梅PGIP基因转化盆栽小菊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Dendranthema×grandiflorum Kitamu)为菊科菊属植物,是我国十大传统名花和世界四大切花之一,具有观赏、食用、药用等多种价值。菊花的黑斑病在我国各地普遍发生,对其商品性和观赏性影响很大。菊花黑斑病除危害菊花外,还危害野菊、除虫菊、甘菊等多种菊科植物,极大地限制了菊花的生产发展,因此,提高菊花抗病性是菊花育种的目标之一。
     目前防治病害主要还是依赖于栽培措施、人工摘除和化学防治措施,只能在一定程度上控制病害的流行而不能真正解决问题。本研究在建立菊花高频的再生体系和遗传转化体系的基础上,通过农杆菌介导法,将梅PGIP基因转入菊花中。通过基因工程的手段定向改良品种的抗病性,获得具有一定抗性的转基因株系。主要研究内容如下:
     1选择花色、株型等各种观赏性状都比较好,但是田间观察黑斑病发病非常严重的三个盆栽小菊品种‘05-44-2’,‘04-1-6’,‘国庆意大利红’进行愈伤组织的诱导和植株再生,通过调整培养基、植物生长调剂浓度及配比、不同的外植体、不同的再生方式等,结果表明,品种‘05-44-2’在MS+6-BA2.0mg·L-1+NAA0.2mg·L-1培养基上诱导叶片再生率最高为85%,最适增殖培养基为0.1mg·L-1最适生根培养基为MS。
     2以再生力能力高的盆栽小菊‘05-44-2’为材料,通过对影响转化率的因素:预培养时间、农杆菌OD600值、侵染时间、共培养时间、延迟培养时间等进行了研究探讨,建立了菊花‘05-44-2’的高频遗传转化体系。在菊花转化体系建立中,以Carb 500mg·L-1和Hyg 10mg·L-1作为适宜的抑菌素浓度和选择压。结果显示适宜的预培养时间是2d,侵染时工程农杆菌的浓度以OD600值为0.5,侵染10min转化效果最好。25℃共培养3d,延迟培养5d,有利于菊花遗传转化。
     3采用农杆菌介导法将PGIP基因转入盆栽小菊‘05-44-2’中,得232株潮霉素抗性苗。对其中40株进行PCR检测,有8株扩增出目的条带;对其中8株进行RT-PCR检测,发现5个株系均有目的条带出现,初步确定目的基因已经整合到菊花基因组中。
     4从菊花病叶上分离、纯化菊花黑斑病的病原菌,并对其致病性和菌落形态和分生孢子的观察,鉴定为细极链格孢(Alternaria tenuissima)。对不同株系的转基因菊花进行抗病性鉴定,分为苗期接种和田间自然发病情况的调查。研究表明,转基因菊花不同株系对黑斑病的抗病存在差异,且重复性好,鉴定结果能明显的反应了转基因菊花抗病性的提高程度。与对照相比,转基因株系对黑斑病有不同程度的抗性,使发病延迟,病情指数降低。田间抗病性调查结果表明,发病情况比苗期接种严重。株系7抗性最强,苗期病情指数最小为33。
Dendranthema grandiflora Kitamu is one of ten traditional famous flowers in China and four cuffed-flowers in the world, and it can be served as ornamental plants, edible vegetables and medicinal materials. The fungi disease of chrysanthemum harms very seriously. Disease control mainly relies on the cultivation measures, artificial pick and chemical substances. These measures can control disease to some extent but not really solve problem. We transformed chrysanthemum with PGIP gene from Prunus mume by agrobacterium-mediated in establishing that highly efficient regeneration system and transformation system. We improve cultivar resistance in definite direction by genetic engineering methods to obtain transformation resistance plants. Main study contents is as follows:
     1 Three potted chrysanthemum cultivars'05-44-2','04-1-6','guo qing yi da li hong' induced callus and regenerated by adjusting the factors such as culture medium, concentration of growth hormone, different explants and different regeneration methods and so on. The results showed that the cultivar'05-44-2'induced leaf regeneration efficiency 85% on the MS+6-BA2.0 mg·L-1+NAA0.2 mg·L-1 culture medium, the most suitable proliferation medium was MS+6-BA1.0 mg·L-1+NAA0.1 mg·L-1, the most suitable rooting medium was MS.
     2 High efficient and transformation system of potted chrysanthemum'05-44-6'was obtained. By studying the effec t of transformation frequency factors such as preculture duration Agrobacterium concentration (OD600)、infection time、co-cultivated times、prolonged culture time and so on. The regeneration shoots were cultured in selection medium containing Carb 500mg·L-1 and Hyg 10mg·L-1. The results show that preculture duration 2 day, OD600 0.5, infection time10 min, co-cultivated times 3 day at 25℃, prolonged culture time 5 day are suitable for transformation.
     3 we transformed potted chrysanthemum'05-44-6'with PGIP gene by agrobacterium-mediated. Through PCR、RT-PCR test, the exogenous gene were introduced into the regeneration plants genome.
     4 Lines of pathogens was isolated and purified from pathologic leafs of chrysanthemum. We observed pathogens pathogenicity, colony morphology and conidiophore and identified as Alternaria tenuissima. By seeding inoculation and field disease investigations identified resistance of different transgenic plants. The results show that it had diversity on different transgenic plants and good repetition. Results reflect resistance degree of transgenic plants. Compare with CK, transgenic plants have different degree resistance, postpone disease and reduce disease index. Field diseases harm seriously in comparing with seeding inoculation. No.7 of transgenic plants has the highest resistance and disease index minimum at seeding stage is 33.
引文
1.陈俊愉.陈俊愉教授文选[M].北京:中国农业科技出版社.1997
    2.陈俊愉.中国花卉品种分类学[M].北京:中国林业出版社.2001
    3.陈俊愉.中国花经[M].上海:上海文化出版社.1990
    4.陈俊愉.中国农业百科全书观赏园艺卷[M].北京:农业出版社.1996
    5.傅荣昭,马江生.观赏植物色香形基因工程研究进展[J].园艺学报,1995,22(4):381-385.
    6.洪波.逆境诱导转录因子DREBIA基因转化地被菊花的研究[D].中国农业大学.2005
    7.黄丽云.非洲菊高效再生体系的建立与双抗虫基因转化的研究[D].华南热带农业大学.2006
    8.贾十荣,屈贤铭,冯兰香,等.抗菌肤基因提高马铃薯对青枯病的抗性[J].中国农业科学,1998,31(3):5-12
    9.蒋细旺,包满珠,吴家和,等.农杆菌介导CrylAc基因转化菊花[J].园艺学报2005,32(1):65-69
    10.李鸿渐,邵建文.中国菊花品种资源的调查收集和分类[J].南京农业大学学报,1990,13(1):30-36
    11.李宪利,袁志友,高东升.高等植物成花分子机理研究现状及展望[J].西北植物学报,2002,20(2):173-183
    12.吕晋慧.根癌农杆菌介导的AP1基因转化菊花的研究[D].北京林业大学.2005
    13.牛卫宁.银杏果仁中抗菌蛋白的分离纯化及性质鉴定[D].西北农林科技大学.2003
    14.阮期平,周立,郑远旗.PGIP在植物抗病方面的研究进展[J].植物学通报,2000,17(1):60-63
    15.阮期平,周立.小麦在损伤、真菌感染应答过程中内源PGIP积累的研究初报[J].植物病理学报,2000,30(4):372-373
    16.邵寒霜,李继红,郑学勤,等.拟南芥LFY cDNA的克隆及转化菊花的研究[J].植物学报,1999,41(3):268-271
    17.邵建柱,马宝馄.转基因苹果研究进展[J].果树学报,2003,20(1):49-53
    18.石太渊,杨立国,王颖,等.PYH157广谱抗病基因导入高粱及转基因植株的筛选与研究[J].2001,21(1):12-14
    19.谭文澄,戴策刚.观赏植物组织培养[M].北京:中国林业出版社.1991
    20.陶俊,张上隆,徐昌杰,等.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报,2002,18(3):276-281.
    21.田长恩,王正询,陈韬,等.抗菌肽D基因导入番茄及转基因植株的鉴定[J].遗传,2000,22(2):86-89
    22.王春能,菊花转基因研究进展[J],河南林业科技,2002,22(2):18-20
    23.王关林,刘彦乱,郭韶华,等.雪花莲凝集素基因转化菊花及转基因植株的抗蚜性研究[J].遗传学报,2004,31(12):1434-1438
    24.王关林.方宏筠.植物基因工程[M].北京:科学出版社.2002,344
    25.王忠.植物生理学[M].北京:中国农业出版社,2000
    26.吴乃虎,刁丰秋.植物转录因子与发育调控[J].科学通报,1998 43(20):2133-2138
    27.吴晓梅,杨盛昌,缪颖,等.花卉基因工程研究进展[J].福建农林大学学报(自然科学版)2003,9(32):16-18
    28.薛炳烨,束怀瑞.多聚半乳糖醛酸酶(PG)与果实成熟软化研究进展[J].山东农业大学学报,2002,33(2):252-256
    29.张传义.AFL2基因的菊花遗传转化和AFL1基因的原核表达研究[D].山西大学,2007
    30.张德水,陈受宜.植物抗病性的分子生物学研究进展[J].植物病理学报,1997,27(2):97-103
    31.郑丽.根癌农杆菌介导SAG12-ipt和3DN-iaaL基因转化切花菊及抗早衰研究[D].西南农业大学,2003
    32.周立,刘勇,李建吾.小麦多聚半乳糖醛酸酶抑制蛋白对几种病原真菌抑制作用的研究[J].植物病理学报,1998,28(2):107-112
    33.周音,张智奇,殷丽青,等.观赏植物基因工程研究进展及存在问题[J].上海农业学报,2000,16(1):90-96
    34.毛慧珠,唐惕,曹湘玲,等.抗虫转基因甘蓝及其后代的研究[J].中国科学,c辑:生命科学,1996,26(4):339-347
    35.李学宝,秦明辉,施荣华,等.芥菜型油菜抗虫转基因植株及其后代株系的研究[J].生物工程学报,1999,15(4):482-488
    36.张林生,俞嘉宁,曹让,等.转基因植物在农业上的应用[J].西北植物学报,2002,22(4):1011-1017
    37.张天宇.中国真菌志第16卷链格孢属.[M]北京:科学出版社.2003.
    38. Aguero C B, Uratsu S L, Greve C. Evaluation of tolerance to Pierces disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene[J]. Mol Plant Pathol,2005,6:43-51
    39. Aida R, Shibata M. Transformation of kalanchoe blossfeldiana mediated by Agrobacterium tumefaciens and transgene silencing[J]. Plant Science,1996,121:175-185
    40. Albersheim P, Anderson A J. Protein from plant cell wall inhibit polygalacturonases secreted by plant pathogens[J]. Proc Natl Acad Sci USA,1971,68:1815-1819
    41. Alexander D, Goodman R M, Gut-Rella M, et al. Increased tolerance to two ocmycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a[J]. Proceedings of the National Academy of Sciences,1993,90,7327-7331
    42. Annadana S, Mlynarova L, Udayakumar M, et al. The potato Lhca3.st.1 promoter confers high and stable transgene expression in Chrysanthemum,in constrast to CaMV based promoters[J]. Mol Breed,2001,8:335-344
    43. Aswath CR, Mo SY, Kim SH, et al. IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum [Dendranthema grandiflora(Ramat.)Kitamura]. Plant Sci,2004 166:847-854
    44. Benetka V. Pavingerova D Phenotypic differences in transgenic plants of chrysanthemum[J]. Plant Breeding,1995,114(2):169-173
    45. Bennett A, Labavitch J M, Powell A, et al. Plant inhibitors of fungal polygalacturonase and their use to control fungal disease[P]. US Patents,1996,10(29):569-830,
    46. Bergmann C W, Ito Y, Singer D, et al. Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L.in response to wounding, elicitors and fungal infection[J]. Plant J,1994,5(5): 625-634
    47. Birch R G. Plant transformation:problems and strategies for practical application[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48:297-326
    48. Cervone F. Plant extracellular matrix and development:targeting pectins[C]//Giovanni Armenise-Harvard Foundation Third Annual Symposium,1999
    49. Cervone F, Castoria R, Leckie F, et al. Perception of fungal elicitors and signal transduction[M]. In Signal Transduction in Plants, Edited by Aducci P. Basel:Birkauser Verlag,1997
    50. Cervone F, Hahn M G, De Lorenzo G, et al. Host-Pathogen Interactions:ⅩⅩⅩⅢ. A Plant Protein Converts a Fungal Pathogenesis Factor into an Elicitor of Plant Defense Responses[J]. Plant Physiol,1989,90(2):542-548
    51. Cervone F, De Lorenzo C, Pressey R, et al. Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants[J]. Phytochemistry,1990,29:447-449
    52. Cervone F, De Lorenzo, Degra L, et al. purification and characterization of a polygalacturonase-inhibiting protein from Phaseolus vulgaris L[J]. Plant Physiol,1987,85 (3):631-637
    53. Chaerani R, Groenwold R, Roel P S, et al. Assessment of early blight(Alternaria solani) resistance in tomato using a droplet inoculation method[J] J Gen Plant Pathol.,2007,73:96-103
    54. Coen E, Carpenter R, Doyle S. Floricauta:a homotic gene required for flower development in Antirrhinum majus[J]. Cell,1990,63 (6):1311-1318
    55. Collinge D B, Slusarenko A J. Plant gene expression in response to Pathogens[J]. Plant Mol. Bio. 1987,9:389-410
    56. Costa M M R, Costa J, Ricardo C P P. A Lupinus albus root glycoprotein homologous to the polygalacturonase inhibitor proteins[J]. Physiol Plantarum,1997,99:263-270
    57. Courtney-Gutterson N, Napoli C, Lemieux C, et al. Modification of flower color in florists' chrysanthemum:production of a white-flowering variety through molecular genetics[J]. Bio/Technology,1994,12:268-271
    58. Daniela B, Laura C, Jan A D, et al. Potential physiological role of plant glycosidase inhibitor[J]. Biochimica et Biophysica Acta,2004,1696:265-274
    59. De Jong J, Mertens MJ, Rademaker W. Stable expression of the GUS reporter gene in Chrysanthemum depends on binary plasmid T DNA[J]. Plant Cell Rep,1994,14:59-64
    60. De L G Castoria R, Bellincampi D. Fungal invasion enzymes and their inhibition[M]. In:Carroll G C, Tudzynski P(eds).The Mycota V Plant Relationships, Part B. Springer-Verlag, Berlin,1997,99,61-83
    61. Dean O, Ian A D, Riaan M, et al. Apple polygalacturonse inhibiting protein 1 expressed in transgenic tobacco inhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen of lupins[J]. Phytochemistry,2006,67:255-263
    62. De Lorenzo G, D'Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi[J]. Annual Review of Phytopathology,2001,39:313-335
    63. Desiderio A, Aracri B, Leckie F, et al. Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris[J]. Mol. Plant Microbe Interact.,1997,10:852-860
    64. Deylin W S. Involvement of the aceidative burst in Phytialexin aceumulation and the hypersensitive reaction[J]. PlantPhysiol,1992,100:1189
    65. Di C, Zhang M, Xu S, et al. Role of polygalacturonase inhibiting protein in plant defense[J]. Critical Reviews in Microbiology,2006,32(2):91-100
    66. Di Matteo A, Bonivento D, Tsernoglou D, et al. Polygalacturonase-inhibiting protein (PGIP) in plant defence:a structural view[J]. Phytochemistry,2006,67(6):528-533
    67. Dolgov SV, Mityshkina TU, Rukavtsova EB, et al. Production of transgenic plants of Chrysanthemum morifolium Ramat with the gene of Bac.thuringiensis δ-endotoxin[J]. Acta Hort,1995,420:46-47
    68. Federici L, Di Matteo A, Fernandez-Recio J, et al. Polygalacturonase inhibiting proteins:players in plant innate immunity[J]. Trends in Plant Science,2006,11 (2):65-70
    69. Fukai S, De Jong J, Rademaker W. Eifficient genetic transformation of Chrysanthemum (Dendranthema grandiflorum (Ramat) Kitamura) using stem segments[J]. Breeding Science,1995,45:179-184
    70. Gomathi V, Gnanamanickam S S. Polygalacturonase-inhibiting proteins in plant Defence[J]. Current Science,2004,87 (9):1211-1217
    71. Goodwin T W, Britton G. Distribution and analysis of carotenoids[M].In:Good Tw//Plant Pigments. Academic Press, London,1988:61-132.
    72. Hahn M, Darvill A, Albersheim P. Host-pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans[J]. Plant Physiol,1981,68(5):1161-1169
    73. Hong B, Tong Z, Ma N, et al. Expression of the Arabidopsis DREB1A gene in transgenic chrysanthemumenhances tolerance to lowtemperature[J]. Hortic Sci Biotechnol,2006,81:1002-1008
    74. Irish VF, Sussex IM. Function of the APETALA1 gene during Arabidopsis floral development[J]. Plant Cell,1990,2:741-754
    75. Johnston D.J., Ramanathan V, Williamson B. A protein fromimmature raspberry fruits which inhibits endopolygalacturonases from Botrytis cinerea and other micro-organisms[J]. Exp. Bot,1993,44, 971-976
    76. Jones D A, Jones I D G. The role of leucine-rich repeats in plant defences[J]. Advances in Botanical Research,1997,24:89-167
    77. Jones D A, Thomas, C M, Hammond-Kosack, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging[J]. Science,1994,266:789-793
    78. Jones J D G. A kinase with keen eyes[J]. Nature,1997,385:397-398
    79. Kobe B, Kajava AY. The leucine-rich repeat as a protein recognitionmotif[J]. Current Opinion in structural Biology,2001,11:725-732
    80. Lang C, Dornenburg H. Perspectives in the biological fiznction and the technological application of polygalacturonases[J]. Appl Microbiol Biotechnol,2000,53 (4):366-375
    81. Li XQ, Liu CN, Ritchie SW, et al. Factors influencing Agrobacterium-mediated transient expression of GUSA in rice[J]. Plant Mol Biol,1992,20:1032-1048
    82. LI X B, QIN M H, SHI R H, et al. Transgenic plants ofBrassicajuncea with insect resistance and genetic analysis of the progeny[J]. Chinese Journal of Biotechnology,1999,15(4):482-488(in Chinese)
    83. LI X B, Mao H ZH, BAI Y Y. Transgenic plants of rutabzgz (Brassica Napobrassica) tolerant to pest insects[J]. Plant Cell Reports,1995,15(1-2):97-101
    84. Liang F, Zhang K, Zhou C, et al. Cloning, characterization and expression of the gene encoding polygalacturonase-inhibiting proteins (PGIPs) of peach [Prunus persica (L.) Batch] [J]. Plant Science, 2005,168(2):481-486
    85. Lorenzo G D, Ferrari S. Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi.Curr. Opin[J]. Plant Biol.,2002,5:295-299.
    86. Lowe JM, Davey MR, Power JB, et al. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora Tzvelev(syn. Chrysanthemum morifoulium Ramat.) [J]. Plant Cell, Tissue and Organ Culture,1993,33:171-180
    87. Malamy J, Klessimg D F. Salicylic acid and plant disease resistance. The Plant Joural,1992,2(5):643-654
    88. Maliga P, Graham I. Plants biotechnology:Molecular farming and metabolic engineering promise a newgeneration of hightech crops[J]. Current Opinion in Plant Biology,2004,7(2):149-153
    89. Mandel MA, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeoticgene, APETALA1[J]. Nature,1992,360:273-277
    90. Matzke M A, Aatzke A J M. How and why do plants inactivate homolgous (transgenes) [J]. Plant Physiol,1995,107:679-685
    91. Meyer P. Variation of transgene expression in plants[J]. Euphytica,1995,85:359-366
    92. Mitiouchkina TY, Ivanova EP, Taran SA, Dolgov SV. Chalcone synthase gene from Antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of chrysanthemum[J]. Acta Hortic,2000,508:215-218
    93. MitioushkinaTY, Dolgov SV. Modification of chrysanthemum plant and flower architecture by rolc gene from Agrobacterium rhizogenes introduction[J]. Acta Hortic,2000,508:163-172
    94. Neal Gutterson. Anthocyanin Biosynthetic genes and their application to flower color moditication through sense suppression[J]. HortScience,1995,30(5)
    95. Nothnagel E A, McNeil M, Albersheim P, et al. Host-pathogen-interactions. ⅩⅩⅡ. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins[J]. Plant Physiol,1983,71:916-926
    96. Ohmiya A, Kishimoto S, AidaR, et al. Carotenoid cleavage dioxygenase(CmCCD4a) contributes to white color formation in chrysanthemum petals[J]. Plant Physiol,2006,142:1193-1201
    97. Ortikowska T, Nowak E. Factors affecting transformation of gerbera[J]. Acta Horticulture,1997,447:619-621
    98. Peter Albersheim, Anne J. Anderson.Proteins from plant cell walls in-hibit polygalacturonases secreted by plant pathogens[J]. Proc. Nat. Acad. Sci. USA,1971,1815-1819
    99. Powell A L, van Kan J, ten Have A, et al. Transgenic expression of pear PGIP in tomato limits fungal colonization[J]. Mol Plant Microbe Interact,2000,13 (9):942-950 100.Ridley B L, O'Neill M A, Mohnen D. Pectins:structure, biosynthesis, and oligogalacturonide-related signaling[J]. Phytochemistry,2001,57:929-967
    101. Rout G R, Das P. Recent trends in the biotechnology of Chrysanthemum:a critical review. Sci Hort,1997,69(3/4):239-257
    102. Sharrick KR, Labavitch JM. PGP of Bartlett pear fruits:differential effects on Botrytis cinerea polygalacturonase isozymes and influence on products of fungal hydrolysis of pear cell walls and ethylene induction in cell culture[J]. Physiol Molec Plant Pathol,1994,45:305-319
    103. Takatsu H, Hayashi M, Sakuma F. Transgenie inactivation in Agrobacterium mediated chrysanthemum transformants(Dendranthema grandiovum) [J]. Plant Bioteeh,2000.17:241-245
    104. Takatsu Y, Nishizawa Y, Hibi T, et al. Transgenic chrysanthemum Dendranthema grandiflorum(Ramat.)Kitamura expressing a rice chitinase gene shows enhanced resistance to gray mold(Botrytis cinerea) [J]. Sci Hortic,1999,82:113-123
    105. Toubart P, Desiderio A, Salvi G et al. Cloning and characterization of the gene encoding the endo polygalacturonase-inhibiting protein(PGIP)of Phaseolus vulgaris L [J]. The Plant Journal, 1992,2(3):367-373
    106. Turner J G, Hoffman R M. Effeet of the PGIP from Pea on the hydrolysis of Pea cell walls by the endoPG from Ascochyta Pisi [J]. PlantPathol,1985,34:54-65
    107. Van Wordragen MF, de Jong J, Schornagel MJ, et al. Rapid screening for host-bacterium interactions in Agrobacterium mediated gene transfer to Chrysanthemum,by using the GUS-intron gene [J]. Plant Science,1992,81:207-214
    108. Van wordragon MF, de Jong J, Huitema HBM.Genetic transformation of Chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity [J]. Pant Cell Rep,1991,9:505-508
    109. Wang G L, Song W Y, Ruan D L, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants [J]. Mol. Plant-Microb. Interact,1996,9:850-855
    110. Weurman C. Pectinase inhibitors in pears [J]. Acta Bot Neerl.,1953,2:107-121
    111. Wordragen M F, De Jong J. Sehornagel M J, et al. Rapid screening for host-bacterium interaction in Agrobacterium-mediated gene transfer to chrysanthemum, by using the GUS introngene[J]. Plant Sci.1992,81:207-214
    112. Yepes L M, Mittak V, Slightom J L, et al. Agrobacterium tumefaciens versus Biolistic mediated transformation of the chrysanthemum cvs. Polaris and Golden Polariswith nucleocapsid protein genes of three tospovirus species[J]. Acta Hort 1999,482:209-218
    113. Yepes LM, Mittak V, Pang SZ, et al. Biolistic transformationof chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus[J]. Plant Cell Rep,1995,14:694-698

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700