基于基因表达谱芯片确定前列腺癌致病有关基因及其功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]
     前列腺癌是前列腺腺泡细胞异常无序生长的结果,它是一种发生于男性前列腺组织中的恶性肿瘤。目前,前列腺癌是全世界男性第二大最常见的癌症,并且其发病率呈逐年上升趋势。据世界卫生组织(WHO)的统计资料,在2008年,全世界大约有899000个前列腺癌病例,约占到所有男性新增癌症病例的14%。根据WHO的预测,到2030年,全球前列腺癌患者将会在此基础上翻倍(一百七十万个病例)。流行病学研究发现,前列腺癌的发病率具有明显的地理和种族差异。在欧美等发达国家,前列腺癌是是最常见的男性癌症,其死亡率居各种癌症的第二位,仅次于肺癌。在亚非等发展中国家,其发病率虽然低于欧美国家,但近年来的调查表明,随着平均年龄的增加以及生活方式,主要是饮食结构的改变,前列腺癌在亚非等发展中国家的发病率呈现迅速上升的趋势。在我国,前列腺癌在泌尿生殖系统恶性肿瘤的发病率已经从第三位跃居首位,成为危害我国老年男性生命健康的重要疾病。
     随着分子生物学研究的迅速发展,对大多数肿瘤的发生和发展,在细胞水平变化和分子水平的变化上,人们都有了更深的认识。研究表明前列腺癌是一种十分复杂的癌症,其发生发展过程存在多因素、多基因相互作用。前列腺癌的发生是由于基因组的不稳定导致基因表达出现异常。已经鉴定出了多条染色体上存在前列腺癌易感基因位点,其中高频出现的染色体有X染色体、1号染色体、3号染色体、8号染色体、15号染色体、17号染色体、19号染色体、20号染色体等。在前列腺癌的发生发展过程中,许多基因产物表现出异常的调控功能,大量的生长因子和它们的受体是过表达的,例如雌激素、雄激素受体、上皮生长因子、白细胞介素6等。这些基因表达的改变可能增强肿瘤细胞的生长、转移和侵袭能力,尤其是Wnt/pcatenin、Hedgehog等多条信号通路的激活可能赋予了它们侵袭的表型。然而,研究人员对于前列腺癌发生发展过程中涉及的机制了解还远远不够。所以,研究良性前列腺组织和前列腺癌的差异表达基因,可以为前列腺细胞由正常状态转变为恶性肿瘤状态提供重要基因水平的依据。
     前列腺癌的早期诊断对于前列腺癌的治疗具有重要的临床意义。许多前列腺癌患者在发病过程中不表现任何症状,因而没有及时治疗,最终导致患者死于由前列腺癌引起的其他疾病。这是由于前列腺癌在很多病例中(约占三分之二)呈现缓慢增殖,并且无症状。另一方面,大约三分之一的前列腺癌具有侵袭性,发展迅速的特点,该种类型的前列腺癌是除肺癌以外的第二大致死癌症。因此,前列腺癌的发生发展过程中的差异基因的鉴定对于早期诊断和及时治疗前列腺癌具有重要意义。目前,PSA(prostate specific antigen,前列腺特异抗原)是用于前列腺癌诊断的重要标志物。PSA具有组织特异性,只存在于人前列腺腺泡及导管上皮细胞胞浆中,在人的其它细胞中不表达。但是,PSA并没有肿瘤特异性,良性前列腺增生和前列腺炎也会出现PSA阳性的结果。而且,用基因治疗的手段治疗前列腺癌时,需要在与正常前列腺组织相比,前列腺癌组织中发生差异表达的基因中筛选有效的合适的靶分子。
     基因芯片技术的产生使人们可以一次性检测上万个基因的表达谱,面对如此海量的数据,传统的单个基因的分析研究方法已经不适用。基因芯片数据分析是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定性和定量的分析,通过有效数据筛选、相关基因聚类等方法,最终将海量的芯片数据整合,发现基因表达谱与生物学功能之间可能存在的联系。基因芯片表达谱数据分析将无机的信息数据有有机的生命活动联系起来,解释基因的功能,疾病的分子机理,是生物信息学研究的重要课题。基因芯片技术能够同时、快速、准确地分析数以千计基因组信息,给研究者研究基因表达谱提供了很大的便利,极大的减轻了大规模的筛选前列腺癌差异表达基因的工作量。目前,该技术已经广泛的应用于多种癌症基因表达谱分析、寻找疾病特异基因等方面研究中。
     [目的]
     本研究利用基因芯片数据分析软件包bioconductor对来自基因表达数据库Gene Expression Omnibus(GEO)的19个前列腺癌基因表达谱芯片数据(良性前列腺组织,原发性前列腺癌,转移性前列腺癌)作进一步生物信息学分析,以了解前列腺癌在各阶段的基因表达变化,并进一步探讨前列腺癌发生、发展过程中肿瘤相关基因表达的变化及其生物学特性,同时通过系统的研究差异表达基因的转录调控网络、蛋白质互作网络和其参与的生物学通路的差异,阐述前列腺癌发展的分子机制。本研究旨在发现前列腺癌治疗和诊断的分子标记物及探讨前列腺癌发生发展的分子机制,有重要的现实意义。本研究为进一步了解前列腺癌发生发展的分子机制和前列腺癌的诊断治疗提供了有用的基础科研资料。
     [方法]
     首先从NCBI GEO中下载基因芯片GSE3325。通过对该芯片进行分析,分别筛选出原发性前列腺癌、转移性前列腺癌与良性前列腺组织中差异表达有显著性意义的基因。基因表达差异有显著性意义的判定标准为:原发性前列腺癌组织或转移性前列腺癌组织与良性前列腺组织相比,同一条基因的差异表达值(fold change value)大于2或者小于—2,t检验的概率值(p-value)小于0.05。
     通过收集整理已有的转录因子与目的基因调控关系数据,结合我们鉴定出的差异表达基因,分别构建原发性前列腺癌和转移性前列腺癌的差异调控网络,并通过GO功能富集分析及生物学通路富集分析,比较这两个网络的功能差异;通过收集整理已有蛋白质互作数据库里的蛋白质相互作用数据,结合我们鉴定出的差异表达基因,分别构建原发性前列腺癌和转移性前列腺癌的蛋白质相互作用网络,并通过GO功能富集分析及生物学通路富集分析比较两个互作网络的功能差异;通过计算任意2个生物学通路之间相互作用的蛋白对来反应任意2个生物学通路的交互作用的显著性。
     [结果]
     1、在原发性前列腺癌的基因表达谱中筛选出5847个差异表达基因,在转移性前列腺癌的基因表达谱中筛选出2026个差异表达基因,其中两个集合的交集有977个基因,即转移性前列腺癌与原发性前列腺癌相比,有977个基因发生了差异表达。
     2、分别构建了良性前列腺组织与原发性前列腺癌差异表达基因调控网络和良性前列腺组织与转移性前列腺癌差异表达基因调控网络,并对这两个网络中的基因进行GO功能富集及生物学通路富集。良性前列腺组织与原发性前列腺癌差异表达基因调控网络中,转录因子MYC在调控网络中起着至关重要的核心作用,转录因子E2F1和TP53、ESRl在调控关系中也起着很重要的作用。良性前列腺组织与转移性前列腺癌差异表达基因调控网络中,MYC在调控网络中起着至关重要的核心作用。本结果说明转录因子MYC在前列腺癌的发生、发展、转移整个过程中都起作用,而转录因子E2F1、TP53和ESR1的调控关系对于前列腺癌由原发性向转移性发展有着重要的作用。
     3、分别构建了原发性前列腺癌和转移性前列腺癌的蛋白质相互作用网络,并进行了比较分析,发现只有MMP9与IL8的相互作用只在转移性前列腺癌中出现。另外662个蛋白之间的775个相互作用对只在原发性前列腺癌的相互作用网络中出现。GO功能富集分析发现,原发性前列腺癌和转移性前列腺癌的蛋白质互作网络中基因的功能主要富集细胞周期上。另外,分别对上调基因和下调基因进行GO功能富集发现,原发性前列腺癌的上调基因也集中在细胞周期上,而下调基因主要富集在免疫应答上;转移性前列腺癌的上调基因主要集中在细胞分化上,下调基因主要富集在细胞周期上。
     4、原发性前列腺癌与良性前列腺组织相比共有16条显著表达的生物学通路,这16条生物学通路多与细胞增殖和肿瘤发生有关,例如hsa04114(卵母细胞减数分裂),hsa04062(趋化因子信号通路),hsa04330(Notch信号通路),hsa05218(黑素瘤),hsa04310(Wnt信号通路)等等。转移性前列腺癌与良性前列腺组织相比共有8条显著表达的生物学通路,这8条生物学通路中,有7条也存在于原发性前列腺癌与良性前列腺组织相比显著表达的生物学通路中,只有1条不存在,是hsa00534(葡萄胺聚糖生物合成—硫酸乙酰肝素)
Background:
     Prostate cancer(PC) is the result of acinus cell growth without control. It is the malignancy only developed in males. To date, PC is the most frequent cancer in males in western countries. As the age indication increases and the dietary ingredient changes in Asia and African, the incidence and death rate of prostate cancer raises gradually in the past decades. Although previous studies revealed that prostate cancer progression is a process involving multiple molecular alterations and interactions, the precise molecular mechanisms of prostate cancer remain poorly understood. The development of prostate cancer is because of the instability of genome. Therefore, comparative analysis of gene expression in prostate cancer and benign prostatic specimens may provide important information relating to malignant transformation of prostatic cells. Nowadays, serum PSA is widely used as a diagnostic marker for prostate cancer. PSA has tissue specificity and only found in prostatic acinus and ductal epithelial cells. However, it had no tumor specificity. Sometimes the benign prostatic hyperplasia and prostatitis could detect positive PSA, therefore, it is hard to predict the presence of prostate cancer from benign prostatic hyperplasia and prostatitis. Thus there is an urgent need for identifying new prostate cancer markers. The gene therapy for prostate cancer need the ideal therapeutic targets too. Recently the emerging technology of DNA microarray provide a powerful tool to investigate the gene expression profile of thousands of genes in prostate cancer.
     Objective:
     In this present study, we identified the differentially expressed genes between prostate cancer(primary and metastatic) and benign prostate based on DNA microarray. Further, we constructed the regulation networks, protein-protein interaction networks and pathway crosstalk networks to explore the molecular mechanisms of prostate cancer development and progression. We hope our study could aid in detecting the biomarkers of prostate cancer for diagnosis and treatment with prostate cancer.
     Methods:
     First, we downloaded the transcription profile of GSE3325from GEO, and performed microarray analysis to screen the differentially expressed genes between prostate cancer (primary and metastatic) and benign prostate. The DEGs only with fold change value larger than2or less than-2and p-value less than0.05were selected.
     Then we constructed two regulation networks of primary prostate cancer and metastatic prostate cancer by integrating the DEGs and the existing regulation data collected from the database, and analysed the difference of the two networks. In the same way, we constructed the protein-protein interaction networks of primary prostate cancer and metastatic prostate cancer. By calculating the interactive proteins between any two biological pathways, we obtained the interaction significance between any biological pathways.
     Results:
     1、There are5847differentially expressed genes between the gene expression profiles of primary prostate cancer and the benign prostate tissue, There are2026differentially expressed genes between the gene expression profiles of metastatic prostate cancer and the benign prostate tissue. Total977genes were overlapping, i.e.,977genes were differentially expressed between metastatic prostate cancer compared with primary prostate cancer.
     2、We constructed two regulation networks of primary prostate cancer and metastatic prostate cancer by integrating the DEGs and the existing regulation data collected from the database, and performed GO enrichment analysis of genes in the two networks. In the regulation network of primary prostate cancer, the TF MYC with high degree form a local network, and the other TFs, such as E2F1, TP53, ESR1are also hub nodes in the network. In the regulation network of metastatic prostate cancer, the TF MYC plays a vital role as the core of the regulation network.
     3、We constructed two protein-protein interaction networks of primary prostate cancer and metastatic prostate cancer. By analyzing the difference of the two networks, we found that the interaction between MMP9and IL8only appeared in metastatic prostate cancer. Total775interactions between662proteins only existed in primary prostate cancer.
     4、Total16significant expressed pathways were identified between primary prostate cancer and benign prostate. The GO enrichment analysis of these16pathways shows that a majority of them are related to cell proliferation and tumorigenesis. Compared to benign prostate, there are8significant expressed pathways in metastatic prostate cancer. Seven out of the8pathways also existed in the primary prostate cancer.
引文
1. Ferlay J, Parkin DM, and Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46:765-81.
    2. Delongchamps NB, Singh A, and Haas GP. Epidemiology of prostate cancer in Africa:another step in the understanding of the disease? Curr Probl Cancer 2007; 31:226-36.
    3. Jemal A, Siegel R, Ward E, Murray T, Xu J, and Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007; 57:43-66.
    4. Singer G, Oldt R,3rd, Cohen Y, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 2003; 95:484-6.
    5. Nambiar PR, Boutin SR, Raja R, and Rosenberg DW. Global gene expression profiling:a complement to conventional histopathologic analysis of neoplasia. Vet Pathol 2005; 42:735-52.
    6. Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray:identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 2001; 61:2129-37.
    7. Teufel A, Weinmann A, Krupp M, Budinger M, and Galle PR. Genome-wide analysis of factors regulating gene expression in liver. Gene 2007; 389:114-21.
    8. Zhang XY, Hu Y, Cui YP, et al. Integrated genome-wide gene expression map and high-resolution analysis of aberrant chromosomal regions in squamous cell lung cancer. FEBS Lett 2006; 580:2774-8.
    9. Kwon YJ, Lee SJ, Koh JS, et al. Genome-wide analysis of DNA methylation and the gene expression change in lung cancer. J Thorac Oncol 2012; 7:20-33.
    10. Junnila S, Kokkola A, Karjalainen-Lindsberg ML, Puolakkainen P, and Monni O. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines. BMC Cancer 2010; 10:73.
    11. Tsukamoto Y, Uchida T, Karnan S, et al. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J Pathol 2008; 216:471-82.
    12. Okada K, Katagiri T, Tsunoda T, et al. Analysis of gene-expression profiles in testicular seminomas using a genome-wide cDNA microarray. Int J Oncol 2003; 23:1615-35.
    13. Li PE and Nelson PS. Prostate cancer genomics. Curr Urol Rep 2001; 2:70-8.
    14. Prehn RT. On the prevention and therapy of prostate cancer by androgen administration. Cancer Res 1999; 59:4161-4.
    15. Abate-Shen C and Shen MM. Molecular genetics of prostate cancer. Genes Dev 2000; 14:2410-34.
    16. Gronberg H. Prostate cancer epidemiology. Lancet 2003; 361:859-64.
    17. Whittemore AS, Wu AH, Kolonel LN, et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 1995; 141:732-40.
    18. Hayes RB, Liff JM, Pottern LM, et al. Prostate cancer risk in U.S. blacks and whites with a family history of cancer. Int J Cancer 1995; 60:361-4.
    19. Carter BS, Carter HB, and Isaacs JT. Epidemiologic evidence regarding predisposing factors to prostate cancer. Prostate 1990; 16:187-97.
    20. Shin HR, Masuyer E, Ferlay J, and Curado MP. Cancer in Asia-Incidence rates based on data in cancer incidence in five continents IX (1998-2002). Asian Pac J Cancer Prev 2010; 11 Suppl 2:11-6.
    21. Xu J, Meyers D, Freije D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998; 20:175-9.
    22. Gudmundsson J, Sulem P, Rafnar T, et al. Common sequence variants on 2p15 and Xp 11.22 confer susceptibility to prostate cancer. Nat Genet 2008; 40:281-3.
    23. Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274:1371-4.
    24. Hsieh CL, Oakley-Girvan I, Gallagher RP, et al. Re:prostate cancer susceptibility locus on chromosome 1q:a confirmatory study. J Natl Cancer Inst 1997; 89:1893-4.
    25. Gibbs M, Stanford JL, McIndoe RA, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 1999; 64:776-87.
    26. Chang BL, Gillanders EM, Isaacs SD, et al. Evidence for a general cancer susceptibility locus at 3p24 in families with hereditary prostate cancer. Cancer Lett 2005; 219:177-82.
    27. Yeager M, Chatterjee N, Ciampa J, et al. Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 2009; 41:1055-7.
    28. Witte JS. Multiple prostate cancer risk variants on 8q24. Nat Genet 2007; 39:579-80.
    29. Haiman CA, Patterson N, Freedman ML, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007; 39:638-44.
    30. Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007; 39:631-7.
    31. Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007; 39:870-4.
    32. Fitzgerald LM, McDonnell SK, Carlson EE, et al. Genome-wide linkage analyses of hereditary prostate cancer families with colon cancer provide further evidence for a susceptibility locus on 15q11-q14. Eur J Hum Genet 2010; 18:1141-7.
    33. Haiman CA, Chen GK, Blot WJ, et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet 2011; 43:570-3.
    34. Cropp CD, Simpson CL, Wahlfors T, et al. Genome-wide linkage scan for prostate cancer susceptibility in Finland:evidence for a novel locus on 2q37.3 and confirmation of signal on 17q21-q22. Int J Cancer 2011; 129:2400-7.
    35. Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39:977-83.
    36. Parikh H, Wang Z, Pettigrew KA, et al. Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Hum Genet 2011; 129:675-85.
    37. Hsu FC, Sun J, Wiklund F, et al. A novel prostate cancer susceptibility locus at 19q13. Cancer Res 2009; 69:2720-3.
    38. Berry R, Schroeder JJ, French AJ, et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 2000; 67:82-91.
    39. Schleutker J, Matikainen M, Smith J, et al. A genetic epidemiological study of hereditary prostate cancer (HPC) in Finland:frequent HPCX linkage in families with late-onset disease. Clin Cancer Res 2000; 6:4810-5.
    40. Lange EM, Chen H, Brierley K, et al. Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin Cancer Res 1999; 5:4013-20.
    41. Gronberg H, Xu J, Smith JR, et al. Early age at diagnosis in families providing evidence of linkage to the hereditary prostate cancer locus (HPC1) on chromosome 1. Cancer Res 1997; 57:4707-9.
    42. Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30:181-4.
    43. Rebbeck TR, Walker AH, Zeigler-Johnson C, et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000; 67:1014-9.
    44. Fujiwara H, Emi M, Nagai H, et al. Association of common missense changes in ELAC2 (HPC2) with prostate cancer in a Japanese case-control series. J Hum Genet 2002; 47:641-8.
    45. Cancel-Tassin G, Latil A, Valeri A, et al. PCAP is the major known prostate cancer predisposing locus in families from south and west Europe. Eur J Hum Genet 2001; 9:135-42.
    46. Maier C, Rosch K, Herkommer K, et al. A candidate gene approach within the susceptibility region PCaP on 1q42.2-43 excludes deleterious mutations of the PCTA-1 gene to be responsible for hereditary prostate cancer. Eur Urol 2002; 42:301-7.
    47. Badzioch M, Eeles R, Leblanc G, et al. Suggestive evidence for a site specific prostate cancer gene on chromosome 1p36. The CRC/BPG UK Familial Prostate Cancer Study Coordinators and Collaborators. The EU Biomed Collaborators. J Med Genet 2000; 37:947-9.
    48. Zheng SL, Xu J, Isaacs SD, et al. Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Hum Genet 2001; 108:430-5.
    49. Ho SM. Estrogens and anti-estrogens:key mediators of prostate carcinogenesis and new therapeutic candidates. J Cell Biochem 2004; 91:491-503.
    50. Walsh PC. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate. Cancer patients treated with radical prostatectomy. J Urol 2005; 173:1967-8.
    51. Suzuki H, Ueda T, Ichikawa T, and Ito H. Androgen receptor involvement in the progression of prostate cancer. Endocr Relat Cancer 2003; 10:209-16.
    52. Taplin ME and Balk SP. Androgen receptor:a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 2004; 91:483-90.
    53. Torring N, Dagnaes-Hansen F, Sorensen BS, Nexo E, and Hynes NE. ErbB1 and prostate cancer:ErbB1 activity is essential for androgen-induced proliferation and protection from the apoptotic effects of LY294002. Prostate 2003; 56:142-9.
    54. Culig Z, Steiner H, Bartsch G, and Hobisch A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 2005; 95:497-505.
    55. Kambhampati S, Ray G, Sengupta K, Reddy VP, Banerjee SK, and Van Veldhuizen PJ. Growth factors involved in prostate carcinogenesis. Front Biosci 2005; 10:1355-67.
    56. Stecca B, Mas C, and Ruiz i Altaba A. Interference with HH-GLI signaling inhibits prostate cancer. Trends Mol Med 2005; 11:199-203.
    57. Yardy GW and Brewster SF. THE Wnt signalling pathway is a potential therapeutic target in prostate cancer. BJU Int 2006; 98:719-21.
    58. Shaw G, Price AM, Ktori E, et al. Hedgehog signalling in androgen independent prostate cancer. Eur Urol 2008; 54:1333-43.
    59. Anton Aparicio LM, Garcia Campelo R, Cassinello Espinosa J, et al. Prostate cancer and Hedgehog signalling pathway. Clin Transl Oncol 2007; 9:420-8.
    60. Mimeault M, Pommery N, and Henichart JP. New advances on prostate carcinogenesis and therapies:involvement of EGF-EGFR transduction system. Growth Factors 2003; 21:1-14.
    61. Lee EC and Tenniswood M. Programmed cell death and survival pathways in prostate cancer cells. Arch Androl 2004; 50:27-32.
    62. Bains W and Smith GC. A novel method for nucleic acid sequence determination. J Theor Biol 1988; 135:303-7.
    63. Schena M, Shalon D, Davis RW, and Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270:467-70.
    64. Schena M, Shalon D, Heller R, Chai A, Brown PO, and Davis RW. Parallel human genome analysis:microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 1996; 93:10614-9.
    65. Heller MJ. DNA microarray technology:devices, systems, and applications. Annu Rev Biomed Eng 2002; 4:129-53.
    66. Reimers M. Statistical analysis of microarray data. Addict Biol 2005; 10:23-35.
    67. Rensink WA and Hazen SP. Statistical issues in microarray data analysis. Methods Mol Biol 2006; 323:359-66.
    68. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, and Conklin BR. MAPPFinder:using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 2003; 4:R7.
    69. Masseroli M, Galati O, and Pinciroli F. GFINDer:genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res 2005; 33:W717-23.
    70. Xu J, Stolk J A, Zhang X, et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res 2000; 60:1677-82.
    71. Elek J, Park KH, and Narayanan R. Microarray-based expression profiling in prostate tumors. In Vivo 2000; 14:173-82.
    72. Welsh JB, Sapinoso LM, Su AI, et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61:5974-8.
    73. Magee JA, Araki T, Patil S, et al. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 2001; 61:5692-6.
    74. Luo J, Duggan DJ, Chen Y, et al. Human prostate cancer and benign prostatic hyperplasia:molecular dissection by gene expression profiling. Cancer Res 2001; 61:4683-8.
    75. Chetcuti A, Margan S, Mann S, et al. Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array. Prostate 2001; 47:132-40.
    76. Bull JH, Ellison G, Patel A, et al. Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br J Cancer 2001; 84:1512-9.
    77. Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1:203-9.
    78. Huppi K and Chandramouli GV. Molecular profiling of prostate cancer. Curr Urol Rep 2004; 5:45-51.
    79. Tsuji A, Torres-Rosado A, Arai T, et al. Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. J Biol Chem 1991; 266:16948-53.
    80. Shah S and Small E. Emerging biological observations in prostate cancer. Expert Rev Anticancer Ther 2010; 10:89-101.
    81. Wang HQ, Yang B, Xu CL, et al. Differential phosphoprotein levels and pathway analysis identify the transition mechanism of LNCaP cells into androgen-independent cells. Prostate 2010; 70:508-17.
    82. Williams ED and Brooks JD. New molecular approaches for identifying novel targets, mechanisms, and biomarkers for prostate cancer chemopreventive agents. Urology 2001; 57:100-2.
    83. Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO:archive for high-throughput functional genomic data. Nucleic Acids Res 2009; 37:D885-90.
    84. Ihaka R, Gentleman,R. R:a language for data analysis and graphics. Comput. Graph. Statist 1996:299-314.
    85. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database--2009 update. Nucleic Acids Res 2009; 37:D767-72.
    86. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, et al. The BioGRID Interaction Database:2011 update. Nucleic Acids Res 2011; 39:D698-704.
    87. Wachi S, Yoneda K, and Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 2005; 21:4205-8.
    88. Brivanlou AH and Darnell JE, Jr. Signal transduction and the control of gene expression. Science 2002; 295:813-8.
    89. Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 2008; 9:326-32.
    90. Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008; 36:D480-4.
    91. Kanehisa M, Goto S, Furumichi M, Tanabe M, and Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010; 38:D355-60.
    92. R. Gentleman VC, S. Dudoit, R. Irizarry, W. Huber. Limma:linear models for microarray data. In:Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer 2005:397-420.
    93. Denis N, Kitzis A, Kruh J, Dautry F, and Corcos D. Stimulation of methotrexate resistance and dihydrofolate reductase gene amplification by c-myc. Oncogene 1991; 6:1453-7.
    94. Dominguez-Sola D, Ying CY, Grandori C, et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007; 448:445-51.
    95. Campidelli C, Gazzola A, Vitone F, Pileri SA, and Tumwine L. HIV infection and c-MYC status in endemic Burkitt lymphoma. Hum Pathol 2008; 39:1408-9.
    96. Simonsson T and Henriksson M. c-myc Suppression in Burkitt's lymphoma cells. Biochem Biophys Res Commun 2002; 290:11-5.
    97. Sato K, Miyahara M, Saito T, and Kobayashi M. c-myc mRNA overexpression is associated with lymph node metastasis in colorectal cancer. Eur J Cancer 1994;30A:1113-7.
    98. Sikora K, Chan S, Evan G, et al. c-myc oncogene expression in colorectal cancer. Cancer 1987; 59:1289-95.
    99. Kozma L, Kiss I, Szakall S, and Ember I. Investigation of c-myc oncogene amplification in colorectal cancer. Cancer Lett 1994; 81:165-9.
    100. Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, and De Marzo AM. MYC and Prostate Cancer. Genes Cancer 2010; 1:617-28.
    101. Bernard D, Pourtier-Manzanedo A, Gil J, and Beach DH. Myc confers androgen-independent prostate cancer cell growth. J Clin Invest 2003; 112:1724-31.
    102. Watson PH, Safneck JR, Le K, Dubik D, and Shiu RP. Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J Natl Cancer Inst 1993; 85:902-7.
    103. Singhi AD, Cimino-Mathews A, Jenkins RB, et al. MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Mod Pathol 2012; 25:378-87.
    104. Todorovic-Rakovic N, Neskovic-Konstantinovic Z, and Nikolic-Vukosavljevic D. C-myc as a predictive marker for chemotherapy in metastatic breast cancer. Clin Exp Med 2011.
    105. Baker VV, Borst MP, Dixon D, Hatch KD, Shingleton HM, and Miller D. c-myc amplification in ovarian cancer. Gynecol Oncol 1990; 38:340-2.
    106. Chen CH, Shen J, Lee WJ, and Chow SN. Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer. Int J Gynecol Cancer 2005; 15:878-83.
    107. Kataoka A, Yakushiji M, and Kojiro M. A study of amplifications of myc gene (c-myc and N-myc) in human ovarian cancer. Nihon Sanka Fujinka Gakkai Zasshi 1990; 42:259-63.
    108. Iba T, Kigawa J, Kanamori Y, et al. Expression of the c-myc gene as a predictor of chemotherapy response and a prognostic factor in patients with ovarian cancer. Cancer Sci 2004; 95:418-23.
    109. Barr LF, Campbell SE, Diette GB, et al. c-Myc suppresses the tumorigenicity of lung cancer cells and down-regulates vascular endothelial growth factor expression. Cancer Res 2000; 60:143-9.
    110. Johnson BE, Ihde DC, Makuch RW, et al. myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 1987; 79:1629-34.
    111. Rama S, Suresh Y, and Rao AJ. TGF betal induces multiple independent signals to regulate human trophoblastic differentiation:mechanistic insights. Mol Cell Endocrinol 2003; 206:123-36.
    112. Stanelle J and Putzer BM. E2F1-induced apoptosis:turning killers into therapeutics. Trends Mol Med 2006; 12:177-85.
    113. Yang XH and Sladek TL. Overexpression of the E2F-1 transcription factor gene mediates cell transformation. Gene Expr 1995; 4:195-204.
    114. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, and Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85:537-48.
    115. Zacharatos P, Kotsinas A, Evangelou K, et al. Distinct expression patterns of the transcription factor E2F-1 in relation to tumour growth parameters in common human carcinomas. J Pathol 2004; 203:744-53.
    116. Yamasaki L. Balancing proliferation and apoptosis in vivo:the Goldilocks theory of E2F/DP action. Biochim Biophys Acta 1999; 1423:M9-15.
    117. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, and Tahara E. Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 1999; 81:535-8.
    118. Yasui W, Naka K, Suzuki T, et al. Expression of p27Kip1, cyclin E and E2F-1 in primary and metastatic tumors of gastric carcinoma. Oncol Rep 1999; 6:983-7.
    119. Balasubramanian S, Ahmad N, and Mukhtar H. Upregulation of E2F transcription factors in chemically induced mouse skin tumors. Int J Oncol 1999; 15:387-90.
    120. Rabbani F, Richon VM, Orlow I, et al. Prognostic significance of transcription factor E2F-1 in bladder cancer:genotypic and phenotypic characterization. J Natl Cancer Inst 1999; 91:874-81.
    121. Bracken AP, Ciro M, Cocito A, and Helin K. E2F target genes:unraveling the biology. Trends Biochem Sci 2004; 29:409-17.
    122. Knezevic D and Brash DE. Role of E2F1 in apoptosis:a case study in feedback loops. Cell Cycle 2004; 3:729-32.
    123. Bell LA and Ryan KM. Life and death decisions by E2F-1. Cell Death Differ 2004;11:137-42.
    124. Marshall CJ. Tumor suppressor genes. Cell 1991; 64:313-26.
    125. Beato M and Klug J. Steroid hormone receptors:an update. Hum Reprod Update 2000; 6:225-36.
    126. Cunha GR, Ricke W, Thomson A, et al. Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Mol Biol 2004; 92:221-36.
    127. King KJ, Nicholson HD, and Assinder SJ. Effect of increasing ratio of estrogen:androgen on proliferation of normal human prostate stromal and epithelial cells, and the malignant cell line LNCaP. Prostate 2006; 66:105-14.
    128. Risbridger G, Wang H, Young P, et al. Evidence that epithelial and mesenchymal estrogen receptor-alpha mediates effects of estrogen on prostatic epithelium. Dev Biol 2001; 229:432-42.
    129. Guerini V, Sau D, Scaccianoce E, et al. The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res 2005; 65:5445-53.
    130. Weihua Z, Lathe R, Warner M, and Gustafsson JA. An endocrine pathway in the prostate, ERbeta, AR,5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci U S A 2002; 99:13589-94.
    131. Tanaka Y, Sasaki M, Kaneuchi M, Shiina H, Igawa M, and Dahiya R. Polymorphisms of estrogen receptor alpha in prostate cancer. Mol Carcinog 2003; 37:202-8.
    132. McIntyre MH, Kantoff PW, Stampfer MJ, et al. Prostate cancer risk and ESR1 TA, ESR2 CA repeat polymorphisms. Cancer Epidemiol Biomarkers Prev 2007; 16:2233-6.
    133. Cunningham JM, Hebbring SJ, McDonnell SK, et al. Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:969-78.
    134. Stetler-Stevenson WG, Aznavoorian S, and Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9:541-73.
    135. Klein G, Vellenga E, Fraaije MW, Kamps WA, and de Bont ES. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 2004; 50:87-100.
    136. Sehgal G, Hua J, Bernhard EJ, Sehgal I, Thompson TC, and Muschel RJ. Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am J Pathol 1998; 152:591-6.
    137. Davies B, Waxman J, Wasan H, et al. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res 1993; 53:5365-9.
    138. Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 2001; 12:375-91.
    139. Brat DJ, Bellail AC, and Van Meir EG The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 2005; 7:122-33.
    140. Youngs SJ, Ali SA, Taub DD, and Rees RC. Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 1997; 71:257-66.
    141. Huang S, Mills L, Mian B, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 2002; 161:125-34.
    142. Fasciani A, D'Ambrogio G, Bocci G, Monti M, Genazzani AR, and Artini PG. High concentrations of the vascular endothelial growth factor and interleukin-8 in ovarian endometriomata. Mol Hum Reprod 2000; 6:50-4.
    143. Sparmann A and Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6:447-58.
    144. Veltri RW, Miller MC, Zhao G, et al. Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 1999; 53:139-47.
    145. Lehrer S, Diamond EJ, Mamkine B, Stone NN, and Stock RG. Serum interleukin-8 is elevated in men with prostate cancer and bone metastases. Technol Cancer Res Treat 2004; 3:411.
    146. Langeler EG, van Uffelen CJ, Blankenstein MA, van Steenbrugge GJ, and Mulder E. Effect of culture conditions on androgen sensitivity of the human prostatic cancer cell line LNCaP. Prostate 1993; 23:213-23.
    147. Keshava Prasad T, Goel R, Kandasamy K, et al. Human protein reference database(?)a2009 update. Nucleic acids research 2009; 37:D767.
    148. Stark C, Breitkreutz BJ, Chatr-aryamontri A, et al. The BioGRID Interaction Database:2011 update. Nucleic acids research 2011; 39:D698.
    149. Liu ZP, Wang Y, Zhang XS, and Chen L. Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains. BMC Systems Biology 2010;4:S11.
    150. Fuwa TJ, Hori K, Sasamura T, Higgs J, Baron M, and Matsuno K. The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila. Mol Genet Genomics 2006; 275:251-63.
    151. Kageyama R, Ohtsuka T, Shimojo H, and Imayoshi I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 2008; 11:1247-51.
    152. Van de Walle I, De Smet G, De Smedt M, et al. An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 2009; 113:2988-98.
    153. Amsen D, Antov A, Jankovic D, et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 2007; 27:89-99.
    154. Leong KG and Gao WQ. The Notch pathway in prostate development and cancer. Differentiation 2008; 76:699-716.
    155. Wu F, Stutzman A, and Mo YY. Notch signaling and its role in breast cancer. Front Biosci 2007; 12:4370-83.
    156. Maliekal TT, Bajaj J, Giri V, Subramanyam D, and Krishna S. The role of Notch signaling in human cervical cancer:implications for solid tumors. Oncogene 2008; 27:5110-4.
    157. Wu L and Griffin JD. Modulation of Notch signaling by mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol 2004; 14:348-56.
    158. Dotto GP. Notch tumor suppressor function. Oncogene 2008; 27:5115-23.
    159. Singh RK and Lokeshwar BL. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res 2011; 71:3268-77.
    160. Wallace TA, Prueitt RL, Yi M, et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res 2008; 68:927-36.
    161. Fuerer C, Nusse R, and Ten Berge D. Wnt signalling in development and disease. Max Delbruck Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep 2008; 9:134-8.
    162. Chen G, Shukeir N, Potti A, et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma:potential pathogenetic and prognostic implications. Cancer 2004; 101:1345-56.
    163. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, and Gerald WL. Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004; 113:913-23.
    164. Wissmann C, Wild PJ, Kaiser S, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 2003; 201:204-12.
    165. Mulholland DJ, Dedhar S, Wu H, and Nelson CC. PTEN and GSK3beta:key regulators of progression to androgen-independent prostate cancer. Oncogene 2006; 25:329-37.
    166. Shinozaki K and Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot 2007; 58:221-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700