Hedgehog信号通路与卵巢癌侵袭转移关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     卵巢癌是世界范围内最致命的妇科恶性疾病之一,由于缺乏典型的临床症状、特异的体征及肿瘤标志物等有效的筛查手段,绝大多数卵巢癌病人在得到诊断时已处于晚期,使其死亡率高居妇科恶性肿瘤首位。肿瘤的转移能力有赖于细胞的迁移与侵袭,然而决定肿瘤转移能力的分子机制目前仍然不十分清楚。因此,努力探索调控卵巢癌细胞转移潜能的分子靶标将至关重要。Hedgehog (Hh)信号通路在细胞命运决定以及细胞增殖过程中发挥重要作用。该通路由Hh配体,膜受体Ptch和跨膜信号转导蛋白Smo以及参与Hh信号转导的胞浆蛋白复合体组成,其级联传导的末点被公认为锌指转录因子Gli (Glioma-associated oncogene transcription factors),是该信号通路的关键节点,在信号转导中起枢纽作用。Hh靶基因涉及细胞增殖、细胞存活、细胞分化、细胞周期以及干细胞形成和细胞侵袭等多方面。有研究发现:卵巢癌中Hedgehog (Hh)
     信号通路异常活化,但信号通路异常活化与卵巢癌侵袭、转移的关系有待进一步明晰。本研究试图发现受Hh信号通路调控的靶基因,从临床标本、细胞及分子水平、动物模型等多个层次,采用细胞学、生物化学、分子生物学、生物信息学等多学科手段阐明受Hh信号通路调控的靶基因的作用及分子机制,进一步揭示Hh信号通路与卵巢癌侵袭与转移的关系,为卵巢癌诊疗策略的选择及抗癌新药研发提供理论依据。
     方法:
     第一部分人上皮性卵巢癌组织中Hedgehog信号通路异常活化与临床病理特征的关系
     (1)为了证实在卵巢癌中存在Hh信号通路的异常活化,我们采用免疫组化技术检测了65例卵巢癌病人卵巢肿瘤组织石蜡切片中Hh信号通路重要组分蛋白Gli2的表达情况,并且在此基础上将Gli2的表达情况与卵巢癌的临床病理特征进行了相关性分析。
     (2)同时,通过Western-blot及real-time PCR等方法检测卵巢癌及正常卵巢组织中Hh信号通路重要组分蛋白Shh、Gli1、Gli2等的蛋白水平及mRNA水平的表达情况。
     第二部分抑制Hedgehog信号通路降低卵巢癌细胞增殖与迁移能力
     (1)为了探索Hh信号通路与卵巢癌细胞增殖与迁移能力的关系,我们以卵巢癌细胞系(SKO-V3和ES-2)为研究对象,采用转录因子Gli特异性小分子抑制剂GANT61处理SKO-V3和ES-2细胞,对加药处理(实验组加30μM GANT61,对照组加等体积的DMSO)的SKO-V3和ES-2细胞通过Western-blot、 real-time PCR及免疫细胞化学方法在蛋白水平以及mRNA水平检测了Hh信号通路中相关组分,如跨膜受体Smo,终末转录因子Gli1和Gli2的表达情况。
     (2)加药处理(实验组加30μM GANT61,对照组加等体积的DMSO)后的SKO-V3和ES-2细胞,分别通过MTT比色法及BrdU增殖实验检测其细胞活力及增殖能力的变化。
     (3)加药处理(实验组加30μM GANT61,对照组加等体积的DMSO)后的ES-2细胞,通过细胞划痕实验及软琼脂克隆形成实验检测其细胞迁移及克隆形成能力的变化。
     第三部分抑制Hedgehog信号通路改变卵巢癌细胞基因表达谱
     (1)为了研究抑制Hh信号通路对卵巢癌细胞基因表达谱的影响,采用转录因子Gli特异性小分子抑制剂GANT61(实验组加30μM GANT61,对照组加等体积的DMSO),处理SKO-V3和ES-2细胞60hr,采用基因表达谱芯片技术分析其受Gli调控的差异表达基因,并对差异表达的基因进行GO (gene ontology) pathway分析和KEGG (Kyoto encyclopedia of genes and genomes) pathway分析,发现受Hh信号通路调控的靶基因。并采用real-time PCR和Western blot分别对芯片发现的富集于某些信号通路的差异基因以及相关基因(如ITGB4、FAK、 CD24、MMP7等)在mRNA水平和蛋白水平进行验证,以确认芯片结果的可靠性。
     (2)用Gli特异性小分子抑制剂GANT61,转录因子Gli的siRNA(miR-Gli1)和含Hh配体的条件培养液(Shh-Med)分别抑制或激活Hh信号通路,采用real-time PCR、Western blot以及细胞迁移实验研究Hh信号通路调控卵巢癌细胞的侵袭与转移的分子机制。
     第四部分抑制Hedgehog信号通路减慢卵巢癌生长
     为了在体内水平研究Hh信号通路对卵巢癌生长的影响,我们采用卵巢癌组织块皮下移植法构建荷人卵巢癌裸鼠皮下移植瘤模型;并利用此动物模型,给予GANT61(浓度10mg/ml,0.2m1/次)和同体积的溶剂对照处理,观测卵巢癌体积的变化,比较瘤体重量的改变;同时采用Western blot技术检测瘤组织中Gli1和Gli2的表达水平的变化,免疫组化技术检测瘤体中整合素integrinβ4(ITGB4)和磷酸化的粘着斑激酶(p-FAK)的表达情况。
     结果:
     第一部分人上皮性卵巢癌组织中Hedgehog信号通路异常活化与临床病理特征的关系
     (1)人卵巢癌组织标本行Western blot检测及real-time PCR检测,发现其Shh, Gli1和Gli2蛋白表达水平明显高于正常卵巢组织;Shh, Gli1和Gli2mRNA水平明显高于正常卵巢组织,差异有极显著统计学意义(p<0.01)提示:卵巢癌组织中Hh信号通路异常活化。
     (2)人卵巢癌组织标本免疫组织化学染色提示:Gli2的蛋白表达水平与卵巢癌患者的临床病理分期相关,其中晚期(Ⅲ-Ⅳ期)的卵巢癌患者的Gli2蛋白的高评分发生率明显高于早期(Ⅰ-Ⅱ期)的卵巢癌患者,差异有统计学意义(p<0.05);与卵巢癌患者的年龄、病理组织学类型、分化程度及是否存在淋巴结转移无明显相关,差异无统计学意义(p>0.05)。
     第二部分抑制Hedgehog信号通路降低卵巢癌细胞增殖与迁移能力
     (1)Gli特异性小分子抑制剂GANT61降低ES-2和SKO-V3细胞的Gli1及Gli2蛋白表达水平;GANT61降低ES-2和SKO-V3细胞的Gli1和Gli2的mRNA表达水平,差异有极显著统计学意义(p<0.01);经GANT61处理后细胞免疫荧光显示:Gli1蛋白表达水平显著降低。
     (2)Gli表达下调可直接抑制卵巢癌细胞活力,(MTT法;p<0.01);降低其增殖活性,(BrdU法;p<0.01)。
     (3) GANT61抑制卵巢癌细胞(ES-2)的迁移能力,(划痕实验;p<0.05);GANT61抑制卵巢癌细胞(ES-2)的克隆形成能力,(软琼脂法;p<0.01)。
     第三部分抑制Hedgehog信号通路改变卵巢癌细胞基因表达谱
     (1)基因芯片表达谱及通路网络分析结果显示:SKO-V3细胞经GANT61处理60hr后的差异表达基因的通路网络中,主要影响细胞粘附相关信号通路为主,既有部分表现为上调,同时也有部分表现为下调,其中以整合素蛋白integrins与骨架蛋白lamin为主。同时,MAPK信号通路也有明显的差异基因的富集,而该通路中差异表达基因绝大多数表现为上调,仅少数几个表现为下调。
     (2)采用real-time PCR和Western blot在mRNA以及蛋白水平验证芯片结果,发现经GANT61处理的SKO-V3细胞,ITGB4, COL1A1, COL5A1等基因mRNA水平表达明显下降,(p<0.01);而LAMC2, ITGA5, LAMA3等基因mRNA水平表达明显升高,(p<0.01),与Microarray所获结果一致。此外,CD24,CD70, S100A2及MMP7等mRNA表达水平下降,(p<0.01);而S100A4和FAK mRNA水平无显著差异,(p>0.05),与Microarray所获结果基本一致;Western blot结果显示:GANT61处理的SKO-V3细胞,ITGB4, CD24, MMP7等蛋白表达水平明显下降,(p<0.01);而FAK蛋白表达水平改变不明显,(p>0.05),与real-time PCR结果基本一致。
     (3)采用Shh配体条件培养液(Shh-Med)激活Hh信号通路,观察上述差异基因的表达变化,结果提示:Shh配体条件培养液(Shh-Med)处理SKO-V3细胞后,ITGB4的蛋白表达水平以及mRNA表达水平明显增加,(p<0.01)。此外,细胞侵袭实验提示:Shh-Med刺激Hh信号通路所引起的SKO-V3细胞侵袭能力的增加可以被抗ITGB4抗体(anti-ITGB4)所阻断(p<0.01)。
     (4)为了证实GANT61对转录因子Gli作用的特异性,我们采用Gli1特异的siRNA (miR-Gli1-720)干扰Glil的表达,Western blot结果显示:miR-Glil-720转染的SKO-V3细胞中Gli1及ITGB4的蛋白表达水平明显下降,与GANT61的抑制效果一致。
     (5)有文献报道ITGB4可调控FAK信号,为了阐明Hh信号通路影响ITGB4表达的生物学意义,我们采用Shh-Med和GANT61分别处理SKO-V3细胞,结果提示:Shh-Med处理SKO-V3细胞后,FAK的蛋白表达水平未明显改变,而磷酸化的FAK (p-FAK)水平明显增加,(p<0.01); GANT61处理SKO-V3细胞后,FAK的蛋白表达水平未见明显改变,而p-FAK水平明显下降,(p<0.01),另一方面,Western blot结果显示:Hh信号通路激活所引起的SKO-V3细胞p-FAK水平的增加可以被anti-ITGB4所阻断。提示Hh信号通路激活可通过ITGB4介导促进FAK蛋白磷酸化。
     (6)此外,我们采用免疫细胞化学方法观察抑制Hh信号通路对FAK磷酸化及细胞骨架的影响,结果显示:经GANT61处的SKO-V3细胞p-FAK-Y397的表达水平明显下降,提示:抑制Hh信号通路可影响FAK的活化;同时,经GANT61处理后,SKO-V3细胞骨架发生破坏,细胞伪足明显减少,提示:抑制Hh信号通路可影响SKO-V3细胞的侵袭能力。
     第四部分抑制Hedgehog信号通路减慢卵巢癌生长
     (1)为了在体内水平研究Hh信号通路对卵巢癌细胞生长的影响,我们成功采用瘤组织块皮下移植法构建荷人卵巢癌裸鼠皮下移植瘤模型。
     (2)实验组(GANT61组)比对照组(溶剂组)裸鼠肿瘤生长速度明显下降,尤其是在给药4次后,对照组肿瘤体积增长迅速,而实验组肿瘤体积缓慢增长。实验结束时将两组裸鼠皮下移植瘤离体后称重,实验组瘤体重量明显低于对照组,差异有极显著统计学意义(p<0.01)。
     (3) Western blot结果显示:实验组裸鼠皮下移植瘤中Gli1和Gli2蛋白表达水平明显低于对照组裸鼠,相对定量结果提示差异有极显著统计学意义,(p<0.01);免疫组织化学法检测实验组裸鼠及对照组裸鼠皮下移植瘤中ITGB4及p-FAK的蛋白表达水平,结果显示实验组相比对照组瘤体中ITGB4及p-FAK的蛋白表达水平明显下降。
     结论:
     1、卵巢癌组织中Hh信号通路异常活化,Hh信号通路重要组分蛋白Gli2的表达水平与卵巢癌的临床病理分期密切相关。
     2、GANT61降低卵巢癌细胞(ES-2和SKO-V3)的Gli1和Gli2表达水平,同时,抑制ES-2和SKO-V3细胞的活力、增殖、迁移及克隆形成能力。
     3、采用Gli特异性小分子抑制剂GANT61处理SKO-V3细胞,通过基因芯片表达谱分析筛选出差异表达基因,并且选择部分与细胞粘附及迁移密切相关的基因进行蛋白水平及mRNA水平的鉴定,鉴定结果与芯片分析结果一致,转录调节因子Gli的下调降低ITGB4的表达,通过抗ITGB4抗体阻断ITGB4/FAK信号途径可以抑制Shh介导的卵巢癌细胞的迁移和侵袭,提示Hh信号通路很可能是通过ITGB4/FAK信号途径来调控卵巢癌的侵袭、转移。
     4、GANT61缩小荷人卵巢癌裸鼠皮下移植瘤模型中肿瘤的体积及重量,且实验组移植瘤中Gli1、Gli2、ITGB4及p-FAK的蛋白表达水平均下降,提示:Hh信号通路的终末转录因子Gli有望成为卵巢癌诊疗策略的新靶点,为抗癌新药研发提供理论依据。
Background and Purpose
     Ovarian cancer is one of the most lethal gynecologic malignancies worldwide. Due to the non-specific symptoms, most of ovarian cancer cases are presented with advanced stage disease and associate with the highest mortality rate.Both cell migration and invasion contribute the metastatic ability of the tumor cells and the genetic mechanism that regulates metastasis remains largely unknown. Therefore, it is of paramount importance to identify molecular mediators conferring the metastatic potential to ovarian cancer cells that may be used as tumor markers in predicting risk of ovarian cancer progression. Hedgehog (Hh) signaling pathway plays an important role in the process of cell fate decisions and cell proliferation. The pathway by Hh ligands, membrane receptors PTCH and transmembrane signal transduction protein Smo and the cytoplasmic protein involved in the Hh signal transduction complex, the last point of the cascade conduction is recognized as the zinc finger transcription factor Gli (glioma-associated oncogene transcription factors Gli), is a key node of the signaling pathway plays a pivotal role in signal transduction. Hh target genes are involved in cell proliferation, survival, differentiation, cell cycle, stem cells and invasion. Several reports indicate that the aberrant activation of Hh signaling is implicated in ovarian cancer, however, the exact role and regulatory mechanisms of Hh signaling for invasion and metastasis in ovarian cancer are not well understood. This project will discover new genes regulated by Hh signaling pathway. Using clinical research, cellular biological method, DNA tip technique, animal experiment, bioinformatics and other regular assays, we will illustrate the role and requlatory mechanisms of the new genes and further reveal the exact influence of Hh signaling pathway on tumorigenesis, invasion and matestasis of ovarian cancer. Our final objective is to offer theoretical guidance of new treatment strategies and drug development targeting to ovarian cancer.
     Methods
     Part Ⅰ. The relation between the aberrant activation of Hh signaling pathway and clinicopathological parameters in ovarian cancer
     (1) To detect Gli2protein in65ovarian cancer samples by using two steps immunohistochemistry; then observed the relationship between the expression change of the key protein in Hedgehog signaling pathway and the clinicopathological paramenters.
     (2) Simultaneously, the expression of Shh, Gli1, Gli2(critical components of Hedgehog signaling pathway) mRNA and protein was assayed by real-time PCR and western-blot, respectively.
     Part Ⅱ. Blocking Hh signaling pathway decreases cell proliferation and migration in ovarian cancer
     (1) In order to explore the relationship of Hedgehog signaling pathway and cell proliferation and migration in ovarian cancer, Ovarian cancer cell lines (SKO-V3and ES-2) for the object of study, the transcription factor Gli-specific small molecule inhibitors GANT61processing the SKO-V3and ES-2cells, we detected Smo, Gli1, Gli2(critical components of Hedgehog signaling pathway) mRNA and protein in ovarian cancer cells (SKO-V3and ES-2) that were treated with DMSO or GANT61(30μim) by real-time PCR, western-blot and immunocytochemistry, respectively.
     (2) To detect cell viability and proliferation in ovarian cancer cells (SKO-V3and ES-2) that treated with DMSO or GANT61(30μm) by MTT assays and BrdU assays respectively;
     (3) To detect cell migration and cell colony formation in ovarian cancer cells (SKO-V3and ES-2) that treated with DMSO or GANT61(30μm) by wound-healing assays and soft agar assays, respectively.
     Part III. Blocking Hh signaling pathway changes cDNA microarrays genesexpression profiling in ovarian cancer cells
     (1) The transcription factor Gli-specific small molecule inhibitors GANT61processing the SKO-V3and ES-2cells, we detected the differentially expressed genes (DEGs) that regulated by Hedgehog signaling pathway in ovarian cancer cells (SKO-V3) that were treated with DMSO or GANT61(30μm) by cDNA microarrays gene expression profiling, and these differentially expressed genes were uploaded for GO pathway and KEGG pathway analysis by bioinformatics. we found that some genes are regulated by Hedgehog signaling pathway. Then, we validated the DEGs (such as ITGB4, FAK, CD24, MMP7, etc.) by real-time PCR and western-blot,respectively.
     (2) In order to explore the molecular mechanisms by which Hh signaling pathway resulates cell invasion and metastasis in ovarian cancer, Gli-specific small molecule inhibitors GANT61, siRNA of Gli1and Hh signaling pathway ligand conditional medium (Shh-Med), were used to inhibit or activate the Hh signaling, The real-time PCR,western blot and cell invasion assay were performed to test cell migration and invasion of ovarian of cancer.
     Part IV. Blocking Hh signaling pathway reduces tumor growth in vivo
     (1) In order to test potential tumor growth inhibitory effects of Gli inhibitor GANT61in vivo, We establish the nude mice subcutaneous xenograft models employed human ovarian epithelial carcinoma tissue masses.
     (2) The nude mice subcutaneous xenograft models were treated with GANT61(50mg/5ml) or control. Tumor sizes were measured every other day. The volume and weight of tumor were compared each other.
     (3) Gli1and Gli2protein in xenografts were detected by western-blot. Simultaneously, ITGB4and p-FAK protein in xenografts were detected by immunohistochemistry.
     Results
     Part Ⅰ. The relation between the aberrant activation of Hedgehog signaling pathway and clinicopathological parameters in ovarian cancer
     (1) The expression of Shh, Gli1and Gli2protein in ovarian carcinoma was significantly higher than that in the adjacent tissues by western-blot, and the expression of Shh, Gli1and Gli2mRNA in ovarian carcinoma was significantly higher than that in the adjacent tissues by real-time PCR, the difference was statistically significant (p<0.01), The above data suggest that abnormal activation of the Hh signaling pathway was occured in ovarian cancer tissue.
     (2) Gli2protein expression was related with tumor TNM stage, the difference was statistically significant (p<0.05); and the expression of Gli2protein with patients age, histological type of tumor, the degree of tumor differentiation and lymph node matestasis were not significantly related (p>0.05).
     Part Ⅱ. Blocking Hedgehog signaling pathway decreases cell proliferation and migration in ovarian cancer
     (1) Gli-specific small molecule inhibitors GANT61induced down-regulation of transcription factor Gli and its downstream targets Ptch in protein level in ovarian cancer cells; GANT61induced down-regulation of transcription factor Gli1and Gli2in mRNA level in ovarian cancer cells, the difference was statistically significant (p<0.01); Gli2protein expression was significantly reduced in the cells treated with GANT61.
     (2) GANT61inhibited the viability of ovarian cancer cells, the difference was statistically significant (MTT assays; p<0.01); Also, GANT61inhibited the proliferation of ovarian cancer cells, the difference was statistically significant (BrdU assays; p<0.01);
     (3) GANT61inhibited cell migration of ovarian cancer cells, the difference was statistically significant (wound-healing assays; p<0.01); and GANT61inhibited the cell colony formation of ovarian cancer cells, the difference was statistically significant (soft agar assays; p<0.01).
     Part III. Blocking Hedgehog signaling pathway changes cDNA microarrays genes expression profiling in ovarian cancer cells
     (1) cDNA microarrays gene expression profiling and pathway network analysis indicated that the mapped DEGs in SKO-V3following GANT61treatment for60hr chiefly involved the focal adhesion pathway, including both up-and down-regulated genes. Of above genes, integrin and lamin are the main DEGs. Simultaneously, the mapped DEGs in SKO-V3are also accumulated in MAPK signaling pathway and most of those DEGs were up-regulated, several of those DEGs were down-regulated.
     (2) Real-time PCR and Western blot verified the microarray results at the mRNA and protein levels, the results indicated that the expression of ITGB4, COL1A1, COL5A1mRNA was significantly declined following GANT61treatment compared with DMSO treatment, the difference was statistically significant (p<0.01); However, the expression of LAMC2, ITGA5, LAMA3mRNA was significantly higher, the difference was statistically significant (p<0.01), consistent with cDNA microarrays. The expression of CD24, CD70, S100A2, MMP7mRNA were all declined,(p<0.01); The results were also consistent with cDNA microarrays; In addition, the expression of ITGB4, CD24, MMP7protein were all significantly declined following GANT61treatment compared with DMSO treatment, There consistent with real-time PCR assays.
     (3) In order to observe the differences in gene expression changes. Shh ligand conditioned medium (Shh-Med) is used to activate the Hh signaling pathway, we found that the expression of ITGB4protein and mRNA in SKO-V3was significantly higher following Shh-Med treatment compared with control treatment, the difference was statistically significant (p<0.01). In addition, cell invasion assay indicated that the motility and invasiveness of ovarian cancer cells caused by Shh-Med can be blocked by the anti-ITGB4,(p<0.01).
     (4) In order to confirm the specific role of GANT61to the transcription factor Gli, Gli1siRNA(miR-Gli1-720) was used to interfere the expression of Gli, Western blot results indicated that Gli1and ITGB4protein expression levels of SKO-V3cells transfected with miR-Gli1-720were significantly decreased, consistent with the inhibitory effect of GANT61.
     (5) In order to clarify the biological significance of Hh signaling pathway affect1TGB4expression, eithor Shh-Med or GANT61was used to treat SKO-V3cells, the results suggested that compared with control treatment, the expression of p-FAK protein in SKO-V3was significantly higher following Shh-Med treatment, the difference was statistically significant (p<0.01); But the difference in the expression of FAK protein was not statistically significant (p>0.05); However the expression of p-FAK levels were significantly decreased following GANT61treatment (p<0.01). Western blot results suggested that increase in p-FAK levels of SKO-V3cell caused by stimulation of Shh-Med can be blocked by the anti-ITGB4,(p<0.01). the above data confirmed that the Hh signaling pathway can promote FAK phosphorylation.
     (6) Next, we employed immunofluorescence technique to examine the effects of GANT-61on the expression of p-FAK. SKO-V3cells were treated with GANT61, and the expression of p-FAK-Y397was observed. GANT61inhibited the expression of p-FAK-Y397. In addition, we found that cytoskeleton of ovarian cancer cell was destroyed following GANT61treatment for48hr, and cell pseudopodia were significantly lessen.
     Part Ⅳ. Blocking Hedgehog signaling pathway reduces tumor growth
     (1) The nude mice subcutaneous xenograft models employed human ovarian epithelial carcinoma tissue masses were successfully established.
     (2) The volumes of the nude mice subcutaneous xenografts were significantly reduced following GANT61treatment compared with control treatment, especially at the ninth day. The tumor weight of the nude mice was also significantly reduced following GANT61treatment compared with control treatment, the difference was statistically significant (p<0.01).
     (3) Western-blot assays indicated that the expression of Glil and Gli2protein in xenografts that treated with GANT61was significantly lower than that treated with vehicle, the difference was statistically significant (p<0.01); While immunohisto chemistry assays indicated that the expression of ITGB4and p-FAK protein in xenografts that treated with GANT61was significantly lower than that treated with vehicle.
     Conclusion
     1. The aberrant activation of Hh signaling pathway was implicated in ovarian cancer. Gli2as the important component of Hh signaling, its protein expression was related with tumor stage of ovarian cancer.
     2. GANT61decreased the expression of Gli1, Gli2and Ptch protein, Simultaneously, it inhibited cell viability, proliferation, migration and colony formation.
     3. Some DEGs were screened by cDNA micrearrays following GANT61treatment, and of these genes, several ones related to cell adhesion and migration were verified in protein and mRNA level. The results were consistent with cDNA micrearrays. Down-regulation of Gli decreased the expression of ITGB4protein and mRNA, and anti-ITGB4inhibited Shh mediated cell migration and invasion of ovarian cancer by destroying ITGB4/FAK pathway. We found that Hh pathway regulated cell migration and invasion of ovarian cancer, which may was mediated by ITGB4/FAK signaling.
     4. GANT61reduced tumor volume and weight of xenografts in the nude mice, and the expression of Gli1,Gli2, ITGB4and p-FAK protein all declined following GANT61treatment, Gli as the final transcription factor of Hh pathway, it may become the new promising target of ovarian cancer, and it will offer theoretical guidance of treatment strategies and drug development targeting to ovarian cancer.
引文
[I]D. M. Dinulescu, T. A. Ince, B. J. Quade, S. A. Shafer, D. Crowley, and T. Jacks, "Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer," Nat Med, vol.11, pp.63-70, Jan 2005.
    [2]A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, "Cancer statistics,2009," CA Cancer J Clin, vol.59, pp.225-49, Jul-Aug 2009.
    [3]D. G. Rosen, G. Yang, G. Liu, I. Mercado-Uribe, B. Chang, X. S. Xiao, J. Zheng, F. X. Xue, and J. Liu, "Ovarian cancer:pathology, biology, and disease models," Front Biosci, vol.14, pp.2089-102,2009.
    [4]P. W. Ingham and A. P. McMahon, "Hedgehog signaling in animal development: paradigms and principles," Genes Dev, vol.15, pp.3059-87, Dec I 2001.
    [5]Y. Katoh and M. Katoh, "Hedgehog target genes:mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation," Curr Mol Med, vol.9, pp.873-86, Sep 2009.
    [6]M. Kasper, G. Regl, A. M. Frischauf, and F. Aberger, "GLI transcription factors: mediators of oncogenic Hedgehog signalling," Eur J Cancer, vol.42, pp.437-45, Mar 2006.
    [7]S. Thiyagarajan, N. Bhatia, S. Reagan-Shaw, D. Cozma, A. Thomas-Tikhonenko, N. Ahmad, and V. S. Spiegelman, "Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells," Cancer Res, vol.67, pp.10642-6, Nov 15 2007.
    [8]J. Asai, H. Takenaka, K. F. Kusano, M. Ii, C. Luedemann, C. Curry, E. Eaton, A. Iwakura, Y. Tsutsumi, H. Hamada, S. Kishimoto, T. Thorne, R. Kishore, and D. W. Losordo, "Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling," Circulation, vol.113, pp.2413-24, May 23 2006.
    [9]M. Gering and R. Patient, "Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos," Dev Cell, vol.8, pp.389-400, Mar 2005.
    [10]S. A. Vokes, T. A. Yatskievych, R. L. Heimark, J. McMahon, A. P. McMahon, P. B. Antin, and P. A. Krieg, "Hedgehog signaling is essential for endothelial tube formation during vasculogenesis," Development, vol.131, pp.4371-80, Sep 2004.
    [11]E. Hochman, A. Castiel, J. Jacob-Hirsch, N. Amariglio, and S. Izraeli, "Molecular pathways regulating pro-migratory effects of Hedgehog signaling," JBiol Chem, vol.281, pp.33860-70, Nov 10 2006.
    [12]L. Buttitta, R. Mo, C. C. Hui, and C. M. Fan, "Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction," Development, vol.130, pp.6233-43, Dec 2003.
    [13]C. B. Bai, D. Stephen, and A. L. Joyner, "All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3," Dev Cell, vol.6, pp.103-15, Jan 2004.
    [14]A. E. Oro, K. M. Higgins, Z. Hu, J. M. Bonifas, E. H. Epstein, Jr., and M. P. Scott, "Basal cell carcinomas in mice overexpressing sonic hedgehog," Science, vol.276, pp.817-21, May 2 1997.
    [15]T. Eichberger, V. Sander, H. Schnidar, G. Regl, M. Kasper, C. Schmid, S. Plamberger, A. Kaser, F. Aberger, and A. M. Frischauf, "Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes," Genomics, vol.87, pp.616-32, May 2006.
    [16]H. Nagao, K. Ijiri, M. Hirotsu, Y. Ishidou, T. Yamamoto, S. Nagano, T. Takizawa, K. Nakashima, S. Komiya, and T. Setoguchi, "Role of GLI2 in the growth of human osteosarcoma," J Pathol, vol.224, pp.169-79, Jun 2011.
    [17]Q. Ding, J. Motoyama, S. Gasca, R. Mo, H. Sasaki, J. Rossant, and C. C. Hui, "Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice," Development, vol.125, pp.2533-43, Jul 1998.
    [18]C. B. Bai, W. Auerbach, J. S. Lee, D. Stephen, and A. L. Joyner, "Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway," Development, vol.129, pp.4753-61, Oct 2002.
    [19]J. Motoyama, L. Milenkovic, M. Iwama, Y. Shikata, M. P. Scott, and C. C. Hui, "Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification," Dev Biol, vol.259, pp.150-61, Jul 1 2003.
    [20]K. W. Kinzler, S. H. Bigner, D. D. Bigner, J. M. Trent, M. L. Law, S. J. O'Brien, A. J. Wong, and B. Vogelstein, "Identification of an amplified, highly expressed gene in a human glioma," Science, vol.236, pp.70-3, Apr 3 1987.
    [21]W. M. Roberts, E. C. Douglass, S. C. Peiper, P. J. Houghton, and A. T. Look, "Amplification of the gli gene in childhood sarcomas," Cancer Res, vol.49, pp.5407-13, Oct 1 1989.
    [22]M. Salgaller, D. Pearl, and R. Stephens, "In situ hybridization with single-stranded RNA probes to demonstrate infrequently elevated gli mRNA and no increased ras mRNA levels in meningiomas and astrocytomas," Cancer Lett, vol.57, pp.243-53, May 24 1991.
    [23]S. J. Scales and F. J. de Sauvage, "Mechanisms of Hedgehog pathway activation in cancer and implications for therapy," Trends Pharmacol Sci, vol.30, pp.303-12, Jun 2009.
    [24]J. Li, L. Yang, L. Song, H. Xiong, L. Wang, X. Yan, J. Yuan, J. Wu, and M. Li, "Astrocyte elevated gene-1 is a proliferation promoter in breast cancer via suppressing transcriptional factor FOXO1," Oncogene, vol.28, pp.3188-96, Sep 10 2009.
    [25]R. L. Yauch, S. E. Gould, S. J. Scales, T. Tang, H. Tian, C. P. Ahn, D. Marshall, L. Fu, T. Januario, D. Kallop, M. Nannini-Pepe, K. Kotkow, J. C. Marsters, L. L. Rubin, and F. J. de Sauvage, "A paracrine requirement for hedgehog signalling in cancer," Nature, vol. 455, pp.406-10, Sep 18 2008.
    [26]J. W. Theunissen and F. J. de Sauvage, "Paracrine Hedgehog signaling in cancer," Cancer Res, vol.69, pp.6007-10, Aug 1 2009.
    [27]L. L. Rubin and F. J. de Sauvage, "Targeting the Hedgehog pathway in cancer," Nat Rev Drug Discov, vol.5, pp.1026-33, Dec 2006.
    [28]C. J. Allegra, D. R. Aberle, P. Ganschow, S. M. Hahn, C. N. Lee, S. Millon-Underwood, M. C. Pike, S. D. Reed, A. F. Saftlas, S. A. Scarvalone, A. M. Schwartz, C. Slomski, G. Yothers, and R. Zon, "National Institutes of Health State-of-the-Science Conference statement:Diagnosis and Management of Ductal Carcinoma In Situ September 22-24, 2009," J Natl Cancer Inst, vol.102, pp.161-9, Feb 3 2010.
    [29]A. Ruiz i Altaba, C. Mas, and B. Stecca, "The Gli code:an information nexus regulating cell fate, sternness and cancer," Trends Cell Biol, vol.17, pp.438-47, Sep 2007.
    [30]B. N. Singh, J. Fu, R. K. Srivastava, and S. Shankar, "Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics:molecular mechanisms," PLoS One, vol.6, p. e27306,2011.
    [31]H. Onishi, M. Kai, S. Odate, H. Iwasaki, Y. Morifuji, T. Ogino, T. Morisaki, Y. Nakashima, and M. Katano, "Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer," Cancer Sci, vol.102, pp.1144-50, Jun 2011.
    [32]A. Gould and S. Missailidis, "Targeting the hedgehog pathway:the development of cyclopamine and the development of anti-cancer drugs targeting the hedgehog pathway," Mini Rev Med Chem, vol.11, pp.200-13, Mar 2011.
    [33]M. Lauth, A. Bergstrom, T. Shimokawa, and R. Toftgard, "Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists," Proc Natl Acad Sci USA, vol.104, pp.8455-60, May 15 2007.
    [34]C. Dierks, R. Beigi, G. R. Guo, K. Zirlik, M. R. Stegert, P. Manley, C. Trussell, A. Schmitt-Graeff, K. Landwerlin, H. Veelken, and M. Warmuth, "Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation," Cancer Cell, vol.14, pp.238-49, Sep 9 2008.
    [35]V. Chenna, C. Hu, D. Pramanik, B. T. Aftab, C. Karikari, N. R. Campbell, S. M. Hong, M. Zhao, M. A. Rudek, S. R. Khan, C. M. Rudin, and A. Maitra, "A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists," Mol Cancer Ther, vol.11, pp.165-73, Jan 2012.
    [36]P. M. LoRusso, C. M. Rudin, J. C. Reddy, R. Tibes, G. J. Weiss, M. J. Borad, C. L. Hann, J. R. Brahmer, I. Chang, W. C. Darbonne, R. A. Graham, K. L. Zerivitz, J. A. Low, and D. D. Von Hoff, "Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors," Clin Cancer Res, vol.17, pp.2502-11, Apr 15 2011.
    [37]F. Tian, K. Schrodl, R. Kiefl, R. M. Huber, and A. Bergner, "The hedgehog pathway inhibitor GDC-0449 alters intracellular Ca2+ homeostasis and inhibits cell growth in cisplatin-resistant lung cancer cells," Anticancer Res, vol.32, pp.89-94, Jan 2012.
    [38]J. Warzecha, D. Dinges, B. Kaszap, D. Henrich, I. Marzi, and C. Seebach, "Effect of the Hedgehog-inhibitor cyclopamine on mice with osteosarcoma pulmonary metastases," Int J Mol Med, vol.29, pp.423-7, Mar 2012.
    [39]S. Peukert and K. Miller-Moslin, "Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics," ChemMedChem, vol.5, pp.500-12, Apr 6 2010.
    [40]M. K. Cooper, J. A. Porter, K. E. Young, and P. A. Beachy, "Teratogen-mediated inhibition of target tissue response to Shh signaling," Science, vol.280, pp.1603-7, Jun 5 1998.
    [41]T. Mazumdar, J. Devecchio, A. Agyeman, T. Shi, and J. A. Houghton, "The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer," Oncotarget, 2011.
    [42]H. L. Goel, J. M. Underwood, J. A. Nickerson, C. C. Hsieh, and L. R. Languino, "Betal integrins mediate cell proliferation in three-dimensional cultures by regulating expression of the sonic hedgehog effector protein, GLI1," J Cell Physiol, vol.224, pp.210-7, Jul 2010.
    [43]K. Wang, L. Pan, X. Che, D. Cui, and C. Li, "Glil inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines," J Neurooncol, vol.98, pp.319-27, Jul 2010.
    [44]T. Mazumdar, J. Devecchio, A. Agyeman, T. Shi, and J. A. Houghton, "Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells," Cancer Res, vol.71, pp.5904-14, Sep 12011.
    [45]B. M. Jockusch, P. Bubeck, K. Giehl, M. Kroemker, J. Moschner, M. Rothkegel, M. Rudiger, K. Schluter, G. Stanke, and J. Winkler, "The molecular architecture of focal adhesions," Annu Rev Cell Dev Biol, vol.11, pp.379-416,1995.
    [46]E. Zamir and B. Geiger, "Molecular complexity and dynamics of cell-matrix adhesions," J Cell Sci, vol.114, pp.3583-90, Oct 2001.
    [47]E. Zamir and B. Geiger, "Components of cell-matrix adhesions," J Cell Sci, vol.114, pp. 3577-9, Oct 2001.
    [48]C. K. Miranti and J. S. Brugge, "Sensing the environment:a historical perspective on integrin signal transduction," Nat Cell Biol, vol.4, pp. E83-90, Apr 2002.
    [49]R. A, J. R. Tyson, and C. J. Stirling, "A novel subfamily of Hsp70s in the endoplasmic reticulum," Trends Cell Biol, vol.7, pp.277-82, Jul 1997.
    [50]Y. Kikkawa, N. Sanzen, H. Fujiwara, A. Sonnenberg, and K. Sekiguchi, "Integrin binding specificity of laminin-10/11:laminin-10/11 are recognized by alpha 3 beta l, alpha 6 beta 1 and alpha 6 beta 4 integrins," J Cell Sci, vol.113 (Pt 5), pp.869-76, Mar 2000.
    [51]N. Pouliot, L. M. Connolly, R. L. Moritz, R. J. Simpson, and A. W. Burgess, "Colon cancer cells adhesion and spreading on autocrine laminin-10 is mediated by multiple integrin receptors and modulated by EGF receptor stimulation," Exp Cell Res, vol.261, pp.360-71, Dec 15 2000.
    [52]L. Borradori and A. Sonnenberg, "Structure and function of hemidesmosomes:more than simple adhesion complexes," J Invest Dermatol, vol.112, pp.411-8, Apr 1999.
    [53]K. J. Green and J. C. Jones, "Desmosomes and hemidesmosomes:structure and function of molecular components," FASEB J, vol.10, pp.871-81, Jun 1996.
    [54]A. Bertotti, P. M. Comoglio, and L. Trusolino, "Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis," Cancer Res, vol.65, pp.10674-9, Dec 1 2005.
    [55]K. Wilhelmsen, S. H. Litjens, and A. Sonnenberg, "Multiple functions of the integrin alpha6beta4 in epidermal homeostasis and tumorigenesis," Mol Cell Biol, vol.26, pp. 2877-86, Apr 2006.
    [56]D. D. Schlaepfer and S. K. Mitra, "Multiple connections link FAK to cell motility and invasion," Curr Opin Genet Dev, vol.14, pp.92-101, Feb 2004.
    [57]S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, "Focal adhesion kinase:in command and control of cell motility," Nat Rev Mol Cell Biol, vol.6, pp.56-68, Jan 2005.
    [58]Y. H. Bian, S. H. Huang, L. Yang, X. L. Ma, J. W. Xie, and H. W. Zhang, "Sonic hedgehog-Glil pathway in colorectal adenocarcinomas," World J Gastroenterol, vol.13, pp.1659-65, Mar 21 2007.
    [59]D. M. Berman, S. S. Karhadkar, A. Maitra, R. Montes De Oca, M. R. Gerstenblith, K. Briggs, A. R. Parker, Y. Shimada, J. R. Eshleman, D. N. Watkins, and P. A. Beachy, "Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours," Nature, vol.425, pp.846-51, Oct 23 2003.
    [60]R. Cowan, P. Hoban, A. Kelsey, J. M. Birch, R. Gattamaneni, and D. G. Evans, "The gene for the naevoid basal cell carcinoma syndrome acts as a tumour-suppressor gene in medulloblastoma," Br J Cancer, vol.76, pp.141-5,1997.
    [61]R. L. Johnson, A. L. Rothman, J. Xie, L. V. Goodrich, J. W. Bare, J. M. Bonifas, A. G. Quinn, R. M. Myers, D. R. Cox, E. H. Epstein, Jr., and M. P. Scott, "Human homolog of patched, a candidate gene for the basal cell nevus syndrome," Science, vol.272, pp. 1668-71, Jun 14 1996.
    [62]S. S. Karhadkar, G. S. Bova, N. Abdallah, S. Dhara, D. Gardner, A. Maitra, J. T. Isaacs, D. M. Berman, and P. A. Beachy, "Hedgehog signalling in prostate regeneration, neoplasia and metastasis," Nature, vol.431, pp.707-12, Oct 7 2004.
    [63]S. P. Thayer, M. P. di Magliano, P. W. Heiser, C. M. Nielsen, D. J. Roberts, G. Y. Lauwers, Y. P. Qi, S. Gysin, C. Fernandez-del Castillo, V. Yajnik, B. Antoniu, M. McMahon, A. L. Warshaw, and M. Hebrok, "Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis," Nature, vol.425, pp.851-6, Oct 23 2003.
    [64]D. N. Watkins, D. M. Berman, S. G. Burkholder, B. Wang, P. A. Beachy, and S. B. Baylin, "Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer," Nature, vol.422, pp.313-7, Mar 20 2003.
    [65]X. Chen, A. Horiuchi, N. Kikuchi, R. Osada, J. Yoshida, T. Shiozawa, and I. Konishi, "Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation:it's inhibition leads to growth suppression and apoptosis," Cancer Sci, vol. 98, pp.68-76, Jan 2007.
    [66]R. Bhattacharya, J. Kwon, B. Ali, E. Wang, S. Patra, V. Shridhar, and P. Mukherjee, "Role of hedgehog signaling in ovarian cancer," Clin Cancer Res, vol.14, pp.7659-66, Dec 1 2008.
    [67]X. Liao, M. K. Siu, C. W. Au, E. S. Wong, H. Y. Chan, P. P. Ip, H. Y. Ngan, and A. N. Cheung, "Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation," Carcinogenesis, vol.30, pp.131-40, Jan 2009.
    [68]L. Yang, J. He, S. Huang, X. Zhang, Y. Bian, N. He, H. Zhang, and J. Xie, "Activation of hedgehog signaling is not a frequent event in ovarian cancers," Mol Cancer, vol.8, p.112, 2009.
    [69]S. Schmid, M. Bieber, F. Zhang, M. Zhang, B. He, D. Jablons, and N. N. Teng, "Wnt and hedgehog gene pathway expression in serous ovarian cancer," Int J Gynecol Cancer, vol. 21, pp.975-80, Aug 2011.
    [70]陈琦,谭布珍,高国兰,丰颖,”同源框基因HOXA11及雌激素受体在人良、恶性子宫内膜增殖组织中的表达及意义,”实用妇产科杂志vol.27, pp.530-532,2011.
    [71]X. Pan, T. Zhou, Y. H. Tai, C. Wang, J. Zhao, Y. Cao, Y. Chen, P. J. Zhang, M. Yu, C. Zhen, R. Mu, Z. F. Bai, H. Y. Li, A. L. Li, B. Liang, Z. Jian, W. N. Zhang, J. H. Man, Y. F. Gao, W. L. Gong, L. X. Wei, and X. M. Zhang, "Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer," Nat Med, vol.17, pp.708-14, Jun 2011.
    [72]C. Nusslein-Volhard and E. Wieschaus, "Mutations affecting segment number and polarity in Drosophila," Nature, vol.287, pp.795-801, Oct 30 1980.
    [73]K. Yoshikawa, M. Shimada, H. Miyamoto, J. Higashijima, T. Miyatani, M. Nishioka, N. Kurita, T. Iwata, and H. Uehara, "Sonic hedgehog relates to colorectal carcinogenesis," J Gastroenterol, vol.44, pp.1113-7,2009.
    [74]Y. A. Yoo, M. H. Kang, H. J. Lee, B. H. Kim, J. K. Park, H. K. Kim, J. S. Kim, and S. C. Oh, "Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer," Cancer Res, vol.71, pp.7061-70, Nov 15 2011.
    [75]S. A. Ali, "The hedgehog pathway in breast cancer," Chin J Cancer Res, vol.24, pp. 261-2, Dec 2012.
    [76]E. Efstathiou, M. Karlou, S. Wen, A. Hoang, C. A. Pettaway, L. L. Pisters, S. Maity, P. Troncoso, and C. J. Logothetis, "Integrated Hedgehog signaling is induced following castration in human and murine prostate cancers," Prostate, vol.73, pp.153-61, Jan 2013.
    [77]J. Szkandera, T. Kiesslich, J. Haybaeck, A. Gerger, and M. Pichler, "Hedgehog signaling pathway in ovarian cancer," Int J Mol Sci, vol.14, pp.1179-96,2013.
    [78]B. Stecca and I. A. A. Ruiz, "Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals," J Mol Cell Biol, vol.2, pp.84-95, Apr 2010.
    [79]D. Stamataki, F. Ulloa, S. V. Tsoni, A. Mynett, and J. Briscoe, "A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube," Genes Dev, vol.19, pp. 626-41, Mar 1 2005.
    [80]V. Nguyen, A. L. Chokas, B. Stecca, and A. Ruiz i Altaba, "Cooperative requirement of the Gli proteins in neurogenesis," Development, vol.132, pp.3267-79, Jul 2005.
    [81]O. Nolan-Stevaux, J. Lau, M. L. Truitt, G. C. Chu, M. Hebrok, M. E. Fernandez-Zapico, and D. Hanahan, "GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation," Genes Dev, vol.23, pp.24-36, Jan 12009.
    [82]C. W. Mechlin, M. J. Tanner, M. Chen, R. Buttyan, R. M. Levin, and B. M. Mian, "Gli2 expression and human bladder transitional carcinoma cell invasiveness," J Urol, vol.184, pp.344-51, Jul 2010.
    [83]J. M. Bailey, P. K. Singh, and M. A. Hollingsworth, "Cancer metastasis facilitated by developmental pathways:Sonic hedgehog, Notch, and bone morphogenic proteins," J Cell Biochem, vol.102, pp.829-39, Nov 1 2007.
    [84]M. Souzaki, M. Kubo, M. Kai, C. Kameda, H. Tanaka, T. Taguchi, M. Tanaka, H. Onishi, and M. Katano, "Hedgehog signaling pathway mediates the progression of non-invasive breast cancer to invasive breast cancer," Cancer Sci, vol.102, pp.373-81, Feb 2011.
    [85]M. Karlou, J. F. Lu, G. Wu, S. Maity, V. Tzelepi, N. M. Navone, A. Hoang, C. J. Logothetis, and E. Efstathiou, "Hedgehog signaling inhibition by the small molecule smoothened inhibitor GDC-0449 in the bone forming prostate cancer xenograft MDA PCa 118b," Prostate, vol.72, pp.1638-47, Nov 2012.
    [86]S. J. Lee, I. G. Do, J. Lee, K. M. Kim, J. Jang, I. Sohn, and W. K. Kang, "Gastric cancer (GC) patients with hedgehog pathway activation:PTCH1 and GLI2 as independent prognostic factors," Target Oncol, Feb 1 2013.
    [87]Y. A. Yoo, M. H. Kang, J. S. Kim, and S. C. Oh, "Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway," Carcinogenesis, vol.29, pp.480-90, Mar 2008.
    [88]M. J. Bitgood, L. Shen, and A. P. McMahon, "Sertoli cell signaling by Desert hedgehog regulates the male germline," Curr Biol, vol.6, pp.298-304, Mar 1 1996.
    [89]Y. Zhang and D. Kalderon, "Hedgehog acts as a somatic stem cell factor in the Drosophila ovary," Nature, vol.410, pp.599-604, Mar 29 2001.
    [90]A. Bukovsky, S. K. Gupta, I. Virant-Klun, N. B. Upadhyaya, P. Copas, S. E. Van Meter, M. Svetlikova, M. E. Ayala, and R. Dominguez, "Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries," Methods Mol Biol, vol.450, pp.233-65,2008.
    [91]C. C. Liang, A. Y. Park, and J. L. Guan, "In vitro scratch assay:a convenient and inexpensive method for analysis of cell migration in vitro," Nat Protoc, vol.2, pp.329-33, 2007.
    [92]M. R. Hoffmeyer, K. M. Wall, and S. F. Dharmawardhane, "In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line," Cancer Cell Int, vol.5, p.11, Apr 27 2005.
    [93]R. Derynck, R. J. Akhurst, and A. Balmain, "TGF-beta signaling in tumor suppression and cancer progression," Nat Genet, vol.29, pp.117-29, Oct 2001.
    [94]M. Towers and C. Tickle, "Growing models of vertebrate limb development," Development, vol.136, pp.179-90, Jan 2009.
    [95]E. Dessaud, A. P. McMahon, and J. Briscoe, "Pattern formation in the vertebrate neural tube:a sonic hedgehog morphogen-regulated transcriptional network," Development, vol. 135, pp.2489-503, Aug 2008.
    [96]Y. Kim, J. W. Yoon, X. Xiao, N. M. Dean, B. P. Monia, and E. G. Marcusson, "Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells," Cancer Res, vol.67, pp.3583-93, Apr 15 2007.
    [97]A. Omenetti and A. M. Diehl, "The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer," Am J Physiol Gastrointest Liver Physiol, vol.294, pp. G595-8, Mar 2008.
    [98]D. J. Robbins and M. Hebrok, "Hedgehogs:la dolce vita. Workshop on Hedgehog-Gli Signaling in Cancer and Stem Cells," EMBO Rep, vol.8, pp.451-5, May 2007.
    [99]M. Nilsson, A. B. Unden, D. Krause, U. Malmqwist, K. Raza, P. G. Zaphiropoulos, and R. Toftgard, "Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1," Proc Natl Acad Sci USA, vol.97, pp.3438-43, Mar 28 2000.
    [100]E. Beauchamp, G. Bulut, O. Abaan, K. Chen, A. Merchant, W. Matsui, Y. Endo, J. S. Rubin, J. Toretsky, and A. Uren, "GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein," J Biol Chem, vol.284, pp.9074-82, Apr 3 2009.
    [101]B. Stecca and A. RuiziAltaba, "A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers," EMBO J, vol.28, pp.663-76, Mar 18 2009.
    [102]M. C. Fishman and J. A. Porter, "Pharmaceuticals:a new grammar for drug discovery," Nature, vol.437, pp.491-3, Sep 22 2005.
    [103]J. E. Visvader and G. J. Lindeman, "Cancer stem cells in solid tumours:accumulating evidence and unresolved questions," Nat Rev Cancer, vol.8, pp.755-68, Oct 2008.
    [104]L. Yang, G. Xie, Q. Fan, and J. Xie, "Activation of the hedgehog-signaling pathway in human cancer and the clinical implications," Oncogene, vol.29, pp.469-81, Jan 28 2010.
    [105]M. J. Lee, B. A. Hatton, E. H. Villavicencio, P. C. Khanna, S. D. Friedman, S. Ditzler, B. Pullar, K. Robison, K. F. White, C. Tunkey, M. LeBlanc, J. Randolph-Habecker, S. E. Knoblaugh, S. Hansen, A. Richards, B. J. Wainwright, K. McGovern, and J. M. Olson, "Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastomamodel," Proc Natl Acad Sci U S A, vol.109, pp.7859-64, May 15 2012.
    [106]C. K. McCann, W. B. Growdon, K. Kulkarni-Datar, M. D. Curley, A. M. Friel, J. L. Proctor, H. Sheikh, I. Deyneko, J. A. Ferguson, V. Vathipadiekal, M. J. Birrer, D. R. Borger, G. Mohapatra, L. R. Zukerberg, R. Foster, J. R. Macdougall, and B. R. Rueda, "Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model," PLoS One, vol.6, p. e28077,2011.
    [107]M. R. Tremblay, A. Lescarbeau, M. J. Grogan, E. Tan, G. Lin, B. C. Austad, L. C. Yu, M. L. Behnke, S. J. Nair, M. Hagel, K. White, J. Conley, J. D. Manna, T. M. Alvarez-Diez, J. Hoyt, C. N. Woodward, J. R. Sydor, M. Pink, J. MacDougall, M. J. Campbell, J. Cushing, J. Ferguson, M. S. Curtis, K. McGovern, M. A. Read, V. J. Palombella, J. Adams, and A. C. Castro, "Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926)," J Med Chem, vol.52, pp.4400-18, Jul 23 2009.
    [108]S. B. Kaye, L. Fehrenbacher, R. Holloway, A. Amit, B. Karlan, B. Slomovitz, P. Sabbatini, L. Fu, R. L. Yauch, I. Chang, and J. C. Reddy, "A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission," Clin Cancer Res, vol.18, pp.6509-18, Dec 1 2012.
    [109]T. Tang, J. Y. Tang, D. Li, M. Reich, C. A. Callahan, L. Fu, R. L. Yauch, F. Wang, K. Kotkow, K. S. Chang, E. Shpall, A. Wu, L. L. Rubin, J. C. Marsters, Jr., E. H. Epstein, Jr., I. Caro, and F. J. de Sauvage, "Targeting superficial or nodular Basal cell carcinoma with topically formulated small molecule inhibitor of smoothened," Clin Cancer Res, vol.17, pp.3378-87, May 15 2011.
    [110]B. Z. Stanton, L. F. Peng, N. Maloof, K. Nakai, X. Wang, J. L. Duffner, K. M. Taveras, J. M. Hyman, S. W. Lee, A. N. Koehler, J. K. Chen, J. L. Fox, A. Mandinova, and S. L. Schreiber, "A small molecule that binds Hedgehog and blocks its signaling in human cells," Nat Chem Biol, vol.5, pp.154-6, Mar 2009.
    [111]P. K. Kandala and S. K. Srivastava, "Diindolylmethane-mediated Glil protein suppression induces anoikis in ovarian cancer cells in vitro and blocks tumor formation ability in vivo," JBiol Chem, vol.287, pp.28745-54, Aug 17 2012.
    [112]R. J. Gorlin, "Nevoid basal cell carcinoma syndrome," Dermatol Clin, vol.13, pp.113-25, Jan 1995.
    [113]S. Mizuarai, A. Kawagishi, and H. Kotani, "Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines," Mol Cancer, vol.8, p. 44,2009.
    [114]K. P. Olive, M. A. Jacobetz, C. J. Davidson, A. Gopinathan, D. McIntyre, D. Honess, B. Madhu, M. A. Goldgraben, M. E. Caldwell, D. Allard, K. K. Frese, G. Denicola, C. Feig, C. Combs, S. P. Winter, H. Ireland-Zecchini, S. Reichelt, W. J. Howat, A. Chang, M. Dhara, L. Wang, F. Ruckert, R. Grutzmann, C. Pilarsky, K. Izeradjene, S. R. Hingorani, P. Huang, S. E. Davies, W. Plunkett, M. Egorin, R. H. Hruban, N. Whitebread, K. McGovern, J. Adams, C. Iacobuzio-Donahue, J. Griffiths, and D. A. Tuveson, "Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer," Science, vol.324, pp.1457-61, Jun 12 2009.
    [115]A. ten Haaf, N. Bektas, S. von Serenyi, I. Losen, E. C. Arweiler, A. Hartmann, R. Knuchel, and E. Dahl, "Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival," BMC Cancer, vol.9, p.298,2009.
    [116]J. Zhang, R. J. Lipinski, J. J. Gipp, A. K. Shaw, and W. Bushman, "Hedgehog pathway responsiveness correlates with the presence of primary cilia on prostate stromal cells," BMC Dev Biol, vol.9, p.50,2009.
    [117]M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray," Science, vol.270, pp. 467-70, Oct 20 1995.
    [118]T. Shi, T. Mazumdar, J. Devecchio, Z. H. Duan, A. Agyeman, M. Aziz, and J. A. Houghton, "cDNA microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells," PLoS One, vol.5,2010.
    [119]D. K. Swertfeger and D. Y. Hui, "Apolipoprotein E:a cholesterol transport protein with lipid transport-independent cell signaling properties," Front Biosci, vol.6, pp. D526-35, Mar 1 2001.
    [120]H. L. Chou, C. T. Yao, S. L. Su, C. Y. Lee, K. Y. Hu, H. J. Terng, Y. W. Shih, Y. T. Chang, Y. F. Lu, C. W. Chang, M. L. Wahlqvist, T. Wetter, and C. M. Chu, "Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees," BMC Bioinformatics, vol.14, p.100, Mar 19 2013.
    [121]J. Mares, M. Szakacsova, V. Soukup, J. Duskova, A. Horinek, and M. Babjuk, "Prediction of recurrence in low and intermediate risk non-muscle invasive bladder cancer by Real-Time quantitative PCR analysis:cDNA microarray results," Neoplasma, vol.60, pp. 295-301,2013.
    [122]H. Tsuda, M. J. Birrer, Y. M. Ito, Y. Ohashi, M. Lin, C. Lee, W. H. Wong, P. H. Rao, C. C. Lau, R. S. Berkowitz, K. K. Wong, and S. C. Mok, "Identification of DNA copy number changes in microdissected serous ovarian cancer tissue using a cDNA microarray platform," Cancer Genet Cytogenet, vol.155, pp.97-107, Dec 2004.
    [123]S. N. Zhang, H. H. Sun, Y. M. Jin, L. Z. Piao, D. H. Jin, Z. H. Lin, and X. H. Shen, "Identification of differentially expressed genes in gastric cancer by high density cDNA microarray," Cancer Genet, vol.205, pp.147-55, Apr 2012.
    [124]Y. Li and F. H. Sarkar, "Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein," Cancer Lett, vol.186, pp.157-64, Dec 5 2002.
    [125]T. Yoshida, T. Miyoshi, J. Seike, H. Yamai, H. Takechi, Y. Yuasa, and A. Tangoku, "Gene expression changes in a chemoresistant model with human esophageal cancer xenografts using cDNA microarray," Anticancer Res, vol.29, pp.1163-8, Apr 2009.
    [126]X. J. Yang, B. Laven, M. Tretiakova, R. D. Blute, Jr., B. A. Woda, G. D. Steinberg, and Z. Jiang, "Detection of alpha-methylacyl-coenzyme A racemase in postradiation prostatic adenocarcinoma," Urology, vol.62, pp.282-6, Aug 2003.
    [127]S. Aigner, Z. M. Sthoeger, M. Fogel, E. Weber, J. Zarn, M. Ruppert, Y. Zeller, D. Vestweber, R. Stahel, M. Sammar, and P. Altevogt, "CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells," Blood, vol.89, pp.3385-95, May 1 1997.
    [128]J. Friederichs, Y. Zeller, A. Hafezi-Moghadam, H. J. Grone, K. Ley, and P. Altevogt, "The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells," Cancer Res, vol.60, pp.6714-22, Dec 1 2000.
    [129]P. Surowiak, V. Materna, B. Gyorffy, R. Matkowski, A. Wojnar, A. Maciejczyk, P. Paluchowski, P. Dziegiel, M. Pudelko, J. Kornafel, M. Dietel, G. Kristiansen, M. Zabel, and H. Lage, "Multivariate analysis of oestrogen receptor alpha, pS2, metallothionein and CD24 expression in invasive breast cancers," Br J Cancer, vol.95, pp.339-46, Aug 7 2006.
    [130]G. Kristiansen, C. Pilarsky, J. Pervan, B. Sturzebecher, C. Stephan, K. Jung, S. Loening, A. Rosenthal, and M. Dietel, "CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer," Prostate, vol.58, pp. 183-92, Feb 1 2004.
    [131]P. Surowiak, V. Materna, I. Kaplenko, M. Spaczynski, M. Dietel, G. Kristiansen, H. Lage, and M. Zabel, "Unfavorable prognostic value of CD24 expression in sections from primary and relapsed ovarian cancer tissue," Int J Gynecol Cancer, vol.16, pp.515-21, Mar-Apr 2006.
    [132]G. Kristiansen, E. Machado, N. Bretz, C. Rupp, K. J. Winzer, A. K. Konig, G. Moldenhauer, F. Marme, J. Costa, and P. Altevogt, "Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis," Lab Invest, vol.90, pp.1102-16, Jul 2010.
    [133]J. B. Overdevest, S. Thomas, G. Kristiansen, D. E. Hansel, S. C. Smith, and D. Theodorescu, "CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization," Cancer Res, vol.71, pp.3802-11, Jun 1 2011.
    [134]陈琦,高国兰,徐榕,曾春燕,“细胞粘附分子CD24和增殖指标ki67与卵巢上皮性肿瘤临床病理特征关系的研究,”中国妇幼保健杂志,vol.27, pp.6010-6012,2012.
    [135]J. Huang, K. W. Kerstann, M. Ahmadzadeh, Y. F. Li, M. El-Gamil, S. A. Rosenberg, and P. F. Robbins, "Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy," J Immunol, vol.176, pp.7726-35, Jun 15 2006.
    [136]J. Nikkola, P. Vihinen, M. S. Vuoristo, P. Kellokumpu-Lehtinen, V. M. Kahari, and S. Pyrhonen, "High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma," Clin Cancer Res, vol.11, pp.5158-66, Jul 15 2005.
    [137]L. A. Liotta, P. S. Steeg, and W. G. Stetler-Stevenson, "Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation," Cell, vol.64, pp.327-36, Jan 25 1991.
    [138]A. Acar, A. Onan, U. Coskun, A. Uner, U. Bagriacik, F. Atalay, D. K. Unsal, and H. Guner, "Clinical significance of serum MMP-2 and MMP-7 in patients with ovarian cancer," Med Oncol, vol.25, pp.279-83,2008.
    [139]K. Shigemasa, H. Tanimoto, K. Sakata, N. Nagai, T. H. Parmley, K. Ohama, and T. J. O'Brien, "Induction of matrix metalloprotease-7 is common in mucinous ovarian tumors including early stage disease," Med Oncol, vol.17, pp.52-8, Feb 2000.
    [140]T. Miyashita, M. Harigai, M. Hanada, and J. C. Reed, "Identification of a p53-dependent negative response element in the bcl-2 gene," Cancer Res, vol.54, pp.3131-5, Jun 15 1994.
    [141]温泉,赵玉沛,陈革,“S100A2在胰腺癌继发耐放射细胞株中的表达及其意义,”中华医学杂志,vol.86, p.2817-2820,2006.
    [142]R. L. Bigelow, N. S. Chari, A. B. Unden, K. B. Spurgers, S. Lee, D. R. Roop, R. Toftgard, and T. J. McDonnell, "Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1," J Biol Chem, vol.279, pp.1197-205, Jan 9 2004.
    [143]R. O. Hynes, "Integrins:bidirectional, allosteric signaling machines," Cell, vol.110, pp. 673-87, Sep 20 2002.
    [144]S. Roy, P. J. Ruest, and S. K. Hanks, "FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation," J Cell Biochem, vol.84, pp.377-88,2002.
    [145]S. K. Akiyama, "Integrins in cell adhesion and signaling," Hum Cell, vol.9, pp.181-6, Sep 1996.
    [146]L. A. Cary, D. C. Han, and J. L. Guan, "Integrin-mediated signal transduction pathways," Histol Histopathol, vol.14, pp.1001-9, Jul 1999.
    [147]F. G. Giancotti and E. Ruoslahti, "Integrin signaling," Science, vol.285, pp.1028-32, Aug 13 1999.
    [148]R. Haubner and H. J. Wester, "Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies," Curr Pharm Des, vol.10, pp.1439-55, 2004.
    [149]F. Carreiras, M. Lehmann, F. Sichel, J. Marvaldi, P. Gauduchon, and J. Y. Le Talaer, "Implication of the alpha v beta 3 integrin in the adhesion of the ovarian-adenocarcinoma cell line IGROV1," Int J Cancer, vol.63, pp.530-6, Nov 15 1995.
    [150]K. Maung, D. J. Easty, S. P. Hill, and D. C. Bennett, "Requirement for focal adhesion kinase in tumor cell adhesion," Oncogene, vol.18, pp.6824-8, Nov 18 1999.
    [151]V. Thamilselvan and M. D. Basson, "The role of the cytoskeleton in differentially regulating pressure-mediated effects on malignant colonocyte focal adhesion signaling and cell adhesion," Carcinogenesis, vol.26, pp.1687-97, Oct 2005.
    [152]Y. Sonoda, Y. Matsumoto, M. Funakoshi, D. Yamamoto, S. K. Hanks, and T. Kasahara, "Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60," J Biol Chem, vol.275, pp.16309-15, May 26 2000.
    [153]M. S. Duxbury, H. Ito, M. J. Zinner, S. W. Ashley, and E. E. Whang, "Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells," Surgery, vol.135, pp.555-62, May 2004.
    [154]顾岩,郝清杰,陈积圣等,”反义局部粘着斑激酶抑制肝癌侵袭生长的研究,”中华实验外科杂志,vol.20, pp.616-618,2003.
    [155]J. Lacoste, A. G. Aprikian, and S. Chevalier, "Focal adhesion kinase is required for bombesin-induced prostate cancer cell motility," Mol Cell Endocrinol, vol.235, pp. 51-61, May 12 2005.
    [156]秦川,”医学实验动物学,”北京:人民卫生出版社, 2008.
    [157]J. K. Kiecolt-Glaser, T. F. Robles, K. L. Heffner, T. J. Loving, and R. Glaser, "Psycho-oncology and cancer:psychoneuroimmunology and cancer," Ann Oncol, vol.13 Suppl 4,pp.165-9,2002.
    [158]M. H. Antoni, "Psychoneuroendocrinology and psychoneuroimmunology of cancer: Plausible mechanisms worth pursuing?," Brain Behav Immun, vol.17 Suppl 1, pp. S84-91,Feb 2003.
    [159]A. Stangelberger, A. V. Schally, J. L. Varga, M. Zarandi, K. Szepeshazi, P. Armatis, and G. Halmos, "Inhibitory effect of antagonists of bombesin and growth hormone-releasing hormone on orthotopic and intraosseous growth and invasiveness of PC-3 human prostate cancer in nude mice," Clin Cancer Res, vol.11, pp.49-57, Jan 1 2005.
    [160]陈琦,曾春燕,高国兰,徐榕,”人卵巢癌荷瘤裸鼠两种皮下移植瘤模型的构建及生长特性的比较,”中国妇幼保健杂志,vol.27, pp.5381-5385,2012.
    [161]高国兰,邹春芳等。,”人卵巢上皮癌裸鼠皮下移植瘤模型的建立及生物学性状的鉴定,”实用癌症杂志vol.19, p.454-457,2004.
    [162]J. E. Darnell, Jr.,I. M. Kerr, and G. R. Stark, "Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins," Science, vol. 264, pp.1415-21, Jun 3 1994.
    [163]J. N. Ihle, B. A. Witthuhn, F. W. Quelle, K. Yamamoto, W. E. Thierfelder, B. Kreider, and O. Silvennoinen, "Signaling by the cytokine receptor superfamily:JAKs and STATs," Trends Biochem Sci, vol.19, pp.222-7, May 1994.
    [164]Z. Wei, X. Jiang, H. Qiao, B. Zhai, L. Zhang, Q. Zhang, Y. Wu, H. Jiang, and X. Sun, "STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells," Cell Signal, vol.25, pp.931-8, Apr 2013.
    [165]Q. Jiang, L. Dai, L. Cheng, X. Chen, Y. Li, S. Zhang, X. Su, X. Zhao, Y. Wei, and H. Deng, "Efficient inhibition of intraperitoneal ovarian cancer growth in nude mice by liposomal delivery of short hairpin RNA against STAT3," J Obstet Gynaecol Res, vol.39, pp.701-9, Mar 2013.
    [166]D. A. Levine, F. Bogomolniy, C. J. Yee, A. Lash, R. R. Barakat, P.I. Borgen, and J. Boyd, "Frequent mutation of the PIK.3CA gene in ovarian and breast cancers," Clin Cancer Res, vol.11, pp.2875-8, Apr 15 2005.
    [167]R. Wu, Y. Zhai, E. R. Fearon, and K. R. Cho, "Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas," Cancer Res, vol.61, pp. 8247-55, Nov 15 2001.
    [168]R. Steinmetz, H. A. Wagoner, P. Zeng, J. R. Hammond, T. S. Hannon, J. L. Meyers, and O. H. Pescovitz, "Mechanisms regulating the constitutive activation of the extracellular signal-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference for ERK 1/2 on cancer cell proliferation," Mol Endocrinol, vol.18, pp.2570-82, Oct 2004.
    [169]J. Yin, K. Lu, J. Lin, L. Wu, M. A. Hildebrandt, D. W. Chang, L. Meyer, X. Wu, and D. Liang, "Genetic variants in TGF-beta pathway are associated with ovarian cancer risk," PLoS One, vol.6, p. e25559,2011.
    [170]K. J. Jeong, K. H. Cho, N. Panupinthu, H. Kim, J. Kang, C. G. Park, G. B. Mills, and H. Y. Lee, "EGFR mediates LPA-induced proteolytic enzyme expression and ovarian cancer invasion:inhibition by resveratrol," Mol Oncol, vol.7, pp.121-9, Feb 2013.
    [171]A. Ray, E. Meng, E. Reed, L. A. Shevde, and R. P. Rocconi, "Hedgehog signaling pathway regulates the growth of ovarian cancer spheroid forming cells," Int J Oncol, vol. 39, pp.797-804, Oct 2011.
    [172]M. Evangelista, H. Tian, and F. J. de Sauvage, "The hedgehog signaling pathway in cancer," Clin Cancer Res, vol.12, pp.5924-8, Oct 15 2006.
    [173]M. Pasca di Magliano and M. Hebrok, "Hedgehog signalling in cancer formation and maintenance," Nat Rev Cancer, vol.3, pp.903-11, Dec 2003.
    [174]C. Mas and A. Ruiz i Altaba, "Small molecule modulation of HH-GLI signaling:current leads, trials and tribulations," Biochem Pharmacol, vol.80, pp.712-23, Sep 1 2010.
    [1]Dinulescu DM, Ince TA, Quade BJ, et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005; 11:63-70. PMID:15619626
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin 2009; 59:225-49. PM1D:19474385
    [3]Rosen DG, Yang G, Liu G, et al. Ovarian cancer:pathology, biology, and disease models. Front Biosci 2009; 14:2089-102. PMID:19273186
    [4]Ingham PW, McMahon AP. Hedgehog signaling in animal development:paradigms and principles. Genes Dev 2001; 15:3059-87. PMID:11731473
    [5]Kawabata N, Ijiri K, Ishidou Y, et al. Pharmacological inhibition of the Hedgehog pathway prevents human rhabdomyosarcoma cell growth. Int J Oncol 2011; 39:899-906. PMID: 21674124
    [6]Grammel D, Warmuth-Metz M, von Bueren AO, et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol 2012. PMID:22349907
    [7]Wang X, Venugopal C, Manoranjan B, et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene 2012; 31:187-99. PMID:21685941
    [8]Nagao H, Ijiri K, Hirotsu M, et al. Role of GLI2 in the growth of human osteosarcoma. J
    [9]Das S, Samant RS, Shevde LA. The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2012; 2012:298623. PMID:22295244
    [10]Mazumdar T, Devecchio J, Agyeman A, et al. The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer. Oncotarget 2011. PMID:21860067
    [11]Chang HH, Chen BY, Wu CY, et al. Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 2011; 18:6. PMID:21241512
    [12]Eberl M, Klingler S, Mangelberger D, et al. Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 2012. PMID:22294553
    [13]Caro I, Low JA. The role of the hedgehog signaling pathway in the development of basal cell carcinoma and opportunities for treatment. Clin Cancer Res 2010; 16:3335-9. PMID: 20439455
    [14]Katoh Y, Katoh M. Hedgehog target genes:mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2009; 9:873-86. PMID:19860666
    [15]Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors:mediators of oncogenic Hedgehog signalling. Eur J Cancer 2006; 42:437-45. PMID:16406505
    [16]Thiyagarajan S, Bhatia N, Reagan-Shaw S, et al. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res 2007; 67:10642-6. PMID:18006803
    [17]Rohatgi R, Milenkovic L, Scott MP. Patchedl regulates hedgehog signaling at the primary cilium. Science 2007; 317:372-6. PMID:17641202
    [18]Kasper M, Jaks V, Fiaschi M, Toftgard R. Hedgehog signalling in breast cancer. Carcinogenesis 2009; 30:903-11. PMID:19237605
    [19]Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426:83-7. PMID:14603322
    [20]Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 2005; 102:11325-30. PMID:16061793
    [21]Varjosalo M, Taipale J. Hedgehog signaling. J Cell Sci 2007; 120:3-6. PMID:17182898
    [22]Kogerman P, Grimm T, Kogerman L, et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1999; 1:312-9. PMID:10559945
    [23]Svard J, Heby-Henricson K, Persson-Lek M, et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 2006; 10:187-97. PMID:16459298
    [24]Bai CB, Stephen D, Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 2004; 6:103-15. PMID: 14723851
    [25]Stecca B, Ruiz IAA. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2010; 2:84-95. PMID: 20083481
    [26]Stamataki D, Ulloa F, Tsoni SV, et al. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev 2005; 19:626-41. PMID:15741323
    [27]Nguyen V, Chokas AL, Stecca B, Ruiz i Altaba A. Cooperative requirement of the Gli proteins in neurogenesis. Development 2005; 132:3267-79. PMID:15983404
    [28]Tyurina OV, Guner B, Popova E, et al. Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol 2005; 277:537-56. PMID:15617692
    [29]Vokes SA, Ji H, McCuine S, et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 2007; 134:1977-89. PMID:17442700
    [30]Vokes SA, Ji H, Wong WH, McMahon AP. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev 2008; 22:2651-63. PMID:18832070
    [31]Duench K, Franz-Odendaal T. BMP and Hedgehog signaling during the development of scleral ossicles. Dev Biol 2012. PMID:22370003
    [32]Laufer E, Kesper D, Vortkamp A, King P. Sonic hedgehog signaling during adrenal development. Mol Cell Endocrinol 2012; 351:19-27. PMID:22020162
    [33]Merchant JL. Hedgehog signalling in gut development, physiology and cancer. J Physiol 2012; 590:421-32. PMID:22144577
    [34]Migone FF, Ren Y, Cowan RG, et al. Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract. Genesis 2012; 50:28-40. PMID: 21809434
    [35]Nat R, Salti A, Suciu L, et al. Pharmacological Modulation of the Hedgehog Pathway Differentially Affects Dorsal/Ventral Patterning in Mouse and Human Embryonic Stem Cell Models of Telencephalic Development. Stem Cells Dev 2012. PMID:22204396
    [36]Ihrie RA, Shah JK, Harwell CC, et al. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 2011; 71:250-62. PMID:21791285
    [37]Tang SN, Fu J, Nall D, et al. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 2011. PMID:21796625
    [38]Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326:572-4. PMID: 19726788
    [39]Reifenberger J, Wolter M, Knobbe CB, et al. Somatic mutations in the PTCH, SMOH, SUFU and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152:43-51. PMID: 15656799
    [40]Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002; 31:306-10. PMID:12068298
    [41]Byrom J, Mudaliar V, Redman CW, et al. Loss of heterozygosity at chromosome 9q22-31 is a frequent and early event in ovarian tumors. Int J Oncol 2004; 24:1271-7. PMID:15067351
    [42]Yamasaki A, Kameda C, Xu R, et al. Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol Immunother 2010; 59:675-86. PMID:19862523
    [43]L.Yauch R. A paracrine requiredment for hedgehog signaling pathway in cancer. nature 2008. PMID:18754008
    [44]Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A 2009; 106:4254-9. PMID:19246386
    [45]Allegra CJ, Aberle DR, Ganschow P, et al. National Institutes of Health State-of-the-Science Conference statement:Diagnosis and Management of Ductal Carcinoma In Situ September 22-24,2009. J Natl Cancer Inst 2010; 102:161-9. PMID:20071686
    [46]Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, sternness and cancer. Trends Cell Biol 2007; 17:438-47. PMID:17845852
    [47]Merchant AA, Matsui W. Targeting Hedgehog--a cancer stem cell pathway. Clin Cancer Res 2010; 16:3130-40. PMID:20530699
    [48]Singh BN, Fu J, Srivastava RK, Shankar S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics:molecular mechanisms. PLoS One 2011; 6:e27306. PMID:22087285
    [49]Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2009; 1:338-51. PMID:20049737
    [50]Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25:2524-33. PMID: 17628016
    [51]Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458:776-9. PMID:19169242
    [52]Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66:6063-71. PMID: 16778178
    [53]Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways:Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem 2007; 102:829-39. PMID:17914743
    [54]Souzaki M, Kubo M, Kai M, et al. Hedgehog signaling pathway mediates the progression of non-invasive breast cancer to invasive breast cancer. Cancer Sci 2011; 102:373-81. PMID: 21091847
    [55]Yoo YA, Kang MH, Kim JS, Oh SC. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 2008; 29:480-90. PMID:18174246
    [56]Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431:707-12. PMID:15361885
    [57]Onishi H, Kai M, Odate S, et al. Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci 2011; 102:1144-50. PMID:21338440
    [58]Gould A, Missailidis S. Targeting the hedgehog pathway:the development of cyclopamine and the development of anti-cancer drugs targeting the hedgehog pathway. Mini Rev Med Chem 2011; 11:200-13. PMID:21222574
    [59]Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 2007; 104:8455-60. PMID:17494766
    [60]Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14:238-49. PMID:18772113
    [61]Chenna V, Hu C, Pramanik D, et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 2012; 11:165-73. PMID:22027695
    [62]LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res 2011; 17:2502-11. PMID:21300762
    [63]Tian F, Schrodl K, Kiefl R, et al. The hedgehog pathway inhibitor GDC-0449 alters intracellular Ca2+ homeostasis and inhibits cell growth in cisplatin-resistant lung cancer cells. Anticancer Res 2012; 32:89-94. PMID:22213292
    [64]Warzecha J, Dinges D, Kaszap B, et al. Effect of the Hedgehog-inhibitor cyclopamine on mice with osteosarcoma pulmonary metastases. Int J Mol Med 2012; 29:423-7. PMID: 22138977
    [65]Peukert S, Miller-Moslin K. Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem 2010; 5:500-12. PMID:20229564
    [66]Cooper MK, Porter JA, Young KE, Beachy PA. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998; 280:1603-7. PMID:9616123
    [67]Kiselyov AS. Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med Chem 2006; 6:445-9. PMID:17017853
    [68]Stanton BZ, Peng LF, Maloof N, et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 2009; 5:154-6. PMID:19151731
    [69]Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 1996; 6:298-304. PMID:8805249
    [70]Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001; 410:599-604. PMID:11279500
    [71]Bukovsky A, Gupta SK, Virant-Klun I, et al. Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries. Methods Mol Biol 2008; 450:233-65. PMID: 18370063
    [72]Burgos-Ojeda D, Rueda BR, Buckanovich RJ. Ovarian cancer stem cell markers:Prognostic and therapeutic implications. Cancer Lett 2012. PMID:22334034
    [73]Cao L, Shao M, Schilder J, et al. Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 2011. PMID: 21963846
    [74]Auersperg N, Wong AS, Choi KC, et al. Ovarian surface epithelium:biology, endocrinology, and pathology. Endocr Rev 2001; 22:255-88. PMID:11294827
    [75]Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas:an exception to the norm. J Cell Physiol 2007; 213:581-8. PMID:17708542
    [76]Wu C, Cipollone J, Maines-Bandiera S, et al. The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 2008; 76:193-205. PMID:17608733
    [77]Symowicz J, Adley BP, Gleason KJ, et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 2007; 67:2030-9. PMID:17332331
    [78]Ray A, Meng E, Reed E, et al. Hedgehog signaling pathway regulates the growth of ovarian cancer spheroid forming cells. Int J Oncol 2011; 39:797-804. PMID:21701772
    [79]Chen X, Horiuchi A, Kikuchi N, et al. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation:it's inhibition leads to growth suppression and apoptosis. Cancer Sci 2007; 98:68-76. PMID:17083567
    [80]Bhattacharya R, Kwon J, Ali B, et al. Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 2008; 14:7659-66. PMID:19047091
    [81]Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30:131-40. PMID:19028702
    [82]Yang L, He J, Huang S, et al. Activation of hedgehog signaling is not a frequent event in ovarian cancers. Mol Cancer 2009; 8:112. PMID:19943941
    [83]Schmid S, Bieber M, Zhang F, et al. Wnt and hedgehog gene pathway expression in serous ovarian cancer. Int J Gynecol Cancer 2011; 21:975-80. PMID:21666490
    [84]McCann CK, Growdon WB, Kulkarni-Datar K, et al. Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model. PLoS One 2011; 6:e28077. PMID:22140510
    [1]Dinulescu DM, Ince TA, Quade BJ, et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005; 11:63-70. PMID:15619626
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin 2009; 59:225-49. PMID:19474385
    [3]Rosen DG, Yang G, Liu G, et al. Ovarian cancer:pathology, biology, and disease models. Front Biosci 2009; 14:2089-102. PMID:19273186
    [4]Ingham PW, McMahon AP. Hedgehog signaling in animal development:paradigms and principles. Genes Dev 2001; 15:3059-87. PMID:11731473
    [5]Kawabata N, Ijiri K, Ishidou Y, et al. Pharmacological inhibition of the Hedgehog pathway prevents human rhabdomyosarcoma cell growth. Int J Oncol 2011; 39:899-906. PMID: 21674124
    [6]Grammel D, Warmuth-Metz M, von Bueren AO, et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol 2012. PMID:22349907
    [7]Wang X, Venugopal C, Manoranjan B, et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene 2012; 31:187-99. PMID:21685941
    [8]Nagao H, Ijiri K, Hirotsu M, et al. Role of GLI2 in the growth of human osteosarcoma. J Pathol 2011; 224:169-79. PMID:21506130
    [9]Das S, Samant RS, Shevde LA. The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2012; 2012:298623. PMID: 22295244
    [10]Mazumdar T, Devecchio J, Agyeman A, et al. The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer. Oncotarget 2011. PMID:21860067
    [11]Chang HH, Chen BY, Wu CY, et al. Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 2011; 18:6. PMID:21241512
    [12]Eberl M, Klingler S, Mangelberger D, et al. Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 2012. PMID:22294553
    [13]Caro I, Low JA. The role of the hedgehog signaling pathway in the development of basal cell carcinoma and opportunities for treatment. Clin Cancer Res 2010; 16:3335-9. PMID:20439455
    [14]Katoh Y, Katoh M. Hedgehog target genes:mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2009; 9:873-86. PMID:19860666
    [15]Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors:mediators of oncogenic Hedgehog signalling. Eur J Cancer 2006; 42:437-45. PMID:16406505
    [16]Thiyagarajan S, Bhatia N, Reagan-Shaw S, et al. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res 2007; 67:10642-6. PMID:18006803
    [17]Rohatgi R, Milenkovic L, Scott MP. Patchedl regulates hedgehog signaling at the primary cilium. Science 2007; 317:372-6. PMID:17641202
    [18]Kasper M, Jaks V, Fiaschi M, Toftgard R. Hedgehog signalling in breast cancer. Carcinogenesis 2009; 30:903-11. PMID:19237605
    [19]Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426:83-7. PMID:14603322
    [20]Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 2005; 102:11325-30. PMID:16061793
    [21]Varjosalo M, Taipale J. Hedgehog signaling. J Cell Sci 2007; 120:3-6. PMID:17182898
    [22]Kogerman P, Grimm T, Kogerman L, et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1999; 1:312-9. PMID:10559945
    [23]Svard J, Heby-Henricson K, Persson-Lek M, et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 2006; 10:187-97. PMID:16459298
    [24]Bai CB, Stephen D, Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 2004; 6:103-15. PMID: 14723851
    [25]Stecca B, Ruiz IAA. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2010; 2:84-95. PMID:20083481
    [26]Stamataki D, Ulloa F, Tsoni SV, et al. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev 2005; 19:626-41. PMID:15741323
    [27]Nguyen V, Chokas AL, Stecca B, Ruiz i Altaba A. Cooperative requirement of the Gli proteins in neurogenesis. Development 2005; 132:3267-79. PMID:15983404
    [28]Tyurina OV, Guner B, Popova E, et al. Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol 2005; 277:537-56. PMID:15617692
    [29]Vokes SA, Ji H, McCuine S, et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 2007; 134:1977-89. PMID:17442700
    [30]Vokes SA, Ji H, Wong WH, McMahon AP. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev 2008; 22:2651-63. PMID:18832070
    [31]Duench K, Franz-Odendaal T. BMP and Hedgehog signaling during the development of scleral ossicles. Dev Biol 2012. PMID:22370003
    [32]Laufer E, Kesper D, Vortkamp A, King P. Sonic hedgehog signaling during adrenal development. Mol Cell Endocrinol 2012; 351:19-27. PMID:22020162
    [33]Merchant JL. Hedgehog signalling in gut development, physiology and cancer. J Physiol 2012; 590:421-32. PMID:22144577
    [34]Migone FF, Ren Y, Cowan RG, et al. Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract. Genesis 2012; 50:28-40. PMID:21809434
    [35]Nat R, Salti A, Suciu L, et al. Pharmacological Modulation of the Hedgehog Pathway Differentially Affects Dorsal/Ventral Patterning in Mouse and Human Embryonic Stem Cell Models of Telencephalic Development. Stem Cells Dev 2012. PMID:22204396
    [36]Ren Y, Cowan RG, Migone FF, Quirk SM. Over-Activation of Hedgehog Signaling Alters Development of the Ovarian Vasculature in Mice. Biol Reprod 2012. PMID:22402963
    [37]Ihrie RA, Shah JK, Harwell CC, et al. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 2011; 71:250-62. PMID:21791285
    [38]Tang SN, Fu J, Nall D, et al. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 2011. PMID: 21796625
    [39]Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326:572-4. PMID:19726788
    [40]Reifenberger J, Wolter M, Knobbe CB, et al. Somatic mutations in the PTCH, SMOH, SUFU and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152:43-51. PMID: 15656799
    [41]Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002; 31:306-10. PMID:12068298
    [42]Byrom J, Mudaliar V, Redman CW, et al. Loss of heterozygosity at chromosome 9q22-31 is a frequent and early event in ovarian tumors. Int J Oncol 2004; 24:1271-7. PMID:15067351
    [43]Yamasaki A, Kameda C, Xu R, et al. Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol Immunother 2010; 59:675-86. PMID:19862523
    [44]L.Yauch R. A paracrine requiredment for hedgehog signaling pathway in cancer. nature 2008. PMID:18754008
    [45]Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A 2009; 106:4254-9. PMID:19246386
    [46]Allegra CJ, Aberle DR, Ganschow P, et al. National Institutes of Health State-of-the-Science Conference statement:Diagnosis and Management of Ductal Carcinoma In Situ September 22-24, 2009. J Natl Cancer Inst 2010; 102:161-9. PMID:20071686
    [47]Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, sternness and cancer. Trends Cell Biol 2007; 17:438-47. PMID:17845852
    [48]Merchant AA, Matsui W. Targeting Hedgehog--a cancer stem cell pathway. Clin Cancer Res 2010; 16:3130-40. PMID:20530699
    [49]Singh BN, Fu J, Srivastava RK, Shankar S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics:molecular mechanisms. PLoS One 2011; 6:e27306. PMID:22087285
    [50]Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2009; 1:338-51. PMID:20049737
    [51]Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25:2524-33. PMID:17628016
    [52]Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458:776-9. PMID:19169242
    [53]Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66:6063-71. PMID:16778178
    [54]Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways:Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem 2007; 102:829-39. PMID:17914743
    [55]Souzaki M, Kubo M, Kai M, et al. Hedgehog signaling pathway mediates the progression of non-invasive breast cancer to invasive breast cancer. Cancer Sci 2011; 102:373-81. PMID: 21091847
    [56]Yoo YA, Kang MH, Kim JS, Oh SC. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 2008; 29:480-90. PMID:18174246
    [57]Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431:707-12. PMID:15361885
    [58]Onishi H, Kai M, Odate S, et al. Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci 2011; 102:1144-50. PMID:21338440
    [59]Gould A, Missailidis S. Targeting the hedgehog pathway:the development of cyclopamine and the development of anti-cancer drugs targeting the hedgehog pathway. Mini Rev Med Chem 2011; 11:200-13. PMID:21222574
    [60]Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 2007; 104:8455-60. PMID:17494766
    [61]Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14:238-49. PMID:18772113
    [62]Chenna V, Hu C, Pramanik D, et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 2012; 11:165-73. PMID:22027695
    [63]LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res 2011; 17:2502-11. PMID:21300762
    [64]Tian F, Schrodl K, Kiefl R, et al. The hedgehog pathway inhibitor GDC-0449 alters intracellular Ca2+ homeostasis and inhibits cell growth in cisplatin-resistant lung cancer cells. Anticancer Res 2012; 32:89-94. PMID:22213292
    [65]Warzecha J, Dinges D, Kaszap B, et al. Effect of the Hedgehog-inhibitor cyclopamine on mice with osteosarcoma pulmonary metastases. Int J Mol Med 2012; 29:423-7. PMID:22138977
    [66]Peukert S, Miller-Moslin K. Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem 2010; 5:500-12. PMID:20229564
    [67]Cooper MK, Porter JA, Young KE, Beachy PA. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998; 280:1603-7. PMID:9616123
    [68]Kiselyov AS. Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med Chem 2006; 6:445-9. PMID:17017853
    [69]Stanton BZ, Peng LF, Maloof N, et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 2009; 5:154-6. PMID:19151731
    [70]Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 1996; 6:298-304. PMID:8805249
    [71]Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001; 410:599-604. PMID:11279500
    [72]Bukovsky A, Gupta SK, Virant-Klun I, et al. Study origin of germ cells and formation of new primary follicles in adult human and rat ovaries. Methods Mol Biol 2008; 450:233-65. PMID: 18370063
    [73]Burgos-Ojeda D, Rueda BR, Buckanovich RJ. Ovarian cancer stem cell markers:Prognostic and therapeutic implications. Cancer Lett 2012. PMID:22334034
    [74]Cao L, Shao M, Schilder J, et al. Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 2011. PMID: 21963846
    [75]Auersperg N, Wong AS, Choi KC, et al. Ovarian surface epithelium:biology, endocrinology, and pathology. Endocr Rev 2001; 22:255-88. PMID:11294827
    [76]Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas:an exception to the norm. J Cell Physiol 2007; 213:581-8. PMID:17708542
    [77]Wu C, Cipollone J, Maines-Bandiera S, et al. The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 2008; 76:193-205. PMID:17608733
    [78]Symowicz J, Adley BP, Gleason KJ, et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 2007; 67:2030-9. PMID:17332331
    [79]Ray A, Meng E, Reed E, et al. Hedgehog signaling pathway regulates the growth of ovarian cancer spheroid forming cells. Int J Oncol 2011; 39:797-804. PMID:21701772
    [80]Chen X, Horiuchi A, Kikuchi N, et al. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation:it's inhibition leads to growth suppression and apoptosis. Cancer Sci 2007; 98:68-76. PMID:17083567
    [81]Bhattacharya R, Kwon J, Ali B, et al. Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 2008; 14:7659-66. PMID:19047091
    [82]Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30:131-40. PMID:19028702
    [83]Yang L, He J, Huang S, et al. Activation of hedgehog signaling is not a frequent event in ovarian cancers. Mol Cancer 2009; 8:112. PMID:19943941
    [84]Schmid S, Bieber M, Zhang F, et al. Wnt and hedgehog gene pathway expression in serous ovarian cancer. Int J Gynecol Cancer 2011; 21:975-80. PMID:21666490
    [85]McCann CK, Growdon WB, Kulkarni-Datar K, et al. Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model. PLoS One 2011; 6:e28077. PMID:22140510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700