Gonzalo M, et al. The hepatitis B virus X protrin up-regulate tumor necrosis Factor-α gene expression in hepatocytes[J]. Hepatology, 1998, 28 (4): 1013-1021.
    [61] Lu M, Lohrengel B, Hilken G, et al. Woodchuck gamma interferon upregulates major histocompatibility complex class I transcription but is unable to deplete woodchuck hepatitis virus replication intermediates and RNAs in persistently infected woodchuck primary hepatocytes. J Virol. 2002, 76(1): 58-67.
    [62] Yuan TT, Shih C. A frequent, naturally occurring mutation (P 130T) of human hepatitis B virus core antigen is compensatory for immature secretion phenotype of another frequent variant (197L) [J]. J Virol. 2000, 74 (10): 4929-4932.
    [63] Le Pogam S, Yuan TT, Sahu GK, et al. Low-level secretion of human hepatitis B virus virions caused by two independent, naturally occurring mutations(P5T and L60V) in the capsid protein[J]. J Virol. 2000, 74 (19): 9099-9105.
    [64] 邢文斌,宋相明,刘丽娜,等。乙型肝炎病毒载量与FAS、FasL表达强度的关系[J]。中国冶金工业医学杂志,2006,3:306—307。
    [65] 林纳,陈红英,李丹,等。乙型肝炎病毒X基因在Hep G2肝癌细胞的转染及对FAS/FasL表达的影响[J]。福建医科大学学报,2004,4:368—371。
    [66] 郭琳琅,郭颖,曹长安。凋亡相关基因bcl-2、bax、FAS及FasL在乙型肝炎病毒相关性肝癌组织中的表达[J]。第一军医大学学报,2000,5:429—431。
    [67] 陈立新,李珏,何孟国,等。乙型肝炎病毒相关肾炎患者外周血淋巴细胞FAS表达和凋亡的临床研究[J]。临床内科杂志,2006,1:36—37。
    [68] 李民,陈阵,任华,等。Fas/FasL诱导的细胞凋亡机制及其在肿瘤免疫方面研究的进展[J]。实用医学杂志,2006,6:729—730。
    [69] Qu JH, Zhu MH, Lin J, et al. Effects of hepatitis B virus on p53 expression in hepatoma cell line SMMU-7721[J]. World J Gastroenterol. 2005, 11(39): 6212-6215.
    [70] Fiedler N, Quant E, Fink L, et al. Differential effects on apoptosis induction in hepatocyte lines by stable expression of hepatitis B virus X protein[J]. World J Gastroenterol. 2006, 12(29): 4673-4682.
    [71] Jones BE, Lo CR, Liu H, et al. Hepatocyte sensitized to tumor necrosis factor-alfa cytotoxicity undergo apoptosis through caspase- dependent and caspase-independent pathways[J]. J Biol Chem. 2000, 275: 705-712.
    [72] Xu Y, Bialik S, Jones BE, .et al. NF-kappaB inactivation converts a hepatocyte cell line TNF-alpha response from proliferation to apoptosis[J]. Am J Physiol. 1998, 275(4 Pt 1): C1058-1066.
    [73] 李卫中。细胞凋亡与免疫活性细胞的研究进展[J]。陕西医学杂志,2006,35(4):467-468。
    [74] 王文亮。细胞凋亡研究进展[J]。心脏杂志,2005,17(6):603-606。
    [75] Navratil JS, Liu CC, Aheam JM, et al. Apoptosis and autoimmunity. Immunol Res. 2006, 36(1-3): 3-12.
    [76] 朱幼芙,骆抗先。HepG2和HepG2.2.15细胞对凋亡刺激的耐受性[J]。中华实验和临床病毒学杂志,1999,13(2):142-144。
    [77] 袁良平,顾长海,王宇明。肿瘤坏死因子在肝损害中的作用[J],中华 肝脏病杂志,1995,3(4):219-221。
    [78] 袁良平,顾长海,王宇明。肿瘤坏死因子对肝损伤的影响[J]。解放军医学杂志,1996,21(2):115-116。
    [79] 王宇明,丁健,顾长海,等。内毒素/肿瘤坏死因子在肝细胞损害中的作用[J]。中华肝脏病杂志,1995,3(3):149—151。
    [80] Gottlob K, Fulco M, Levrero M, et al. The hepatitis B virus HBx protein inhibits caspase 3 activity[J]. J Biol Chem. 1998, 273(50): 33347-33353.
    [81] Huo TI, Wang XW, Forgues M, et al. Hepatitis B virus X mutants derived from human hepatocellular carcinoma retain the ability to abrogate p53-induced apoptosis[J]. Oncogene, 2001, 20(28): 3620-8.
    [82] Fernandez M, Quiroga JA, Carreno V. Hepatitis B virus downregulates the human interferon-inducible MxA promoter through direct interaction of precore/core proteins[J]. J Gen Virol. 2003, 84(Pt 8): 2073-2082.
    [83] Gershon AS, Margufies M, Gorczynski RM, et al. Serum cytokine values and fatigue in chronic hepatitis C infection[J]. J Viral Hepat. 2000, 7(6): 397-402.
    [84] Foo NC, Ahn BY, Ma X, et al. Cellular vacuolization and apoptosis induced by hepatitis B virus large surface protein[J]. Hepatology, 2002, 36:1400-1407
    [85] Zhou F, Ajuebor MN, Beck PL, et al. CD154-CD40 interactions drive hepatocyte apoptosis in murine fulminant hepatitis[J]. Hepatology, 2005, 42(2): 372-380.
    [86] Gershon AS, Margulies M, Gorczynski RM, et al. Serum cytokine values and fatigue in chronic hepatitis C infection[J]. J Viral Hepat. 2000, 7(6):397-402.
    [87] Kucharczak J, Simmons MJ, Fan Y, et al. To be, or not to be: NF-κB is the answer-role of TNF-α in the regulation ofapoptosis[J]. Oncogene, 2003, 22:8969
    [88] Xu J, Zhou JY, Wu GS. Tumor necrosis factor-related apoptosis-inducing ligand is required for tumor necrosis factor alpha-mediated sensitization of human breast cancer cells to chemotherapy[J]. Cancer Res. 2006, 66(20): 10092-10099.
    [89] Widera D, Mikenberg I, Elvers M, et al. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling[J]. BMC Neurosci. 2006, 7: 64.
    [90] Jeffrey IW, Elia A, Bornes S, et al. Interferon-alpha induces sensitization of cells to inhibition of protein synthesis by tumour necrosis factor-related apoptosis-inducing ligand[J]. FEBS J, 2006, 273(16):3698-3708.
    [91] Djavaheri-Mergny M, Amelotti M, et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy[J]. J Biol Chem. 2006, 281(41): 30373-30382.
    [92] Milligan SA, Owens MW, Grisham MB. Inhibition of IkappaB-alpha and Ikappa-B-beta proteolysis by calpain inhibitor I blocks nitric oxide synthase synthesis[J]. Arch Biochem Biophys. 1996, 335: 388-395.
    [93] Roulston A, Maecellus RC, Branton PE. Viruses and apoptosis[J]. Annu Rev Microbiol. 1999,53: 577-628.
    [94] Oltvai ZN, Milliman CL, Rovsmey SJ, et al. Bcl-2 heterodimerizes in vivo with a conserved homologe, Bax, that accelerates programmed cell death[J]. Cell, 1993, 74: 6091.
    [95] Lee YR, Yu HN, Noh EM, et al. TNF-alpha upregulates PTEN via NF-kappaB signaling pathways in human leukemic cells[J]. Exp Mol Med. 2007, 39 (1): 121-127.
    [96] Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses[J]. A nnu Rev Immunol. 1998, 16 (1): 225-260.
    [97] Blackwell TS, Blackwell TR, Holden EP, et al. In vivo antioxidant treatment suppresses nuclear factor-κB activation and neutrophilic lung inflammation[J]. J Immunol. 1996, 157 (4): 1630-1637.
    [98] 刁志宏,张明霞,朱幼芙,等。重组乙型肝炎病毒P22e基因在HepG2细胞中的表达[J]。第四军医大学学报,2006,27(11):1008-1010。
    [1] Moolla N, Kew M, Arbuthnot P. Regulatory elements of hepatitis B virus transcription[J]. J Viral Hepat. 2002, 9:323-331
    [2] Chen A, Kao YF, Brown CM. Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons[J]. Nucleic Acids Res. 2005, 33: 1169-1181
    [3] 骆抗先。乙型肝炎基础与临床[M]。广州:人民卫生出版社,2001:151-207
    [4] Steven AC, Conway JF, Cheng N, et al. Structure, assembly, and antigenicity of hepatitis B virus capsid proteins[J]. Adv Virus Res. 2005, 64:125-164
    [5] Ning B, Shih C. Nucleolar localization of human hepatitis B virus capsid protein[J]. J Virol. 2004,78(24): 13653-13668
    [6] Gazina EV, Fielding JE, Lin B, et al. Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses[J]. J Virol,. 2000, 74: 4721-4728
    [7] Le Pogam S, Chua PK, Newman M, et al. Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165-173)[J]. J Virol. 2005,79(3): 1871-1887
    [8] Milich DR, Chen MK, Hughes JL, et al. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence[J]. J Immunol. 1998,160 (4): 2013-2021
    [9] Barrasa MI, Guo J-T, Saputelli J, et al. Does a cdc2 kinase-like recognition motif on the core protein of hepadnaviruses regulate assembly and disintegration of capsids[J]? J Virol. 2001, 75: 2024-2028
    [10] Kimura T, Ohno N, Terada N, et al. Hepatitis B virus DNA-negative Dane particles lack core protein but contain a 22-kDa precore protein without C-terminal arginine-rich domain[J]. J Biol Chem. 2005, 76:1023-1026
    [11] Newman M, Suk FM, Cajimat M, et al. Stability and morphology comparisons of self-assembled virus-like particles from wild-type and mutant human hepatitis B virus capsid proteins[J]. J Virol. 2003, 77(24):12950-12960
    [12] Nayersina R, Fowler P, Guilhot S, et al. HLA-A2 restricted cytotoxic T lymphocyte to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection[J]. J Immumol. 1993, 150(10): 4659-4671
    [13] Zhou DX, Taraboulos A, Ou JH, et al. Activation of class I major histocompatibility complex gene expression by hepatitis B virus[J]. J Virol. 1990, 64(8): 4025-4028
    [14] Tang TJ, Kwekkeboom J, Mancham S, et al. Intrahepatic CD8+ T-lymphocyte response is important for therapy-induced viral clearance in chronic hepatitis B infection[J]. J Hepatol. 2005, 43(1):45-52
    [15] 刘定燮。乙型肝炎病毒S区及C区蛋白对几种细胞毒性剂的诱导肝癌细胞株凋亡的影响[D]。第一军医大学学报,2001,21(10):3-6
    [16] 刁志宏,张明霞,朱幼芙,等。重组乙型肝炎病毒P22e基因在HepG2细胞中的表达[J]。第四军医大学学报,2006,27(11):1008-1010。
    [17] Whitten TM, Quets A, Schloemer RH. Identification of hepatitis B virus factor that inhibits expression of the beta interferon gene[J]. J Virol. 1991, 65:4699-4704
    [18] Le Pogam S, Yuan TT, Sahu GK, et al. Low-level secretion of human hepatitis B virus virions caused by two independent, naturally occurring mutations (PST and L60V) in the capsid protein[J]. J Virol. 2000, 74:9099-9105
    [19] Doo E, Liang TAJ. Molecular anatomy and pathophysiologic implications of drug resistence in hepatitis B virus infection[J]. Gastroenterology, 2001, 120:1000-1008
    [20] Yeh CT, Chien RN, Chu CM, et al. Clearance of the original hepatitis B virus YMDD-motif mutants with emergence of distinct lamivudine-resistant mutants during prolonged lamivudine therapy[J]. Hepatology, 2000, 31:1318-1326
    
    [21] Tenney DJ, Levine SM, Rose RE, et al. Clinical emergence of entecavir-resistant hepatitis B virus requires additional substitutions in virus already resistant to Lamivudine[J]. Antimicrob Agents Chemother. 2004,48:3498- 3507
    
    [22] Sun J, Wang ZH, Ma Sw, et al. Clinical and Virological Characteristics of Lamivudine Resistance in Chronic Hepatitis B Patients: A Single Center Experience [J].J Med Virol. 2005,75: 391-398
    
    [23] Yang H, Angus P, Locarnini SA, et al. Complete genotypic and phenotypic analyses of HBV mutations identified in HBeAg-negative chronic hepatitis B patients receiving 96 weeks of adefovir dipivoxil[J]. Hepatology, 2003, 38(suppl 1):705A
    
    [24] Brunelle MN, Jacquard AC, Pichoud C, et al. Susceptibility to antivirals of a human HBV strain with mutations conferring resistance to both lamivudine and adefovir[J]. Hepatology, 2005,41:1391-1398
    
    [25] Daniel J, Tenney RE, Rose CJ, et al. Two-Year Assessment of Entecavir Resistance in Lamivudine-Refractory Hepatitis B Virus Patients Reveals Different Clinical Outcomes Depending on the Resistance Substitutions Present [J].Antimicrobial Agents and Chemotherapy, 2007,51 (3):902-911
    
    [26] Villet S, Ollivet A, Pichoud C, et al. Stepwise process for the development of entecavir resistance in a chronic hepatitis B virus infected patient[J]. J Hepatol. 2007,46(3): 531-538
    
    [27] Colonno RJ, Rose R, Baldick CJ, et al. Entecavir resistance is rare in nucleoside naive patients with hepatitis B[J]. Hepatology, 2006,44(6):1656-1665
    
    [28] Zoulim F. Hepatitis B virus resistance to entecavir in nucleoside naive patients: Does it exist[J]? Hepatology, 2006,44(6):1404-1407
    
    [29] Song BC, Kim SH, Kim H, et al. Prevalence of naturally occurring surface antigen variants of hepatitis B virus in Korean patients infected chronically[J]. J Med Virol. 2005,76:194-202
    
    [30] Zhu Q, Lu Q, Xiong S, et al. Hepatitis B virus S gene mutants in infants infected despite immunoprophylaxis[J]. Chin Med J. 2001,114:352-354
    
    [31] Khan N, Guarnieri M, Ahn SH, et al. Modulation of hepatitis B virus secretion by naturally occurring mutations in the S gene[J]. J Virol. 2004,78:3262-3270
    
    [32] Hsu CW, Yeh CT, Chang ML, et al. Identification of a hepatitis B virus S gene mutant in lamivudine-treated patients experiencing HBsAg seroclearance [J].Gastroenterology, 2007, 132(2):543-550
    
    [33] Heijtink RA, Bergen P, Roosmalen MH, et al. Anti-HBs after hepatitis B immunization with plasma- derived and recombinant DNA-derived vaccines: binding to mutant HBsAg[J]. Vaccine, 2001,19:3671-3680
    
    [34] Robert J. Fontana, Anna S.F. Liver Transplantation Worldwide Combination of HBIG and lamivudine-resistant mutations: A formula for trouble[J]?Liver Transplantation, 2003, 8(11): 1082-1084
    
    [35] Protzer-Knolle U, Naumann U, Bartenschlager R, et al. Hepatitis B virus with antigenically altered hepatitis B surface antigen is selected by high-dose hepatitis B immune globulin after liver transplantation[J]. Hepatology, 1998,27 (1): 254-263
    
    [36] Karasu Z, Ozacar T, Akarca U, et al. HBV vaccination in liver transplant recipients: not an effective strategy in the prophylaxis of HBV recurrence[J].J Viral Hepat. 2005, 12(2):212-215
    
    [37] Germer JJ, Charlton MR, Ishitani MB, et al. Characterization of hepatitis B virus surface antigen and polymerase mutations in liver transplant recipients pre- and post-transplant[J]. Am J Transplant. 2003, 3(6):743-753
    
    [38] Santantonio T, Gunther S, Sterneck M, et al. Liver graft infection by HBV S-gene mutants in transplant patients receiving long-term HBIg prophylaxis [J].Hepato-gastroenterology, 1999,46(27): 1848-1854
    
    [39] Huy TT-T, Ushijima H, Win KM, et al. High prevalence of hepatitis B virus pre-S mutant in countries where it is endemic and its relationship with genotype and chronicity[J]. J Clin Microbiol. 2003,41:5449-5455
    
    [40] Wang HC, Chang WT , Chang WW, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes [J].Hepatology, 2005,41(4):761-770
    
    [41] Fukuda R, Mohammad R, Hamamoto S, et al. Clinical relevance of precore and basal core promoter variants of hepatitis B virus during natural hepatitis B e antigen seroconversion may be overstated[J]. J Pediatr Gastroenterol Nutr. 2001,33:301-306
    
    [42] Chu CM, Yeh CT, Lee CS, et al. Precore stop mutant in HBeAg-positive patients with chronic hepatitis B: clinical characteristics and correlation with the course of HBeAg-to-anti-HBe seroconversion[J]. J Clin Microbiol. 2002,40:16-21
    
    [43] Alestig E, Hannoun C, Horal P, et al. Phylogenetic origin of hepatitis B virus strains with precore C-1858 variant[J]. J Clin Microbiol. 2001, 39: 3200-3203
    [44] Bang G, Guamieri M, Li JS, et al. Natural occurring mutations affecting the intramolecular disulfide bond but not signal peptidase cleavage site greatly impairHBeAg formation[J]. Hepatology, 2003, 38(suppl 1): 611A
    [45] Bang G, Kim KH, Guamieri M, et al. Effect of mutating the two cysteines required for HBe antigenicity on hepatitis B virus DNA replication and virion secretion[J]. Virology, 2005, 332:216-224
    [46] Koschel M, Oed D, Gerelsaikhan T, et al. Hepatitis B virus core gene mutations which block nucleocapsid envelopment[J]. J Virol. 2000, 74: 1-7
    [47] Inoue K, Ogawa O, Yamada M, et al. Possible association of vigorous hepatitis B virus replication with the development of fulminant hepatitis[J]. J Gastroenterol. 2006, 41(4): 383-387
    [48] 梁蔚芳,何海棠,刘志华,等。乙型肝炎病毒前C/C区及其调控基因变异的研究[J]。解放军医学杂志,2005,30(4):331-334
    [49] Liu C J, Kao JH, Lai MY, et al. Precore/core promoter mutations and genotypes of hepatitis B virus in chronic hepatitis B patients with fulminant or subfulmin- ant hepatitis[J]. J Med Virol. 2004, 72(4): 545-550
    [50] Imamura T, Yokosuka O, Kurihara T, et al. Distribution of hepatitis B viral genotypes and mutations in the core promoter and precore regions in acute forms of liver disease in patients from Chiba, Japan[J]. Gut, 2003, 52(11): 1630 -1637
    [51] Yuan TT, Tai PC, Shih C. Subtype-independent immature secretion and subtype dependent replication deficiency of a highly frequent, naturally occurring mutation of human hepatitis B virus core antigen[J]. J Virol. 1999, 73:10122 - 10128
    [52] Okumura A, Ishikawa T, Yoshioka K, et al. Mutation at codon 130 in hepatitis B virus (HBV) core region increases markedly during acute exacerbation of hepatitis in chronic HBV carriers[J]. J Gastroenterol. 2001, 36: 103-110
    [53] Gandhe SS, Chadha MS, Walimbe AM, et al. Hepatitis B virus: prevalence of precore/core promoter mutants in different clinical categories of Indian patients[J]. J Viral Hepat. 2003, 10(5): 367-82.
    [54] Suk FM, Lin MH, Newman M, et al. Replication advantage and host factor-independent phenotypes attributable to a common naturally occurring capsid mutation (I97L) in human hepatitis B viru[J]. J Virol. 2002, 76 (23): 12069-12077
    [55] 陈伟红,何海棠,张明霞,等。乙型肝炎病毒核壳蛋白变异株在HepG2细胞HLA-1表达[J]。世界华人消化杂志,2003,11(5):508-510
    [56] 陈伟红,丁劲,宫卫东,等。乙型肝炎病毒上调HepG2细胞表面HLA-Ⅰ表达的机制[J]。细胞与分子免疫学杂志,2004,20(1):74—77
    [57] Liu Z, Luo K, He H, et al. Hot-spot mutations in hepatitis B viruscore gene: eliciting or evading immune clearance[J]? J Viral Hepat, 2005,12(2): 146-153
    [58] Ni YH, Chang MH, Hsu HY, et al. Long-term follow-up study of core gene deletion mutants in children with chronic hepatitis B virus infection[J]. Hepatology, 2000, 32:124-128
    [59] Sahu GK, Tai P-C, Chatterjee SB, et al. Out-of-frame versus in-frame core internal deletion variants of human and woodchuck hepatitis B viruses[J]. Virology, 2002, 292: 35-43
    [60] Lu M, Hilken G, Yang D, et al. Replication of naturally occurring woodchuck hepatitis virus deletion mutants in primary hepatocyte cultures and after transmission to naive woodchucks[J]. J Virol. 2001, 75: 3811-3818
    [61] Gunther S, Piwon N, Jung A, et al. Enhanced replication contributes to enrichment of hepatitis B virus with a deletion in the core gene[J]. Virology, 2000, 273: 286-299
    [62] Honda A, Yokosuka O, Suzuki K, et al. Detection of mutations in hepatitis B virus enhancer 2/core promoter and X protein regions in patients with fatal hepatitis B virus infection[J]. J Med Virol. 2000, 62:167-176
    [63] Chun YK, Kim JY, Woo HJ, et al. No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection[J]. Hepatology, 2000, 32:1154-1162
    [64] Hunt CM, McGill JM, AllenMI, et al. Clinical relevance of hepatitis B viral mutations[J]. Hepatology, 2000, 31:1037-1044
    [65] Karino Y, Toyota J, Sato T, et al. Early mutation of precore (A1896) region prior to core promoter region mutation leads to decrease of HBV replication and remission of hepatic inflammation[J]. Dig Dis Sci. 2000, 45:2207-2213
    [66] Tang H, Raney AK, McLachlan A. Replication of the wild type and a natural hepatitis B virus nucleocapsid promoter variant is differentially regulated by nuclear hormone receptors in cell culture[J]. J Virol. 2001,75:8937-8948
    [67] Laras A, Koskinas J, Hadziyannis SJ. In vivo suppression of precore mRNA synthesis is associated with mutations in the hepatitis B virus core promoter[J]. Virology, 2002, 295: 86-96
    [68] Lin CL, Liao LY, Liu CJ, et al. Hepatitis B genotypes and precore/basal core promoter mutants in HBeAg- negative chronic hepatitis B[J]. J Gastroenterol. 2002, 37: 283-287
    [69] Tacke F, Gehrke C, Luedde T, et al. Basal core promoter and precore mutations in the hepatitis B virus genome enhance replication efficacy of Lamivudine-resistant mutants [J]. J Virol. 2004, 78: 8524-8535
    [1] Lee JY, Chae DW, Kim SM, et al. Expression of FasL and perforin/granzyme B mRNA in chronic hepatitis B vires infection[J]. J Viral Hepat. 2004,11:130-135
    [2] Crispe IN, Dao T, Klugewitz K, et al. The liver as a site of T-cell apoptosis: graveyard, or killing field[J]? Immunol Rev. 2000,174:47-62
    [3] 骆抗先。乙型肝炎基础与临床[M]。广州:人民卫生出版社,2001:151—165
    [4] Rivero M, Crespo J, Fabrega E, et al. Apoptosis mediated by the Fas system in the fulminant hepatitis by hepatitis B vires[J]. J Viral Hepat. 2002, 9:107-113
    [5] Ehrmann J Jr, Galuszkova D, Ehrmann J, et al. Apoptosis-related proteins, BCL-2, bax, Fas, FasL and PCNA in liver biopsies of patients with chronic hepatitis B virus infection[J]. Pathol Oncol Res. 2000, 6:130-135
    [6] Tsamandas AC, Thomopoulos K, Gogos C, et al. Expression of bcl-2 oncoprotein in cases of acute and chronic viral hepatitis type B and type C: a clinicopathologic study[J]. Dig Dis Sci. 2002, 47:1618-1624
    [7] 王文亮。细胞凋亡研究进展[J]。心脏杂志,2005,17(6):603-606。
    [8] Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis[J]. Hepatology, 2004, 39:273-278
    [9] van Gurp M, Festjens N, van Loo G, et al. Mitochondrial intermembrane proteins in cell death[J]. Biochem Biophys Res Commun. 2003, 304:487-497
    [10] Kroemer G, Reed JC. Mitochondrial control of cell death[J]. Nat Med. 2000, 6(5):513-519
    [11] Puthalakath H, Huang DC, O'Reilly LA, et al. The pro-apoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex[J]. Mol Cell. 1999, 3:287-296
    [12] Chiang CW, Harris GEC, Masters SC, et al. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin -3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation[J]. Blood, 2001, 97:1289-1297
    [13] Liang X, Liu Y, Zhang Q, et al. Hepatitis B virus sensitizes hepatocytes to TRAIL-induced apoptosis through Bax[J]. J Immunol. 2007,178(1):503-510
    [14] Liu YG, Liu SX, Liang XH, et al. Blockade of TRAIL pathway ameliorates HBV-induced hepatocyte apoptosis in an acute hepatitis model[J]. Biochem Biophys Res Commun. 2007,352(2):329-334.
    [15] Severi T, Ying C, Vermeesch JR, et al. Hepatitis B virus replication causes oxidative stress in HepAD38 liver cells[J]. Mol Cell Biochem. 2006,290 (1-2): 79-85
    [16] Afford S, Randhawa S. Apoptosis[J]. Mol Pathol. 2000, 53:55-63
    [17] Shi Y. Mechanisms of caspase activation and inhibition during apoptosis[J]. Mol Cell, 2002, 9:459-470
    [18] Peter ME, Krammer PH. The CD95(Apo-1/Fas) DISC and beyond[J]. Cell Death Differ. 2003, 10:26-35
    [19] Schultz DR, Harrington WJ. Apoptosis: programmed cell death at a molecular level[J].Semin Arthritis Rheum. 2003, 32:345-369
    [20] Fadok VA. Clearance: the last and often forgotten stage of apoptosis[J]. J Mammary Gland Biol Neoplasia. 1999,4:203-211
    [21] Kagan VE, Borisenko GG, Serinkan BF, et al. Appetizing rancidity of apoptotic cells for macrophages: oxidation, externalization, and recognition of phosphatidylserine[J]. Am J Physiol Lung Cell Mol Physiol. 2003,285: L1-L17
    [22] Garofalo R, Mei F, Espejo R, et al. Respiratory syncytial virus infection of human respiratory epithelial cells up-regulates class I MHC expression throuth the induction ofIFN-β and IL-1α[J].J Immunol. 1996,157 (5) : 2506-2513
    [23] Jamaluddin M, Wang S, Garofalo RP, et al. IFN-beta mediates coordinate expression of antigen-processing genes in RSV-infected pulmonary epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol. 2001,280 (2) : L248-L257
    [24] Gao J, De BP, Banerjee AK. Human parainfluenza virus type 3 up-regulates major histocompatibility complex class I and II expression on respiratory epithelial cells: involvement of a STAT1 and CIITA-independent pathway [J].J Virol. 1999,73 (2) : 1411-1418
    [25] Fiedler N, Quant E, Fink L, et al. Differential effects on apoptosis induction in hepatocyte lines by stable expression of hepatitis B virus X protein[J]. World J Gastroenterol. 2006,12(29):4673-4682
    [26] 倪虹。乙型肝炎病毒感染与肝细胞凋亡的关系研究。[博士学位论文]。广州:第一军医大学,2001
    [27] Baumert TF, Marrone A, Vergalla J, et al. Naturally occurring mutations define a novel function of the hepatitis B virus core promotor in core protein expression[J]. J Virol, 1998, 72:6785-6795
    [28] Baumert TF, Yang C, Schurmann P, et al. Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes[J]. Hepatology, 2005, 41(2):247-256
    [29] 陈伟红,何海棠,张明霞,等。乙型肝炎病毒核壳蛋白变异株在HepG2细胞HLA-1表达[J]。世界华人消化杂志,2003,11(5):508-510
    [30] 陈伟红,丁劲,宫卫东,等。乙型肝炎病毒上调HepG2细胞表面HLA-Ⅰ表达的机制[J]。细胞与分子免疫学杂志,2004,20(1):74—77
    [31] Ando K. A transgenic mouse model of fulminant hepatitis[J]. J Exp Med.1993,178:1541-1552
    [32] Baumert TF, Blum HE. Hepatitis B virus mutations: molecular biology and clinical relevance[J]. Vir Hep Rev. 2000, 6:177-192
    [33] Lenhoff RJ, Summers J. Construction of avian hepadnavirus variants with enhanced replication and cytopathicity in primary hepatocytes[J]. J Virol. 1994, 68: 5706-5713
    [34] Lenhoff RJ, Luscombe CA, Summers J. Competition in vivo between a cytopathic variant and a wild-type duck hepatitis B virus[J]. Virology,1998, 251: 85-95
    [35] Lenhoff RJ, Luscombe CA, Summers J. Acute liver injury following infection with a cytopathic strain of duck hepatitis B virus[J]. Hepatology,1999, 29: 563-571
    [36] Bruss V. Revisiting the cytopathic effect of hepatitis B virus infection[J]. Hepatology, 2002, 36:1327-1329
    [37] Foo NC, Ahn BY, Ma X, et al. Cellular vacuolization and apoptosis induced by hepatitis B virus large surface protein[J]. Hepatology, 2002, 36:1400-1407
    [38] 刘定燮。乙型肝炎病毒S区及C区蛋白对几种细胞毒性剂的诱导肝癌细胞株凋亡的影响[D]。第一军医大学学报,2001,6:3-6
    [39] Whitten TM, Quets A, Schloemer RH. Identification of hepatitis B virus factor that inhibits expression of the beta interferon gene[J]. J Virol. 1991, 6 (9): 4699-4704
    [40] Fernandez M, Quiroga JA, Carreno V. Hepatitis B virus downregulates the human interferon-inducible MxA promoter through direct interaction of precore/core proteins[J]. J Gen Virol. 2003, 84(Pt 8):2073-2082
    [41] Wang HC, Chang WT, Chang WW, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes[J]. Hepatology, 2000, 41(4): 761-770
    [42] Hsia. Transforming growth factor-alpha in human hepatocellular carcinoma and coexpression with hepatitis Bsurface antigen in adjacent liver[J]. cancer, 1992, 70:1049-1056
    [43] Ono M. Transactivation fo transforming growth factor-α gene by hepatitis Bvirus preS1[J]. Cancer Res. 1998, 58:1813-1816
    [44] Hohne M, Schaefer S, Seifer M, et al. Manignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA[J]. EMBO J, 1990, 9(4):1137
    [45] Kim KH, Seong BI. Proapoptic function of HBV x proteion is mediated by the interaction with e-FLIP and enhancement of death-inducing signal[J]. EMBO J. 2003, 22(9):2104
    [46] 张生君,王小众。HBx对肝细胞凋亡的双向调控及机制[J]。世界华人消化杂志,2004,12(10):2424-2428
    [47] Rahmani Z, Hou KW, Laser R, et al. Hepatitis B virus X protein colocalizes to mitichondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential[J]. J virol. 2000, 74(6): 2840
    [48] Shirakata Y, Koike K. Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential[J]. J Biol Chem. 2003, 278(24): 22071
    [49] Lu YW, Chen WN. Human hepatitis B virus X protein induces apoptosis in HepG2 cells: role of BH3 domain[J]. Biochem Biophys Res Commun. 2005, 338(3): 1551-1556
    [50] Kim WH, Hong F, Jaruga B, et al. Hepatitis B virus X protein sensitizes primary mouse hepatocytes to ethanol-and TNF-alpha-induced apoptosis by a caspase-3-dependent mechanism[J]. Cell Mol Immunol. 2005, 2(1):40-48
    [51] Gottlob K, Fulco M, Levrero M, et al. The hepatitis B virus HBx protein inhibits caspase 3 activity[J]. J Biol Chem. 1998, 273(50): 33347-33353
    [52] Ghavami S, Hashemi M, Kadkhoda K, et al. Apoptosis in liver diseases detection and therapeutic applications[J]. Med Sci MoNt. 2005, 11(11): RA337-345
    [53] 姚云清,张定凤。乙型肝炎病毒X基因在乙型肝炎发病机制中的作用[J]。中华传染病杂志,2003,21(5):371
    [54] Su F, Schneider RJ. Hepatitis B virus HBx protein sensitizes cells to apoptic killing by tumor necrosis factor alphal[J]. Proc Natl Acad Sci USA. 1997,94(16):8744
    [55] Bouchard MJ, Puro RJ, Wang L, et al. Activation and inhibition of cellular calcium and tyrosine kinase signaling pathways identify tartgets of HBx protein involved in hepatitis B virus replication[J]. J virol. 2003, 77(14):7713
    [56] Tam C, Zou L; Hullinger RL, et al. Hepatitis B virus X protein activates the p38 mitogen-activated protein kinase pathway in dedifferentiated hepatocytes[J]. J Virol. 2002, 76(19): 9763
    [57] 林纳,陈红英,李丹,等。乙型肝炎病毒X基因在HepG2肝癌细胞的转染及对FAS/FasL表达的影响fJ]。福建医科大学学报,2004,4:368—371
    [58] 郭琳琅,郭颖,曹长安。凋亡相关基因bcl-2、bax、FAS及FasL在乙型肝炎病毒相关性肝癌组织中的表达[J]。第一军医大学学报,2000,5:429—431
    [59] 邢文斌,宋相明,刘丽娜,等。乙型肝炎病毒载量与FAS、FasL表达强度的关系[J]。中国冶金工业医学杂志,2006,3:306—307。
    [61] Huo TI, Wang XW, Forgues M, et al. Hepatitis B virus X mutantS derived from human hepatocellular carcinoma retain the ability to abrogate p53-induced apoptosis[J]. Oncogene, 2001, 20(28):3620-3628
    [62] Antonsson B, Montessuit S, Lauper S, et al. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondrea[J]. BIOCHEM J. 2000, 345(2):271-278
    [63] Takahashi M, Saito H, Okuyama T, et al. Overexpression of Bcl-2 protects human hepatoma cells from Fas-antibody-mediated apoptosis[J]. J Hepatol. 1999, 31(2):315-322
    [64] Schuster R, Gerlich WH, Schaefer S. Induction of apoptosis by transactivating domains of the hepatitis B virus X gene leads to suppression of oncogenic transformation of primary rat embryo fibroblast[J]. Oncogene, 2000, 19(9): 1173-1180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700