胃癌中HHIP、Patched基因的表达及甲基化水平与临床特征的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     胃癌是严重危害人类健康的最常见的恶性肿瘤之一,发病率位居所有恶性肿瘤的第二位,死亡率列所有恶性肿瘤的第三位。目前根治性手术仍然是胃癌的主要治疗方式,也是唯一有希望治愈胃癌的手段。但临床上仍有大多数患者确诊时已是中晚期,手术效果不佳,直接影响预后。因此深入研究胃癌发生、发展的分子机制,可为胃癌早期诊断提供依据,同时也为临床治疗提供有效的靶点治疗,具有重要的临床意义。
     近年来有研究证明Hedgehog(HH)信号传导通路在胃的胚胎发育过程中起非常重要的调控作用,该通路的过度激活可导致胃癌的发生,因此HH通路与胃癌的发生、发展密切相关,针对该通路的特异性靶向治疗有可能成为临床上治疗胃癌的有效的新措施。HH通路主要由HH配体,膜受体Patched (Ptch)、Smoothened (Smo)及下游的转录因子Gli组成。近年来有研究发现Hedgehog通路中还包括Hedgehog-interactingprotein (HHIP)基因,HHIP能和Patched竞争性结合Hh蛋白,从而阻断HH信号转导。对HH通路来说,HHIP基因与Patched基因是该通路的两个负反馈因子,可直接抑制Hedgehog通路,具有极其重要的意义。因此本课题选用HHIP和Patched为目的基因,进行深入研究。
     表观遗传学是指DNA序列不发生变化,但基因表达却发生了可遗传的改变,这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变,即基因型未发生变化而表型却发生了改变,且这种改变在发育和细胞增殖构成中能稳定传播。其中DNA甲基化,组蛋白修饰改变,非编码RNA等是表观遗传修饰的主要方式,也是研究的热点。目前研究发现:基因组的广泛低甲基化是肿瘤细胞的一个普遍特征;肿瘤抑制基因启动子区的高甲基化可导致抑癌基因沉默、失活致表达产物减少或丧失。DNA甲基化与胃癌之间关系密切,研究发现在胃癌的各个阶段都能检测有基因甲基化的存在,甚至癌前病变阶段也能发现。本文对胃癌中HHIP、Patched基因的表达及甲基化水平进行检测和分析,并通过随访,观察HHIP、Patched基因的表达与三年总生存率的相关性,试图发现HHIP、Patched基因在胃癌发生、发展的作用机制及与胃癌预后的相关性。
     目前有报道Patched基因在胃癌中启动子区呈高甲基化,而研究主要集中在胃癌细胞株,对HHIP和Patched基因在胃癌组织中的甲基化状态分析未见相关报道,因此本文以HHIP和Patched为研究基因,分别检测两个基因在胃癌组织、癌旁组织中的表达和启动子区CpG岛甲基化状态,分析其与临床病理特征的关系。并通过随访,观察HHIP、Patched基因的表达与三年总生存率的相关性。对人胃癌细胞株AGS在体外予去甲基化药物5-aza-dc干预,观察干预前后HHIP mRNA表达差异,启动子区CpG岛甲基化状态的影响。构建稳定的HHIP过表达慢病毒载体,转染胃癌细胞株AGS,观察转染前后HHIP mRNA表达和启动子区CpG岛甲基化状态的差异。从而揭示HHIP、Patched基因在胃癌发生、发展的作用机制及与胃癌预后的相关性,为胃癌的早期诊断、判断预后和靶向治疗提供新的思路。
     研究方法和材料:
     1.研究材料胃癌标本取自2009年6月-2013年12月在张家港市第一人民医院接受手术治疗的病人,术前均未经化疗和放疗,术后病理检查确定组织类型均为胃腺癌,无其他部位原发肿瘤。共选取60例胃癌组织和60例癌旁正常组织,每例标本的癌组织和癌旁正常组织均常规病理切片证实,并液氮保存。其中男性患者34例,女性患者26例,年龄36-72岁之间,平均年龄60.82岁,Ⅱ期胃癌患者40例,Ⅲ期患者20例,高中分化32例,低分化患者28例,有淋巴结转移24例,无淋巴结转移36例。胃癌细胞株AGS购自中国科学院上海细胞库,来源于一个未经治疗的切除的胃肿瘤碎块,为腺癌细胞,具有局部浸袭转移能力。
     2.研究方法主要分为对胃癌组织及癌旁组织研究;对胃癌细胞株AGS研究。
     2.1.对胃癌组织及癌旁组织的研究
     2.1.1.半定量RT-PCR取人胃癌组织和癌旁组织,使用Trizol试剂抽提总RNA,由逆转录试剂盒转录成cDNA后,采用RT-PCR法检测HHIP、Patched mRNA表达水平。
     2.1.2.免疫组化法取人胃癌组织和癌旁组织蜡块切片,按照APC法进行HHIP和Patched蛋白测定。
     2.1.3. bisulfite sequencing PCR(BSP)法常规抽提胃癌组织和癌旁组织DNA,亚硫酸盐处理后,进行BSP检测并测序,分析HHIP、Patched启动子区CpG岛每个位点甲基化状态。
     2.1.4. methylation-specific PCR (MSP)法常规抽提胃癌组织和癌旁组织DNA,亚硫酸盐处理后,应用Methyl Primer Express v1.0软件设计MSP引物,予MSP法检测HHIP启动子区CpG岛甲基化状态。
     2.1.5.随访采用Kaplan-Meier法进行三年总生存率的统计。
     2.2.对胃癌细胞株AGS的研究
     2.2.1予去甲基化药物5-aza-dc干预AGS细胞株,进行相关研究。
     2.2.1.1MTT法用0、0.5、1.0、2.0、5.0、10uM的5-aza-dc药物处理生长良好的AGS细胞株24h、48h、72h。用MTT法检测不同浓度下AGS细胞株的生长情况。
     2.2.1.2Annexin V/PI法检测凋亡用0、0.5、1.0、2.0、5.0、10uM的5-aza-dc对AGS细胞株进行干预,采用流式细胞仪检测细胞凋亡。
     2.2.1.3半定量RT-PCR使用Trizol试剂抽提AGS细胞株干预前后的RNA,由逆转录试剂盒转录成cDNA,采用RT-PCR法检测干预前后HHIP基因mRNA的差异。
     2.2.1.4BSP法常规抽提干预前后AGS细胞株DNA,亚硫酸盐处理后,予BSP法检测干预前后HHIP启动子区CpG岛每个位点甲基化状态变化。
     2.2.1.5MSP法常规抽提干预前后AGS细胞株DNA,亚硫酸盐处理后,予MSP法检测干预前后HHIP启动子区CpG岛甲基化状态变化。
     2.2.2构建稳定的HHIP过表达慢病毒载体,转染AGS,进行相关研究
     2.2.2.1筛选和构建稳定的HHIP过表达慢病毒载体
     2.2.2.2MSP法常规抽提转染前后AGS细胞株DNA,亚硫酸盐处理后,予MSP法检测干预前后HHIP启动子区CpG岛甲基化状态变化。
     2.2.2.3研究HHIP过表达对AGS细胞株生长、增殖的影响。
     3.统计分析采用SPSS16.0统计软件进行统计处理。计量资料以均数±标准差(x s)表示,计数资料以百分比(%)表示,采用x2检验、t检验、Kaplan-Meier法、Spearman相关分析等,p<0.05为有统计学差异。
     研究结果:
     1.对胃癌组织及癌旁组织的研究
     1.1.半定量RT-PCR HHIP、Patched基因在人胃癌组织及癌旁组织中均可见表达,HHIP mRNA在胃癌中的表达强度0.8181±0.381,低于癌旁组织中的表达强度1.6033±0.262,而Patched mRNA在胃癌中的表达强度1.7537±1.150,低于癌旁组织中的2.7993±1.458。HHIP、Patched mRNA表达与性别、年龄、TNM分期、淋巴结转移等临床病理特征无明显统计学差异。但Patched mRNA在低分化胃癌中表达明显低于中高分化,HHIP mRNA表达与分化程度未见统计学差异。
     1.2.免疫组化法HHIP蛋白在胃癌组织中的阳性率为18/60(30%),在癌旁正常组织中的阳性率为36/60(60%),Patched蛋白在胃癌组织中为20/60(33.33%),癌旁组织中阳性率为48/60(80%)。HHIP、Patched蛋白表达与性别、年龄、TNM分期、分化程度、淋巴结转移等临床病理特征无明显统计学差异。
     1.3. BSP法60例胃癌组织中表现为HHIP、Patched CpG位点完全甲基化或部分甲基化,而癌旁组织中CpG位点大部分非甲基化,少数甲基化。将HHIP和PatchedmRNA表达与甲基化程度进行Spearman相关分析,发现HHIP和Patched mRNA表达与甲基化程度呈负相关。
     1.4. MSP法60例胃癌组织中HHIP启动子区CpG岛甲基化有28例,甲基化率达46.67%,而癌旁组织中甲基化率为20%,HHIP基因启动子区CpG岛甲基化率明显高于相应的癌旁组织.
     1.5.随访通过随访,发现HHIP和Patched阳性表达胃癌患者三年总生存率优于阴性表达患者,因此HHIP和Patched可作为判断胃癌预后的预测因子。
     2.对胃癌细胞株AGS的研究
     2.1.予去甲基化药物5-aza-dc干预AGS细胞株,进行相关研究。
     2.1.1MTT法5-aza-dc对AGS细胞株增殖的抑制作用随着药物浓度的增加和时间的延长逐渐增加,呈时间和剂量依赖性。
     2.1.2Annexin V/PI法检测凋亡在一定剂量范围内随着5-aza-dc药物浓度的增加,细胞凋亡率增加。但达到一定浓度后,细胞凋亡率随着药物浓度的增加而下降。
     2.1.3半定量RT-PCR AGS细胞株在5-aza-dc干预后HHIP基因被激活,表达明显增高。
     2.1.4BSP法5-aza-dc干预后HHIP基因启动子区CpG位点甲基化明显减少。
     2.1.5MSP法胃癌细胞株AGS甲基化程度为99.7%±0.67%,经去甲基化干预后,甲基化程度明显下降,甚至表现为无甲基化。
     2.2构建稳定的HHIP过表达慢病毒载体,转染AGS,进行相关研究
     2.2.1成功构建稳定的HHIP过表达慢病毒载体。
     2.2.2MSP法胃癌细胞株AGS甲基化程度为99.67%,过表达慢病毒载体转染后,甲基化程度明显下降,甚至表现为无甲基化。
     2.2.3HHIP基因过表达后可抑制胃癌细胞株生长、增殖。
     结论:
     1、胃癌和癌旁组织中可见HHIP和Patched mRNA和蛋白表达,但在胃癌组织中HHIP和Patched基因低表达。
     2、HHIP和Patched mRNA和蛋白表达与性别、年龄、TNM分期、淋巴结转移等临床病理特征无关。但Patched mRNA在低分化胃癌中表达明显低于中高分化,HHIP mRNA表达与分化程度未见统计学差异。
     3、HHIP和Patched可能作为判断胃癌预后的预测因子。
     4、胃癌组织和胃癌细胞株中均存在HHIP和Patched启动子区CpG岛高甲基化,是胃癌区别于正常胃组织的分子事件,与HHIP和Patched抑癌机制有关,可能与胃癌的发生有关,有可能成为胃癌早期诊断的肿瘤标志物。
     5、5-aza-dc可以诱导细胞凋亡,抑制肿瘤增殖,在一定浓度范围呈时间和剂量依赖性。去甲基化药物有可能成为一种胃癌治疗途径。
     6、HHIP基因过表达后可抑制胃癌细胞株生长、增殖,有可能成为胃癌的新的生物学标记,针对HHIP形成的药靶,有可能成为胃癌治疗的一个新的途径。
Background and objects:
     Gastric cancer is one of the most common cancers with serious hazard to humanhealth,accounting for the second most frequent malignancy and the third cause ofcancer-related death. Now radical surgery is still the main treatment and the only mean tocure gastric cancer. But most gastric cancer patients are usually diagnosed in the laterstages of the disease in clinical and has very poor prognosis due to patients withunresectable therapeutic options. Therefore, there is clinical significance to extensivelyinvestigate the molecular mechanisms of gastric carcinogenesis, to Provide the basis for theearly diagnosis of gastric cancer, and also provide an effective target in the treatment ofclinical treatment.
     In recent years, studies have shown that the hedgehog pathway plays an importantrole in gastral embryonic development and carcinogenesis. Gastric cancer development hasbeen intimate associated with hedgehog signaling pathways. To aim pathway-specifictargeted therapy may become a effective new measure in the clinical treatment ofgastric cancer. The HH pathway mainly includes HH ligand,membrane receptor ofPatched (Ptch)、Smoothened (Smo) and downstream of the transcription factor Gli. Humanhedgehog-interacting protein (HHIP) has been discovered recently. HHIP binds all threeHh proteins with an affinity equal to that of Patched, and functions to negatively regulatethe hedgehog pathway. Indeed, both HHIP and Patched genes, two negative regulators ofhedgehog signaling, can directly inhibit the pathway, has a very important significance.Therefore this topics chosen HHIP and Patched gene in-depth study.
     Epigenetics refers to the sequence of DNA does not change, but the gene expressionwas heritable changed, which were changed to the genetic information in cells other than genetic material change, namely the phenotype changed but genotype has not changed, andthis change can propagate stably in development and cell proliferation.
     DNA methylation,histone modification, non coding RNA were included inepigenetic modification, and also a research hotspot. The current study found: widehypomethylation of the genome is a common feature of the tumor cells; hypermethylationof the tumor suppressor gene promoter region silencing of tumor suppressor genes, canlead to reduction or loss of the inactivation induced expression product. DNA methylationis closely related with gastric cancer, the study found methylation existed in each stage ofgastric cancer,even precancerous lesions. The article willdetect and analyze the expressionand methylation levels of HHIP、Patched gene in gastric carcinoma, and through thefollow-up, to observe the correlation between the expression of HHIP、Patched gene andthree year overall survival rate, trying to find HHIP、Patched gene mechanism in gastriccarcinogenesis、development and their relationship with prognosis of gastric cancer.
     It was said Patched gene promoter methylation in gastric cancer. However, thesestudies focus on gastric cancer cell lines,no study has precisely analyzed the methylationof Patched and HHIP gene promoters in gastric cancer to date. In this study, we focus onHHIP and Patched gene,detect the expression of HHIP and Patched in gastric cancertissues and adjacent normal tissues,and then detect the promoter methylation status ingastric cancer,analyze its relationship with clinical pathological features. Throughfollow-up, to observe the correlation between the expression of HHIP、Patched gene andthree year overall survival rate. Then to discover the HHIPmRNA expression differencesand the change of CpG island methylation status before and after demethylation drug5-aza-dc intervention. To build a stable HHIP overexpression of lentivirus vector,transfected into gastric cancer cell lines AGS, then observe the difference about mRNAexpression and methylation status of CpG islands in promoter region before and aftertransfection. To reveal the development mechanism of HHIP, Patched gene in gastriccarcinogenesis, and their relationship with prognosis of gastric cancer. Which can providenew ideas for the early diagnosis、prognosis and targeted therapy of gastric.
     Methods and material:
     1. Research material Surgical specimens from60patients with gastric cancer andadjacent normal tissues were collected from the Department of Surgery, Zhangjiagang FirstHospital between June2009and December2013,without preoperative chemotherapy andradiotherapy, pathologic examination to determine tissue types are gastric adenocarcinoma.All surgically resected tissue specimens were snap frozen in liquid nitrogen until use.Patients included34males and26females with an age range from36to72years (mean60.82years). According to the TNM staging system,40cases were stage II patients and20cases were stage III patients.32cases were well and moderately differentiated, while28were poorly differentiated.24cases had lymph node metastasis, but36cases were withoutlymph node metastasis. The gastric cancer AGS cell line was purchased from ShanghaiInstitute of Cell Bank, which come from a resected gastric tumor fragments untreatedadeno-carcinoma cell, have the capability of the local Baptist passage of transfer.
     2. Research Methods: mainly focus on gastric carcinoma and adjacent normaltissues,focus on gastric cancer cell line AGS.
     2.1Research about gastric tissues
     2.1.1reverse transcription-PCR RNA was isolated from the gastric cancer andnormal tissues by Trizol agent. cDNA was then converted from RNA using a reversetranscription kit. Detect the expression levels of HHIP, Patched mRNA by RT-PCRmethod.
     2.1.2Immunohistochemistry Take paraffin-embedded tissue sections to detectthe HHIP and Patched protein according with APC method.
     2.1.3bisulfite sequencing PCR(BSP) DNA was extracted per our standardprotocol. After bisulfite treatment, to analyse HHIP and Patched promoter CpG islandmethylation status of each locus by detecting and sequencing with BSP method.
     2.1.4methylation-specific PCR (MSP) DNA was extracted per our standardprotocol. After bisulfite treatment, to design MSP primers by Methyl Primer Express v1.0software, then to detect HHIP promoter CpG island methylation status by MSP.
     2.1.5follow up Statistics of three year overall survival rate by Kaplan-Meiermethod.
     2.2Research about gastric cancer cell lineAGS
     2.2.1To interfere AGS cell line by demethylation drug5-aza-dC, undertake relatedresearch.
     2.2.1.1MTT assay AGS cell line treated with0、0.5、1.0、2.0、5.0、10uM5-aza-dcafter24h,48h,72h, to detect AGS cell growth on different concentrations using the MTTassay.
     2.2.1.2Annexin V/PI-flow cytometry assay AGS cell line treated with0、0.5、1.0、2.0、5.0、10uM5-aza-dc, then detect apoptosis by flow cytometry.
     2.2.1.3reverse transcription-PCR RNAwas isolated from AGS cell line by Trizolagent before and after intervention. cDNA was then converted from RNA using a reversetranscription kit, then to detect the expression differences of HHIP mRNA by RT-PCRmethod.
     2.2.1.4BSP method AGS cell line DNA was extracted per our standard protocol.After bisulfite treatment, to analyse HHIP promoter CpG island methylation status of eachlocus by detecting and sequencing with BSP method.
     2.2.1.5MSP method AGS cell line DNAwas extracted per our standard protocol.After bisulfite treatment, to detect HHIP promoter CpG island methylation status by MSPbefore and after intervention.
     2.2.2To build a stable HHIP overexpression of lentivirus vector, to transfect AGS,undertake related research.
     2.2.2.1To build a stable HHIP overexpression of lentivirus vector.
     2.2.2.2MSP method AGS cell line DNAwas extracted per our standard protocol.After bisulfite treatment, to detect HHIP promoter CpG island methylation status by MSPbefore and after intervention.
     2.2.2.3To observe the effect overexpression HHIP gene onAGS cell line.
     3. Statistical Analysis All of the measurement data were expressed as mean±SD,count data are expressed as a percentage (%) by SPSS16.0software. Apply X2test, t test,Kaplan-Meier mean,Spearman correlation analysis, et al. A value of P<0.05wasconsidered statistically significant.Results
     1. Research about gastric tissues
     1.1reverse transcription-PCR HHIP and Patched express in gastric cancer andadjacent normal tissues. HHIP mRNA intensity of expression0.8181±0.380in gastriccancer lower than1.6033±0.263in adjacent normal tissues. PatchedmRNA intensity ofexpression1.7537±1.150in gastric cancer lower than2.7993±1.458in adjacent normal tissues. HHIP, Patched mRNA expression have no statistically significant differences withclinical pathological features: gender, age, TNM stage, lymph node metastasis. ButPatched mRNA in poorly differentiated gastric carcinoma expression was significantlylower than in highly differentiated, difference of HHIP mRNA expression and the degreeof differentiation was observed in the control.
     1.2Immunohistochemistry HHIP protein positive rate was18/60(30%) ingastric cancer, while36/60(60%) in adjacent normal tissues, the positive rate ofPatched protein in gastric cancer20/60(33.33%), adjacent tissues was48/60(80%). HHIP,Patched protein expression have no statistically significant differences with clinicalpathological features: gender, age, TNM stage, degree of differentiation, lymph nodemetastasis.
     1.3BSP60cases of gastric cancer tissues showed HHIP and Patched CpG sitescompletely or partially methylated, while unmethylated or minority methylation inadjacent tissues. Through Spearman correlation analysis we found the HHIP and PatchedmRNAexpression was negatively correlated with the degree of methylation.
     1.4MSP There were28cases HHIP promoter CpG island methylation in60casesof gastric cancer, the methylation rate of46.67%, while methylation rate of20%inadjacent tissues, HHIP gene promoter CpG island methylation was significantly higherthan the corresponding adjacent tissues (p <0.05).
     1.5follow up Through follow-up, found that the patients of positive expression ofHHIP and Patched in the three year overall survival rate surpass the negative expression, soHHIP and Patched can be used as a predictor of prognosis of gastric cancer.
     2. Research about gastric cancer cell lineAGS
     2.1. To interfere AGS cell line by demethylation drug5-aza-dC, undertake relatedresearch.
     2.1.1MTT assay The effect of proliferation inhibition was gradually increasewith the increase of the concentration of the drug and the extension of time.,which was atime-and dose-dependent manner.
     2.1.2Annexin V/PI-flow cytometry assay In a certain dose range rate ofapoptosis increased with the increase of the concentration of5-aza-dc. But after reached acertain concentration, the apoptotic rate decreased with the increase of the concentration.
     2.1.3reverse transcription-PCR After5-aza-dc intervention, HHIP gene is activated. The expression of HHIP was significantly higher.
     2.1.4BSP method After5-aza-dc intervention, HHIP gene promoter CpG sitesmethylation was significantly reduced.
     2.1.5MSP method The methylation degree in gastric cancer cell line AGS was99.7%±0.67%. After5-aza-dc intervention. the degree of methylation was significantlydecreased, and even showed unmethylation.
     2.2. To build a stable HHIP overexpression of lentivirus vector, to transfect AGS,undertake related research.
     2.2.1Astable HHIP overexpression of lentivirus vector was build successful.
     2.2.2The methylation degree in gastric cancer cell line AGS was99.67%. Aftertransfect by overexpression of lentivirus vector, the degree of methylation was significantlydecreased, and even showed unmethylation.
     2.2.3Overexpression HHIP gene can inhibit the growth and proliferation of gastriccancer cell line.Conclusion:
     1、There were HHIP、Patched mRNA and protein expression,the intensity ofexpression in gastric cancer lower than in adjacent normal tissues.
     2、HHIP、Patched mRNA and protein expression have no statistically significantdifferences with clinical pathological features: gender, age, TNM stage, lymph nodemetastasis. But Patched mRNA expression was significantly lower in poorly differentiatedgastric carcinoma than in highly differentiated, difference of HHIP mRNA expression ofthe degree of differentiation was observed in the control.
     3、HHIP and Patched can be used as a predictor of prognosis of gastric cancer.
     4、There were HHIP and Patched gene low expression and promoter CpG islandmethylation in gastric cancer, which was a molecular event distinguished gastric cancerfrom normal gastric tissue, maybe concerned with the incidence of gastric cancer. It maybecome a tumor marker for early diagnosis of gastric cancer.
     5、5-aza-dc can induce apoptosis, Inhibit tumor proliferation,in a certain concentrationrange it appeared In a time-and dose-dependent manner. Demethylation may become atumor therapeutic approach.
     6、Overexpression HHIP gene can inhibit the growth and proliferation of gastric cancer cell line, may be a new biological marker in gastric cancer, the drug targets HHIPformation, may become a new way to the treatment of gastric cancer.
引文
[1] Xiong JJ, Altaf K, Javed MA, et al. Roux-en-Y versus Billroth I reconstruction afterdistal gastrectomy for gastric cancer: A meta-analysis. World J Gastroenterol.2013;19(7):1124-34.
    [2] Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet.2014;383(9916):549–57.
    [3]赫捷,赵平,陈万青.2012中国肿瘤登记年报[M].军事医学科学出版社,2012:100-101.
    [4] Medina-Franco H, Cabrera-Mendoza F, Almaguer-Rosales S, et al. Lymph node ratioas a predictor of survival in gastric carcinoma. Am Surg.2013;79(3):284-9.
    [5] Sheikh A, Alvi AA, Aslam HM, et al. Hedgehog pathway inhibitors-current status andfuture propects. Infect Agent Cancer.2012;7(1):29.
    [6] Gerardo Valadez J, Grover VK, Carter MD, et al. Identification of Hedgehog pathwayresponsive glioblastomas by isocireate dehydrogenase mutation. Cancer Lett.2013;328(2):297-306.
    [7] Yun JI, Kim HR, Park H, et al. Small molecule inhibitors of the hedgehog signalingpathway for the treatment of cancer. Arch Pharm Res.2012;35(8):1317-33.
    [8] Queiroz KC, Spek CA, Peppelenbosch MP. Targeting Hedgehog signaling andunderstanding refractory response to treatment with Hedgehog pathway inhibitors.Drug Resist Updat.2012;15(4):211-22.
    [9] Cobourne MT, Green JB. Hedgehog signaling in development of the secondary palate.Front Oral Biol.2012;16:52-9.
    [10] Büller NV, Rosekrans SL, Westerlund J, et al. Hedgehog signaling and maintenanceof homeostasis in intestinal epithelium.van den Brink GR. Physiology (Bethesda).2012;27(3):148-55.
    [11] Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastroinstestinal cancers.Vitam Horm.2012;88:461-72.
    [12] Xu FG, Ma QY, Wang Z. Blockade of hedgehog signaling pathway as a therapeuticstrategy for pancreatic cancer. Cancer Lett.2009;283(2):119-24.
    [13] Fujii K, Miyashita T. Hedgehog signaling pathway and human disorders. No ToHattatsu.2009;41(4):247-52.
    [14] Maun HR, Kirchhofer D, Lazarus RA. Pseudo-active sites of protease domains:HGF/Met and Sonic hedgehog signaling in cancer. Biol Chem.2010;391(8):881-92.
    [15] Teglund S, Toftg rd R. Hedgehog beyond mesulloblastoma and basal cell carcinoma.Biochim Biophys Acta.2010;1805(2):181-208.
    [16] Yang L, Xie G, Fan Q, et al. Activation of the hedgehog-signaling pathway in humancancer and the clinical implications. Oncogene.2010;29(4):469-81.
    [17] Sasai N, Briscoe J. Primary cilia and graded Sonic Hedgehog signaling. WileyInterdiscip Rev Dev Biol.2012;1(5):753-72.
    [18] Anastasiadou C, Malousi A, Maglaveras N, et al. Human epigenome data revealincreased CpG methylation in alternatively spliced sites and putative exnonic splicingenhancers. DNA Cell Biol.2011;30(5):267-75.
    [19]Fukushige S, Horii A. DNA methylation in cancer: a gene silencing mechanism andthe clinical potential potential of its biomarkers. Tohoku J Exp Med.2013;229(3):173-85.
    [20]Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat RevGenet.2013;14(3):204-20.
    [21] Gurung B, Feng Z, Hua X. Menin directly represses Gli1expression independent ofcanonical Hedgehog signaling. Mol Cancer Res.2013;11(10):1215-22.
    [22] Huang RL, Gu F, Kirma NB, et al. Comrehensive methylome analysis of ovariantumors reveals hedgehog signaling pathway regulators as prognostic DNAmethylation biomarkers. Epigenetics.2013;8(6):624-34.
    [23] Schwalbe EC, Williamson D, Lindsey JC, et al. DNA methylation profiling ofmedulloblastoma allows robust subclassification and improved outcome predictionusing formalin-fixed biopsies. Acta Neuropathol.2013;125(3):359-71.
    [24] Peters I, Gebauer K, Dubrowinskaja N, et al. GATA5CpG island hypermethylation isan independent predictor for poor clinical outcome in renal cell carcinama. Oncol Rep.2014;31(4):1523-30.
    [25] Wang X, Wang H, Jiang N, et al. Effect of inhibition of MEK pathway on5-aza-deoxyicytidine-suppressed pancreatic cancer cell proliferation. Genet Mol Res.2013;12(4):5560-73.
    [26] Wang Y, Wang X, Li R, et al. A DNA methyltransferase inhibitor,5-aza-2’-deoxycytidine, exacerbates neurotoxicity and upregulates Parkinson’sdisease-related genes in dopaminergic neurons. CNS Neurosci Ther.2013;19(3):183-90.
    [27] Wu CJ, Yang CY, Chen YH, et al. The DNA Methylation inhibitor5-AzacytidineIncreases Regulatory T Cells and Alleviates Airway Inflammtion inOvalbumin-Sensitized Mice. Int Arch Allergy Immunol.2012;160(4):356-364.
    [28] Lee JJ, Ko E, Cho J, et al. Methylation and immunoexpression of p16(INK4a) TumorSuppressor Gene in Primary Breast Cancer Tissue and Their Quantitative p16(INK4a)Hypermethylation in Plama by Real-Time PCR. Korean J Pathol.2012;46(6):554-61.
    [29] Tahara T, Maegawa S, Chung W, et al. Examination of whole blood DNAmethylation as a potential risk marker for gastric cancer. Cancer Prev Res (Phila).2013;6(10):1093-100.
    [1] Chen Y, Jiang J. Decoding the phosphorylation code in Hedgehog signal transduction.Cell Res.2013;23(2):186-200.
    [2] Mukhopadhyay S, Wen X, Ratti N, et al. The ciliary G-protein-coupled receptorGpr161negatively regatively the Sonic hedgehog pathway via Camp signaling. Cell.2013;152(1-2):210-23.
    [3] Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehogligand stimulation in growth of digestive tracttumours. Nature.2003;425(6960):846-51.
    [4] Falleni A, Lucchesi P, Ghezzani C, et al. The female gonad in two species ofMicroplana (Platvhelminthes, Tricladida, Rhynchodemidae): ultra-structural andcytochemical investigations. J Morphol.2009;270(9):1042-54.
    [5] Lander AD. How cells know where they are. Science.2013;339(6122):923-7.
    [6] Soumaya K. Molecular mechanisms of insulin resisitance in diabetes. Adv Exp MedBiol.2012;771:240-51.
    [7] Gos M, Leszkiewicz M, Abramowicz A. RAS/MAPK signal transduction pathwayand its role in the pathogenesis of Noonan syndrome. Postepy Biochem.2012;58(3):255-64.
    [8] O'Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immu-nodeficiency, and cancer. N Engl J Med.2013;368(2):161-70.
    [9] Yun JI, Kim HR, Park H, et al. Small molecule inhibitors of the hedgehog signalingpathway for the treatment of cancer. Arch Pharm Res.2012;35(8):1317-33.
    [10] Queiroz KC, Spek CA, Peppelenbosch MP. Targeting Hedgehog signaling andunderstanding refractory response to treatment with Hedgehog pathway inhibitors.Drug Resist Updat.2012;15(4):211-22.
    [11] Pan JY, Zhou SH. The hedgehog signaling, a new therapeutic target for treatment ofischemic heart disease. Pharmazie.2012;67(6):475-81.
    [12] Ruat M, Angot E, Traiffort E. Shh signal and its functional roles in normal anddiseased brain. Med Sci (Paris).2011;27(11):979-85.
    [13] Franco HL, Yao HH. Sex and hedgehog: roles of genes in the hedgehog signalingpathway in mammalian sexual differentiation. Chromosome Res.2012;20(1):247-58.
    [14] Ok CY, Singh RR, Vega F. Aberrant activation of the hedgehog signaling pathway inmalignant hematological neoplasms. Am J Pathol.2012;180(1):2-11.
    [15] Matise MP, Wang H. Sonic hedgehog signaling in the developing CNS where it hasbeen and where it is going. Curr Top Dev Biol.2011;97:75-117.
    [16]Cobourne MT, Green JB. Hedgehog signaling in development of the secondary palate.Front Oral Biol.2012;16:52-9.
    [17] Büller NV, Rosekrans SL, Westerlund J, et al. Hedgehog signaling and maintenanceof homeostasis in intestinal epithelium. van den Brink GR. Physiology (Bethesda).2012;27(3):148-55.
    [18] Currier DG, Polk RC, Reeves RH. A Sonic hedgehog (Shh) response deficit intrisomic cells may be a common denominator for multiple features of Downsyndrome. Prog Brain Res.2012;197:223-36.
    [19] Fujii K, Miyashita T. Hedgehog signaling pathway and human disorders. No ToHattatsu.2009;41(4):247-52.
    [20] Maun HR, Kirchhofer D, Lazarus RA. Pseudo-active sites of protease domains:HGF/Met and Sonic hedgehog signaling in cancer. Biol Chem.2010;391(8):881-92.
    [21] Teglund S, Toftg rd R. Hedgehog beyond mesulloblastoma and basal cell carcinoma.Biochim Biophys Acta.2010;1805(2):181-208.
    [22] Yang L, Xie G, Fan Q, et al. Activation of the hedgehog-signaling pathway in humancancer and the clinical implications. Oncogene.2010;29(4):469-81.
    [23] Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastroinstestinal cancers.Vitam Horm.2012;88:461-72.
    [24] Fu X, Wang Q, Chen X, et al. Expression patterns and polymorphisms of PTCH inChinese hepatocellular carcinoma patients. Exp Mol Pathol.2008,84(3):195-199.
    [25] Ishiyama A,Hibi K,Koike M,et al. PTCH gene expression as a potential marker foresophageal squamous cell carcinoma.Anticancer Res.2006,26(1A):195-198.
    [26] Fukaya M, Isohata N, Ohta H, et al. Hedgehog signal activation in gastric pit cell andin diffuse-type gastric cancer. Gastroenterology.2006,131(1):14-29.
    [27] Douard R, Moutereau S, Pernet P, et al. Sonic Hedgehog-dependent proliferation in aseries of patients with colorectal cancer. Surgery.2006,139(5):665-670.
    [28] Shahi MH, Lorente A, Castresana JS. Hedgehog signalling in medulloblastoma,glioblastoma and neuroblastoma. Oncol Res.2008,19(3):681-688.
    [29] Jeng KS, Sheen IS, Jeng WJ, et al. High expression of Sonic Hedgehog signalingpathway genes indicates a risk of recurrence of breast carcinoma. Onco Targets Ther.2013;7:79-86.
    [30]王树俊,曹新广,陈小平等. RT-PCR法测SHH和PTCH在食管鳞状细胞癌中的表达.临床肿瘤学杂志,2009,14(2):54-56.
    [31]高飞,刘枫,李兆申等.胰腺癌组织中人音猬因子相互作用蛋白基因CpG岛甲基化分析.中华胰腺病杂志,2009,9(2):58-62.
    [32] Gerardo Valadez J, Grover VK, Carter MD, et al. Identification of Hedgehog pathwayresponsive glioblastomas by isocireate dehydrogenase mutation. Cancer Lett.2013;328(2):297-306.
    [33] Pastorino L, Pollio A, Pellacani G, et al. Novel PTCH1mutations in patients withkeratocystic odontogenic tumors screened for nevoid basal cell carcinoma (NBCC)syndrome. PLoS One.2012;7(8): e43827.
    [34] Zuo Y, Song Y. Detection and analysis of the methylation status of PTCH1geneinvolved in the hedgehog signaling pathway in a human gastric cancer cell line. ExpTher Med.2013;6(6):1365-1368.
    [35] Xie J, Bartels CM, Barton SW, et al. Targeting hedgehog signaling in cancer: researchand clinical developments. Onco Targets Ther.2013;6:1425-1435.
    [1] Fukushige S, Horii A. DNA methylation in cancer: a gene silencing mechanism andthe clinical potential potential of its biomarkers. Tohoku J Exp Med.2013;229(3):173-85.
    [2] Yu D, Shin HS, Lee YS, et al. Genistein attenuates cancer stem cell characteristics ingastric cancer through the downregulation of Gli1. Oncol Rep.2014;31(2):673-8.
    [3] Wang ZS, Shen Y, Li X, et al. Significance and prognostic value of Gli-1andSnail/E-cadherin expression in progressive gastric cancer. Tumour Biol.2014;35(2):1357-63.
    [4] Wang X, Sun DF, Lu R, et al. RAF may induce cell proliferation throughhypermethylation of tumor suppressor gene promoter in gastric epithelial cells.Cancer Sci,2009;100(1):117-125.
    [5] Yun JI, Kim HR, Park H, et al. Small molecule inhibitors of the hedgehog signalingpathway for the treatment of cancer. Arch Pharm Res.2012;35(8):1317-33.
    [6] Nakatomi M, Hovorakova M, Gritli-Linde A, et al. Evc regulates a symmetricalresponse to shh signaling in molar development. J Dent Res.2013;92(3):222-8.
    [7] Crow M, Denk F, McMahon SB. Genes and epigenetic processes as prospective paintargets. Genome Med.2013;5(2):12.
    [8] Rice WR, Friberg U, Gavrilets S. Homosexuality as a consequence of epigeneticallycanalized sexual development. Q Rev Biol.2012;87(4):343-68.
    [9] Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis.Nat Rev Rheumatol.2013;9(3):141-53.
    [10] Eising E, A Datson N, van den Maagdenberg AM, et al. Epigenetic mechanisms inmigraine: a promising avenue? BMC Med.2013;11(1):26.
    [11] Hodes GE. Sex, stress, and epigenetics: regulation of behavior in animal models ofmood disorders. Biol Sex Differ.2013;4(1):1.
    [12] Svrakic DM, Zorumski CF, Svrakic NM, et al. Risk architecture of schizophr-enia:the role of epigenetics. Curr Opin Psychiatry.2013;26(2):188-95.
    [13] Webster AL, Yan MS, Marsden PA. Epigenetics and cardiovascular disease. Can JCardiol.2013;29(1):46-57.
    [14] Huang RL, Gu F, Kirma NB, et al. Comrehensive methylome analysis of ovariantumors reveals hedgehog signaling pathway regulators as prognostic DNAmethylation biomarkers. Epigenetics.2013;8(6):624-34.
    [15] Atwood SX, Oro AE.“Atypical” regulation of hedgehog-dependent cancers. CancerCell.2014;25(2):133-4.
    [16] Peters I, Gebauer K, Dubrowinskaja N, et al. GATA5CpG island hypermethylation isan independent predictor for poor clinical outcome in renal cell carcinama. Oncol Rep.2014;31(4):1523-30.
    [17] Savio AJ, Lemire M, Mrkonjic M, et al. MLH1region polymorphisms show asignificant association with CpG island shore methylation in a large cohort of healthyindividuals. PLoS One.2012;7(12): e51531.
    [18] Kim JG, Takeshima H, Niwa T, et al. Comprehensive DNA methylation and extensivemutation analyses reveal an association between the CpG island methylator phenotypeand oncogenic mutations in gastric cancers. Cancer Lett.2013;330(1):33-40.
    [19] Lu L, Zhu G, Zhang C, et al. Association of large noncoding RNA HOTAIRexpression and its downstream intergenic CpG island methylation with survival inbreast cancer. Breast Cancer Res Treat.2012;136(3):875-83.
    [20] Barrera V, Peinado MA. Evaluation of single CpG sites as proxies of CpG islandmethylation states at the genome scale. Nucleic Acids Res.2012;40(22):11490-8.
    [21] Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted IFITM-like(Bril) gene transcription by Sp and Gli family members and CpG methylation. J BiolChem.2013;288(19):13278-94.
    [22] Portela A, Liz J, Nogales V, et al. DNA methylation determines nucleosomeoccupancy in5’-CpG island of tumor suppressor genes. Oncogene.2013;32(47):5421-8.
    [23] Wang X, Wang H, Jiang N, et al. Effect of inhibition of MEK pathway on5-aza-deoxycydine-suppressed pancreatic cancer cell proliferation. Genet Mol Res.2013;12(4):5560-73.
    [24] Patel K, Dickson J, Din S, et al. Targeting of5-aza-2'-deoxycytidine residues bychromatin-associated DNMT1induces proteasomal degradation of the free enzyme.Nucleic Acids Res.2010;38(13):4313-24.
    [25] Wu CJ, Yang CY, Chen YH, et al. The DNA Methylation inhibitor5-AzacytidineIncreases Regulatory T Cells and Alleviates Airway Inflammtion inOvalbumin-Sensitized Mice.Int Arch Allergy Immunol.2012;160(4):356-364.
    [26] Cahill N, Rosenquist R. Uncovering the DNA methylation in chronic lymphocyticleukemia. Epigenetics.2013;8(2):138-48.
    [27] Lee JJ, Ko E, Cho J, Park HY, et al. Methylation and immunoexpression ofp16(INK4a) Tumor Suppressor Gene in Primary Breast Cancer Tissue and TheirQuantitative p16(INK4a) Hypermethylation in Plama by Real-Time PCR. Korean JPathol.2012;46(6):554-61.
    [28] Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehogligand stimulation in growth of digestive tracttumours. Nature.2003;425(6960):846-51.
    [29] Shahi MH, Afzal M, Sinha S, et al. Human hedgehog interacting protein expressionand promoter methylation in medulloblastoma cell lines and primary tumor samples. JNeurooncol.2011;103(2):287-96.
    [30] Barfield RT, Almli LM, Kilaru V, et al. Accounting for Population Stratification inDNA Methylation Studies. Genet Epidemiol.2014J. doi:10.1002/epi.21789.
    [31] Gerardo Valadez J, Grover VK, Carter MD, et al. Identification of Hedgehog pathwayresponsive glioblastomas by isocitrate dehydrogenase mutation. Cancer Lett.2013;328(2):297-306.
    [32] Pastorino L, Cusano R, Nasti S, et al. Molecular characterization of ltalian nevoidbasal cell carcinoma syndrome patients. Hum Mutat.2009;25(3):322-3.
    [33] Liang Y, Zhao M, Liang G, et al. Construction of special reporter to detect DNAmethylation regulatory activity in FCER1G gene promoter through patch-methylation.Zhong Nan Da Xue Xue Bao Yi Xue Ban.2013;38(2):120-4.
    [34] Du P, Ye HR,Gao J, et al. Methylation of PTCH1a gene in a subset of gastriccancers. World J Gastroenterol.2009;15(30):3799-806.
    [1] Lie ZJ, Wang G, Cai Y, et al. Androgen receptor CpG island methylation status inhuman leukemia cancer cells. Cancer Invest,2009;27(2):156-162.
    [2] Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis.Nat Rev Rheumatol.2013;9(3):141-53.
    [3] Eising E, A Datson N, van den Maagdenberg AM, et al. Epigenetic mechanisms inmigraine: a promising avenue? BMC Med.2013;11(1):26.
    [4] Anastasiadou C, Malousi A, Maglaveras N, et al. Human epigenome data revealincreased CpG methylation in alternatively spliced sites and putative exnonic splicingenhancers. DNA Cell Biol.2011;30(5):267-75.
    [5] Fukushige S, Horii A. DNA methylation in cancer: a gene silencing mechanism andthe clinical potential potential of its biomarkers. Tohoku J Exp Med.2013;229(3):173-85.
    [6] Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat RevGenet.2013;14(3):204-20.
    [7] Cahill N, Rosenquist R. Uncovering the DNA methylation in chronic lymphocyticleukemia. Epigenetics.2013;8(2):138-48.
    [8] Miao CG, Yang YY, He X, et al. New advances of DNA methylation and histonemodifications in rheumatoid arthritis,with special emphasis on MeCP2. Cell Signal.2012;25(4):875-882.
    [9] Hohl M, Wagner M, Reil JC, et al. HDAC4controls histone methylation in responseto elevated cardiac load. J Clin Invest.2013;123(3):1359-70.
    [10]Hou ST, Jiang SX, Aylsworth A, et al. Collapsin response mediator protein3deacetylates histone H4to mediate nuclear condensation and neuronal death.ci Rep.2013;3:1350.
    [11]Cahill N, Rosenquist R. Uncovering the DNA methylation in chronic lymphocyticleukemia. Epigenetics.2013;8(2):138-48.
    [12]Lee JJ, Ko E, Cho J, Park HY, et al. Methylation and immunoexpression ofp16(INK4a) Tumor Suppressor Gene in Primary Breast Cancer Tissue and TheirQuantitative p16(INK4a) Hypermethylation in Plama by Real-Time PCR. Korean JPathol.2012;46(6):554-61.
    [13]Wang Y, Wang X, Li R, Yang ZF, et al. A DNA methyltransferase inhibitor,5-aza-2’-deoxycytidine,exacerbates neurotoxicity and upregulates Parkinson’sdisease-related genes in dopaminergic neurons. CNS Neurosci Ther.2013;19(3):183-90.
    [14]Wu CJ, Yang CY, Chen YH,et al. The DNA Methylation inhibitor5-AzacytidineIncreases Regulatory T Cells and Alleviates Airway Inflammtion inOvalbumin-Sensitized Mice. Int Arch Allergy Immunol.2012;160(4):356-364.
    [15]Tsujioka T, Yokoi A, Uesugi M, et al. Effects of DNA methyltransferaseinhibitors(DNMT1s) on MDS-derived cell lines. Exp Hematol.2013;41(2):189-97.
    [16]Lamparska K, Clark J, Babilonia G, et al.2’-Deoxyriboguanylurea,the primarybreakdown product of5-aza-2’-deoxyribocytidine, is a mutagen,an epimutagen,aninhibitor of DNA methyltransferases and an inducer of5-azacytidine-type fragilesites.Nucleic Acids Res.2012;40(19):9788-801.
    [17]Ding YB, Long CL, Liu XQ, et al.5-aza-2’-deoxycytidine leads to reduced embryoimplantation and reduced expression of DNA methyltransferases and essentialeddometrial genes. PLoS One.2012;7(9): e45364.
    [18]Steiner M, Clark B, Tang JZ, et al.14-3-3σ mediates G2-M arrest produced by5-aza-2‘-deoxycytidine and possesses a tumor suppressor role in endometrialcarcinoma cells. Gynecol Oncol.2012;127(1):231-40.
    [19]Liu K, Wang YF, Cantemir C, et al. Endogeneous assays of DNA methyltransferases:Evidence for differential activities of DNMT1,DNMT2,and DNMT3in mammaliancells in vivo. Mol Cell Biol.2003;23(8):2709-2719.
    [20]Oka M, Meacham AM, Hamazaki T, et al. De novo DNA methyltransferases Dnmt3aand Dnmt3b primarily mediate the cytotoxic effect of5-aza-2’-deoxycytidine.Oncogeene.2005;24(19):3091-3099.
    [21]Patel K, Dickson J, Din S, et al. Targeting of5-aza-2'-deoxycytidine residues bychromatin-associated DNMT1induces proteasomal degradation of the free enzyme.Nucleic Acids Res.2010;38(13):4313-24.
    [22]Jin Q, Liu C, Yan C, et al.5-aza-CdR induces the demethylation of Syk promoter innasopharyngeal carcinama cell. Gene.2012;511(2):224-6.
    [23]Christman JK.5-Azacytidine and5-aza-2’-deoxycytidine as inhibitors of DNAmethylation: mechanistic studies and their implications for cancer therapy. Oncogene,2002;21:5483-5495.
    [24]Wu CJ, Yang CY, Chen YH, et al. The DNA Methylation inhibitor5-AzacytidineIncreases Regulatory T Cells and Alleviates Airway Inflammtion inOvalbumin-Sensitized Mice.Int Arch Allergy Immunol.2012;160(4):356-364.
    [25]Rodriguez C, Borgel J, Court F, et al. CTCF is a DNA methylation-sensitive positiveregulator of the INK/ARF locus. Biochem Biophys Res Commun.2010;392(2):129-34.
    [26]He S, Wang F, Yang L,et al. Expression of DNMT1and DNMT3a are regulated byGLI1in human pancreatic cancer. PLoS One.2011;6(11): e27684.
    [27]Karmaus W, Ziyab AH, Everson T, et al. Epigenetic mechanisms and models in theorigins of asthma.Curr Opin Allergy Clin Immunol.2013;13(1):63-9.
    [28]Esteller M. Epigenetic changes in cancer. F1000Biol Rep.2011;3:9.
    [29]Shahi MH, Afzal M, Sinha S, et al. Regulation of sonic hedgehog-GLI1downstreamtarget genes PTCH1, Cylin D2,Plakoglobin, PAX6and NKX2.2and their epigeneticstatus in medulloblastoma and astrocytoma. BMC Cancer.2010;10:614.
    [1] Shahi MH, Afzal M, Sinha S, et al. Human hedgehog interacting protein expressionand promoter methylation in medulloblastoma cell lines and primary tumor samples. JNeurooncol.2011;103(2):287-96.
    [2] Ruat M, Hoch L, Faure H, et al. Structure of the Smoothened receptor. Med Sci(Paris).2013;29(10):855-60.
    [3] Whalen DM, Malinauskas T, Gilbert RJ, et al. Structural insights intoproteoglycan-shaped Hedgehog signaling. Proc Natl Acad Sci.2013;110(41):16420-5.
    [4] O'Reilly KE, de Miera EV, Segura MF, et al. Hedgehog pathway blockade inhibitsmelanoma cell growth in vitro and in vivo. Pharmaceuticals (Basel).2013;6(11):1429-50.
    [5] Duan F, Lin M, Li C, et al. Effects of inhibition of hedgehog signaling on cell growthand migration of uveal melanoma cells. Cancer Biol Ther.2014;15(5):1054-57.
    [6] Jeng KS, Sheen IS, Jeng WJ, et al. High expression of Sonic Hedgehog signalingpathway genes indicates a risk of recurrence of breast carcinoma. Onco Targets Ther.2013;7:79-86.
    [7] Liu JA, Ngan ES. Hedgehog and Notch Signaling in Enteric Nervous SystemDevelopment. Neurosignals.2013;14.
    [8] Xie J, Bartels CM, Barton SW, et al. Targeting hedgehog signaling in cancer: researchand clinical developments. Onco Targets Ther.2013;6:1425-1435.
    [9] Abidi A. Hedgehog signaling pathway: A novel target for cancer therapy:Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas.Indian J Pharmacol.2014;46(1):3-12.
    [10] Wang B, Zhou H, Yang J,et al. Association of HHIP polymorphisms with COPD andCOPD-related phenotypes in a Chinese Han population. Gene.201315;531(1):101-105.
    [11] Gorbenko del Blanco D, de Graaff LC, Visser TJ, et al. Single-nucleotide variants intwo Hedgehog genes, SHH and HHIP, as genetic cause of combined pituitaryhormone deficiency. Clin Endocrinol.2013;78(3):415-23.
    [12] Petrova E, Matevossian A, Resh MD. Hedgehog acyltransferase as a target inpancreatic ductal adenocarcinoma. Oncogene.2014. doi:10.1038.
    [13] Hu F, Tao Z, Wang M, et al. RACK1promoted the growth and migration of thecancer cells in the progression of esophageal squamous cell carcinoma. Tumour Biol.2013;34(6):3893-9.
    [14] Gurung B, Feng Z, Hua X. Menin directly represses Gli1expression independent ofcanonical Hedgehog signaling. Mol Cancer Res.2013;11(10):1215-22.
    [15] Nakanishi M, Inoh Y, Furuno T. New Transfection Agents Based on LiposomesContaining Biosurfactant MEL-A. Pharmaceutics.2013;5(3):411-20.
    [16] Xia L, Yin S. Local gene transfection in the cochlea (Review). Mol Med Rep.2013;8(1):3-10.
    [17] Rodik RV.[Application of calixarenes for DNA transfection in cells]. Ukr BiokhimZh.2012;84(5):5-15.
    [18] Riet T, Holzinger A, D rrie J, et al. Nonviral RNAtransfection to transiently modify Tcells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol.2013;969:187-201.
    [19] Rabinovich PM, Weissman SM. Cell engineering with synthetic messenger RNA.Methods Mol Biol.2013;969:3-28.
    [20] Ahmed Ali HA, Di J, Mei W, et al. Antitumor Activity of Lentivirus-mediatedlnterleukin-12Gene Modified Dendritic Cells in Human Lung Cancer in Vitro. AsianPac J Cancer Prev.2014;15(2):611-6.
    [21] H fig I, Barth S, Salomon M, et al. Systematic improvement of lentivirus transductionprotocols by antibody fragments fused to VSV-G as envelope glycoprotein.Biomaterials.2014;35(13):4204-12.
    [22] Kong FB, Wang XT, et al.[lnhibitory effect of E2F-1-silencing lentivirus vector onchemoresistance of subcutaneous human gastric cancer in nude mice].ZhonghuaZhong Liu Za Zhi.2013;35(9):655-9.
    [23] Berezhkovskii AM, Shvartsman SY. On the GFP-Based Analysis of DynamicConcentration Profiles. Biophys J.2014;106(3): L13-5.
    [24] Ruiz de Garibay AP, Solinís MA, Rodríguez-Gascón A. Gene therapy for fabrydisease: a review of the literature. BioDrugs.2013;27(3):237-46.
    [25] Podolska K, Stachurska A, Hajdukiewicz K, et al. Genw therapy prospects-intranasaldelivery of therapeutic genes. Adv Clin Exp Med.2012;21(4):525-34.
    [26]Afanas'ev I. New nucleophilic mechanisms of ros-dependent epigenetic modifications:comparison of aging and cancer. Aging Dis.2013;5(1):52-62.
    [1] Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis.Nat Rev Rheumatol.2013;9(3):141-53.
    [2] Eising E, A Datson N, van den Maagdenberg AM, et al. Epigenetic mechanisms inmigraine: a promising avenue? BMC Med.2013;11(1):26.
    [3] Webster AL, Yan MS, Marsden PA. Epigenetics and cardiovascular disease. Can JCardiol.2013;29(1):46-57.
    [4] Karmaus W, Ziyab AH, Everson T, et al. Epigenetic mechanisms and models in theorigins of asthma. Curr Opin Allergy Clin Immunol.2013;13(1):63-9.
    [5] Tora o EG, Petrus S, Fernandez AF, et al. Global DNA hypomethylation in cancer:review of validated and clinical significance. Clin Chem Lab Med.2012;50(10):1733-42.
    [6] Kim JG, Yi JM, Park SJ. Histone demethylase JMJD2B-mediated cell proliferationcell proliferation regulated by hypoxia and rediation in gastric cancer cell. BiochimBiophys Acta.2012;1819(11-12):1200-7.
    [7]赫捷,赵平,陈万青.2012中国肿瘤登记年报[M].军事医学科学出版社,2012:100-101.
    [8] Wang X, Sun DF, Lu R, et al. RAF may induce cell proliferation throughhypermethylation of tumor suppressor gene promoter in gastric epithelial cells.Cancer Sci.2009,100(1):117-125.
    [9] Miao CG, Yang YY, He X, et al.New advances of DNA methylation and histonemodifications in rheumatoid arthritis,with special emphasis on MeCP2. Cell Signal.2013;25(4):875-82.
    [10] Soumaya K. Molecular mechanisms of insulin resisitance in diabetes. Adv Exp MedBiol.2012;771:240-51.
    [11] Kim JG, Takeshima H, Niwa T, et al. Comprehensive DNA methylation and extensivemutation analyses reveal an association between the CpG island methylatorphenotype and oncogenic mutations in gastric cancers. Cancer Lett.2013;330(1):33-40.
    [12] Barrera V, Peinado MA. Evaluation of single CpG sites as proxies of CpG islandmethylation states at the genome scale. Nucleic Acids Res.2012;40(22):11490-8.
    [13] Huang RL, Gu F, Kirma NB, et al. Comrehensive methylome analysis of ovariantumors reveals hedgehog signaling pathway regulators as prognostic DNAmethylation biomarkers. Epigenetics.2013;8(6):624-34.
    [14] Lu L, Zhu G, Zhang C, et al. Association of large noncoding RNA HOTAIRexpression and its downstream intergenic CpG island methylation with survival inbreast cancer. Breast Cancer Res Treat.2012;136(3):875-83.
    [15] Savio AJ, Lemire M, Mrkonjic M, et al. MLH1region polymorphisms show asignificant association with CpG island shore methylation in a large cohort of healthyindividuals. PLoS One.2012;7(12): e51531.
    [16] Peters I, Gebauer K, Dubrowinskaja N, et al. GATA5CpG island hypermethylation isan independent predictor for poor clinical outcome in renal cell carcinama. Oncol Rep.2014;31(4):1523-30.
    [17] Toyota M, Yamamoto E. DNA methylation changes in cancer. Prog Mol Biol TranslSci.2011;101:447-57.
    [18] Lee JJ, Ko E, Cho J, et al. Methylation and immunoexpression of p16(INK4a) TumorSuppressor Gene in Primary Breast Cancer Tissue and Their Quantitative p16(INK4a)Hypermethylation in Plama by Real-Time PCR. Korean J Pathol.2012;46(6):554-61.
    [19] Chang X, Zhang S, Ma J, et al. Association of NDRG1Gene Promoter Methylationwith Reduced NDRG1Expression in Gastric Cancer Cells and Tissue Specimens. CellBiochem Biophys.2012.[Epub ahead of print]
    [20] Steffen R. The history and role of gastric banding. Surg Obes Relat Dis.2008;4(3Suppl): S7-13.
    [21] Tahara T, Shibata T, Arisawa T, et al. CpG island promoter methylation(CIHM)status of tumor suppressor genes correlates with morphological appearances of gastriccancer. Anticancer Res.2010;30(1):239-44.
    [22] Tamura G, Yin J, Wang S, et al. E-Cadherin gene promoter hypermethylation inprimary human gastric carcinomas. J Natl Cancer Inst.2008;92(7):569-73.
    [23] Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histonemodifications. Nat Struct Mol Biol.2013;20(3):259-66.
    [24] van Heesbeen HJ, Mesman S, Veenvliet JV, et al. Epigenetic mechanisms in thedevelopment and maintenance of dopaminergic neurons. Development.2013;140(6):1159-69.
    [25] Hou ST, Jiang SX, Aylsworth A, et al. Collapsin response mediator protein3deacetylates histone H4to mediate nuclear condensation and neuronal death. ci Rep.2013;3:1350.
    [26] Hohl M, Wagner M, Reil JC, et al. HDAC4controls histone methylation in responseto elevated cardiac load. J Clin Invest.2013;123(3):1359-70.
    [27] Hennig W, Weyrich A. Histone modifications in the male germ line of Drosophila a.BMC Dev Biol.2013;13(1):7.
    [28] Neeli I, Radic M. Opposition between PKC isoforms regulates histone deiminationand neutrophil extracellular chromatin release. Front Immunol.2013;4:38.
    [29] Kim JG, Yi JM, Park SJ. Histone demethylase JMJD2B-mediated cell proliferationcell proliferation regulated by hypoxia and rediation in gastric cancer cell. BiochimBiophys Acta.2012;1819(11-12):1200-7.
    [30] Meng CF, Zhu XJ, Peng G, et al. Role of histone modifications and DNA methylationin the regulation of O6-methylguanine-DNA methyltransferase gene expression inhuman stomach cancer cells.Cancer Invest.2010;28(4):331-9.
    [31] Roque A, Ponte I, Arrondo JL, et al. Phosphorylation of the carboxy-terminal domainof histone H1: effects on secondary structure and DNA condensation. Nucleic AcidsRes.2008;36(14):4719-26.
    [32] Huang EC, Zhao Y, Chen G, et al. Zyflamend, a polyherbal mixture, down regulatesclass Ⅰa nd class Ⅱ histone deacetylases and increases p21levels in castrate-resistantprostate cancer cells. BMC Complement Altern Med.2014;14(1):68.
    [33] Farazi TA, Hoell JI. MicroRNAs in Human Cancer. Adv Exp Med Biol.2013;774:1-20.
    [34] Velu VK, Ramesh R, Srinivasan AR. Circulating MicroRNAs as Biomarkers inHealth and Disease. J Clin Diagn Res.2012;6(10):1791-5.
    [35] Xu L, Dai WQ, Xu XF, et al. Effects of multiple-target anti-microRNA antisenseoligodeoxyribonucleotides on proliferation and migration of gastric cancer cells.Asian Pac J Cancer Prev.2012;13(7):3203-7.
    [36] Musacchio T, Torchilin VP. SiRNA delivery: from basics to therapeutic applications.Front Biosci (Landmark Ed).2013;18:58-79.
    [37] Takagi Y, Kobayashi T, Shiono M, et al. Interaction of folliculin (Birt-Hogg-Dubegene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene.2008;27(40):5339-47.
    [38] Xiao B, Zhang Y, Niu W, et al. Association of ATP1B1single-nucleotidepolymorphisms with blood pressure and hypertension in a Chinese population. ClinChim Acta.2009;407(1-2):47-50.
    [39] Guo J, Miao Y, Xiao B, et al. Differential expression of microRNA species in humangastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol.2009;24(4):652-7.
    [40] Podolska K, Stachurska A, Hajdukiewicz K, et al. Gene therapy prospects-intranasaldelivery of therapeutic genes. Adv Clin Exp Med.2012;21(4):525-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700