Sonic hedgehog信号通路在大鼠慢性高眼压视网膜神经节细胞损伤中的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢性高眼压动物模型的建立和评估
     目的:探讨建立稳定的大鼠慢性高眼压模型的方法。
     方法:成年雄性SD大鼠(250g左右)60只,以右眼为高眼压眼,手术显微镜下分离上直肌两侧及鼻下方的3根巩膜上静脉,缝线结扎后缝合球结膜。左眼为对照眼,除不结扎静脉外,其它操作相同。分别于术后30min、1d、3d、5d、7d、10d、14d、28d、35d和42d用Tono-penXL笔式眼压计测量眼压并记录,测量时间为上午10点-11点。于术后2w和4w处死大鼠,处死前5天经上丘行DiI逆行标记RGCs,制作视网膜铺片,正置荧光显微镜观察并计数分析各组视网膜神经节细胞(retinal ganglion cells, RGCs)存活情况。结果:对照眼的平均眼压为13.4±0.27 mm,术后30min、1d和3d检测高眼压眼的眼压分别为21.4±0.25mmHg.25.5±0.27mmHg和23.4±0.19 mmHg,第5天达到最高值,为27.0±2.31 mmHg.随后眼压缓慢下降,第7d、10d、14d和28d分别测得眼压值为:26.4±2.01 mmHg.26.8±1.83 mmHg、25.6±0.21 mmHg和23.6±0.17 mmHg,上述各时间点测得的眼压数值与对照组相比均具有显著性差异(P<0.01)。术后第35d和42d时眼压降至正常范围,分别为14.7±0.31mmHg和15.9±0.26mmHg.视网膜铺片DiI逆行标记计数分析RGCs结果显示,对照眼RGCs的平均密度2201.45±124.67个/mm2,术后2周和4周,高眼压眼RGCs的密度显著减少,分别降到1974.30±108.81个/mm2和1732.96±89.14个/mm2,均明显少于对照眼(P<0.01)。
     结论:结扎3条巩膜外静脉可以成功诱导SD大鼠慢性高眼压,并可使眼压稳定维持到4周,是目前慢性高眼压青光眼实验研究中较为便捷、实用和可靠的建立动物模型的手段。经大鼠上丘DiI逆行标记RGCs,结合形态学观察,可以有效示踪RGCs的形态和数量,是研究实验条件下RGCs数量变化的较为理想的方法。
     第二部分大鼠慢性高眼压模型中视网膜Sonic Hedgehog(Shh)信号通路分子表达的研究
     目的:研究Sonic Hedgehog及其下游信号通路分子Smoothened(Smo)、Patched(Ptc)和Glil在正常及慢性高眼压大鼠视网膜组织中的表达及变化。
     方法:雄性SD大鼠60只,右眼为高眼压组,结扎3根巩膜上静脉;左眼为对照组,除不结扎静脉外,其它操作相同。建模成功的大鼠,分别于3d、1w、2w、4w各处死15只。其中3只用于视网膜Shh、受体Smo、Ptc以及核转录因子Glil的免疫荧光或免疫荧光双标染色,正置荧光显微镜观察呈现阳性荧光表达的细胞类型、数量及荧光强弱等;6只用于Western-blot方法定量检测视网膜组织中上述四种蛋白的表达情况。余下6只大鼠视网膜用于实时荧光定量逆转录聚合酶链反应(real-time fluorescent quantitative reversetranscription polymerase chain reaction, Real-time PCR),定量分析高眼压视网膜组织中Shh、Smo、Ptc和Glil的mRNA表达变化。Western-blot和Real-time PCR数据采用spss14.0软件包进行统计分析,进行正态性检验、方差齐性检验,描述性统计值以平均值±标准误(x±s)表示。两组之间配对资料的t检验,组间差异比较用One-way ANOVA,P<0.05有统计学意义。
     结果:免疫荧光双标显示:对照组大鼠视网膜Shh主要在RGCs表达,内丛状层也可见到弱阳性的表达;2w时,高眼压组在RGCs、内丛状层和外丛状层都可以检测到Shh表达,荧光强度明显增加。对照组Glil和Smo在RGCs的细胞质中有弱阳性表达,高眼压组Glil阳性荧光信号同时出现在RGCs细胞质和细胞核中。Real-time PCR结果显示1w、2w、4w高眼压组ShhmRNA分别是对照组的2.6±0.7、4.4±0.9和2.1±0.5倍,各时间点同对照组相比,差异有显著性(P<0.01), Smo和Gli1mRNA表达量于成模后1w开始升高,并于2w时到达高峰,随后又减少,与对照组相比,差异均有显著性(P<0.01)。Ptc的蛋白和mRNA表达量在高眼压组和对照组未见明显差异。Western-blot结果显示高眼压组在1w、2w和4w视网膜Shh蛋白分别是对照组的2.1±0.3、4.4±0.6和3.0±0.7倍(P<0.01),并于2w时达到高峰。视网膜Smo和Glil蛋白表达量在1w时开始增高,2w时到达高峰,随后下降。在1w、2w和4w时,Smo蛋白表达分别是对照组的3.2±0.4倍(P<0.05)、3.4±0.6倍(P<0.01)和1.4±0.2倍(P>0.05);Glil蛋白表达量分别是对照组的1.6±0.1倍(P<0.05)、2.5±0.3倍(P<0.05)和2.0±0.5倍(P<0.05)。
     结论:大鼠慢性高眼压动物模型视网膜组织中Shh及Smo、Gli1表达水平升高,Glil在RGC中呈现核转位表达。提示慢性高眼压时视网膜Shh信号转导通路激活,可能参与慢性高眼压视网膜视神经损伤修复的生理病理过程。
     第三部分:Shh信号转导通路对大鼠慢性高眼压RGCs损伤的作用及机制研究
     目的:研究Shh信号转导通路对大鼠慢性高眼压RGCs损伤的作用,并探讨其可能分子机制。
     方法:成年雄性SD大鼠以右眼结扎3条巩膜上静脉诱导高眼压形成。按照玻璃体腔内注射药物或浓度的不同将大鼠随机分为9组:不注射组、10μg/ml Shh-N组、50μg/ml Shh-N组、100μg/ml Shh-N组、1.0μg/ml cyclopamine (Shh阻滞剂)组、5.0μg/ml cyclopamine组、5.0μg/ml tomatidine组(与Cyclopamine有相似的化学结构,但不能抑制Shh信号转导通路,)、0.1M磷酸盐缓冲液(phosphate-buffered saline, PBS)组、和45%(W/V)2-羟丙基-环糊精(2-hydroxypropyl-cyclodextrin, HBC)组,注射体积均为2μl。每周重复注射一次。检测时间点为玻璃体腔注射后1w、2w和4w。在动物处死前5d,行DiI逆行标记RGCs。制作全视网膜铺片正置荧光显微镜观察RGCs的存活及数量,并提取视网膜蛋白和总RNA行Western-blot和Real-time PCR检测信号通路中各成分含量的变化。
     结果:眼压升高后2w和4w时,玻璃体腔内注射100μg/ml Shh-N组RGCs丧失率为分别为4.54±0.36%和9.67±0.31%,与PBS组(15.26±1.57%,22.58±1.97%)相比差异有显著性(P<0.01);注射Shh-N50μg/ml RGCs丧失率分别为7.31±0.39%和12.67±0.29%,与PBS组(15.26±1.57%,22.58±1.97%)相比差异也有显著性(P<0.05);注射10μg/ml Shh-N组RGCs丧失率与PBS组相比无显著性差异。玻璃体腔注射1.0μg/ml Cyclopamine组RGCs丧失率分别为19.29±0.43%(P<0.05)和26.4±2.04%(P<0.05),5.0μg/ml Cyclopamine组RGC丧失率分别为25.2±0.29%和30.7±0.31%,与HBC组相比差异均有显著性(P<0.01)。注射tomatidine组与注射PBS组相比,RGCs的丧失率无统计学差异。HBC组与未注射组RGCs数量无统计学差异。Shh对损伤RGC的保护作用及Cyclopamine的阻断效应均呈剂量相关性,高浓度组效果更加显著。玻璃体腔注射Shh-N 2w后,Western Blot结果显示高眼压眼视网膜Smo和Glil蛋白表达量增加,Real-timePCR结果:Smo mRNA和Gli1 mRNA分别为对照组的1.52±0.16%倍和1.96±0.31%倍。注射Cyclopamine后,高眼压眼Smo和Glil蛋白和mRNA表达量分别降低。
     结论外源性和内源性Shh都可以在高眼压引起的RGCs损伤中发挥保护作用,并呈剂量相关性,以高浓度为显著。Shh可能通过释放Smo,激活转录因子Glil发挥神经保护作用。
Part1 Establishment of chronic ocular hypertension model in rats
     Purpose:To establishment consistent chronic ocular hypertension glaucoma model in rats.
     Methods:Sixty adult male Sprague Dawley (SD) rats weighting approximately 250g. Unilateral intraocular pressure (IOP) elevation was induced in the right eye by ligating 3 episcleral veins. The contralateral eyes, which served as controls, were sham-operated by isolating the veins in a similar manner without any ligation. IOPs were measured in both eyes under general anesthesia using Tono-pen XL tonometer at the following times after surgey:30 minutes, 1day,3 days,5days,7days, 10day, 14days,21days,28days,35days and 42days. Animals with IOPs returned to normal were excluder from the study. Retinal ganglion cells(RGCs)were retrogradely labled with a DiI fluorescent tracer at 5 days before sacrifice. At 2w and 4w after operation, the eyes were then enucleated, and the retinas were prepared as flatmounts. DiI-labeled RGCs were visualized with a fluorescence microscope.
     Result:The IOP in control eyes was 13.4±0.27 mm Hg and remained constant throughout the experiment. At 30 minutes、1day and 3 days after operation, the IOP of high intraocular pressure group eyes was 21.4±0.25mmHg、25.5±0.27mmHg and 23.4±0.19 mmHg respectively.The highest IOP reached 27±2.31 mm Hg at 5days and was significantly greater than the IOP of control eyes. At the following days of 7days、10days、14days and 28days, the IOP was 26.4±2.01 mmHg、26.8±1.83 mmHg、25.6±0.21 mmHg and 23.6±0.17 mmHg, respectively, and reached to normal at 35days(14.7±0.31mmHg) and 42days(15.9±0.26mmHg)。Retinal flat mount revealed that the density of the RGCs was decreased to 1974.30±108.81 clls/mm2 and 1732.96±89.14 cells/mm2 at 2 and 4 weeks after IOP elevation, and was significantly decreased than the control eyes (p< 0.01).
     Concousion:A consistent chronic ocular hypertension glaucoma model can be established by ligating 3 episcleral veins. DiI retrograde labeling could be an ideal measure in the research of RGCs.
     Part 2 Experssion of Sonic Hedgehog signaing in chronic ocular hypertension in rats
     Purpose:To study changes in the expression of Sonic Hedgehog (Shh) and related molecules Smoothened(Smo)、Patched(Ptc) and Gli1 in the rats' retina of chronic ocular hypertension.
     Methods:Sixty adult male SD rats weighting approximately 250g. Unilateral intraocular pressure (IOP) elevation was induced in the right eye by ligating 3 episcleral veins. The contralateral eyes which served as controls, were sham-operated. Retinal expression of Shh, its receptor Ptc、Smo and transcription factor Gli1 protein and mRNA was determined by immunohistochemistry, western blotting, and real-time fluorescent quantitative reversetranscription polymerase chain reaction(Real-time PCR). Statistical analysis was performed using SPSS software Ver.14.0 for Windows.Two groups were compared using paired t-tests. Multiple groups were compared using a one-way ANOVA with Duncan's multiple pairwise comparison tests. Data were shown as mean±SD. Values of p less than 0.05 were considered significant.
     Result:Shh protein expression in both normal and hypertensive rat eyes using immunohistochemistry. In the control eyes, Shh was mainly detected in the RGCs. Weak Shh staining was also present in the inner plexiform layers (IPL). Smo and Gli1 were immunohistochemically detected in both normal and hypertensive rat eyes. Gli1 protein is observed in the cell cytoplasm of RGCs in the control eyes, whereas nuclear translocation of Gli1 was detected in RGCs of chronic ocular hypertension eyes. Real-time PCR analysis shows that retinas from the elevated IOP group had 2.1-to 4.4-fold greater Shh expression than control retinas (p< 0.05), with Shh expression reaching a peak at 2 weeks after IOP elevation. So did Gli1 and Smo mRNA expression. However, Ptc mRNA up-regulation was not detected. Western blot analysis shows that at 1w、2w and 4w after operation, retinas from the elevated IOP group had 2.1±0.3、4.4±0.6 and 3.0±0.7 fold greater Shh protein expression than control retinas,3.2±0.4 (P<0.05)、3.4±0.6 (P<0.01) and 1.4±0.2(P>0.05) fold greater Smo protein expression than control retinas, and 1.6±0.1 (P<0.05) 2.5±0.3(P<0.05)、2.0±0.5(P<0.05)fold greater Gli1 protein expression than control retinas. In contrast, no differences were detected in Ptc expression between hypertensive and control retinas.
     Conclusion:Shh、Smo and Glil are up-regulated in a time-dependent manner in retinas exposed to ocular hypertension. Changes in the expression of Shh and its downstream components, as well as the nuclear translocation of Glil in hypertensive retina, suggest an involvement of Shh pathway in the chronic intraocular hypertension.
     Part3 The effect of Sonic hedgehog in retinal ganglion cells following chronic ocular hypertension
     Purpose:To study the function of Sonic hedgehog signaing in retinal ganglion cells following chronic ocular hypertension
     Methods:Intraocular pressure elevation in adult rat was induced by ligating 3 episcleral veins. Exogenous Shh and its inhibitor cyclopamine and tomatidine were intravitreally injected to examine their effects on RGC survival after ocular hypertension.The rats were randomly divided into 9 groups:untreated group、10μg/ml Shh-N group、50μg/ml Shh-N group、100μg/ml Shh-N group、1.0μg/ml cyclopamine group、5.0μg/ml cyclopamine group、5.0μg/ml tomatidine group、phosphate-buffered saline (PBS) group and 2-hydroxypropyl-cyclodextrin (HBC) group. Each group received intravitreal application of 2μl. At 1w、2w and 4w after the operation, the animals were killed, before sacrifice, RGCs were retrogradely labeled by injecting DiI into the superior colliculi of the brain. Retinal flat mount photographs were assessed for the number of survival RGCs. Shh pathway components mediating neuroprotective effects were characterized using western blotting and Real-time PCR.
     Results:RGCs loss at 2 and 4 weeks after IOP elevation, was significantly reduced by intravitreally injected 100μg/ml Shh-N (4.54±0.36%and 9.67±0.31%) and 50μg/ml Shh-N (7.31±0.39%and 12.67±0.29%) (p< 0.01, versus PBS-treated groups). In contrast, cyclopamine increased RGC loss. (25.2±0.29%at 2 weeks and 30.7±0.31%at 4 weeks) (p< 0.05, versus HBC-treated groups). No differences were detected in RGCs loss between tomatidine-treated groups and PBS group. At 2 weeks after intravitreally injected of Shh-N, Western blot analysis shows that Smo and Gli1 protein expression increased. Real-time PCR analysis shows that the mRNA levels of Smo and Gli1 were significantly up-regulated (1.52±0.16%and 1.96±0.31% fold greater than HBC group). In contrast, intravitreal cyclopamine administration decreased retinal expression of both Smo and Gli1 protein and mRNA.
     Conclusions:Shh has neuroprotective effects on damaged RGCs in a rat chronic hypertension model. Shh may exert neuroprotective effects by relieving the inhibition of Smo and subsequently activating Gli1.
引文
1. Lee DA, Higginbotham EJ. Glaucoma and its treatment:a review. Am J Health Syst Pharm 2005;62:691-699.
    2. Foster PJ, Johnson GJ. Glaucoma in China:how big is the problem? Br J Ophthalmol 2001;85:1277-1282.
    3. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741-748.
    4. Harwerth RS, Carter-Dawson L, Smith EL,3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004;45:3152-3160.
    5. Rudzinski M, Wong TP, Saragovi HU. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol 2004;58:341-354.
    6. Levkovitch-Verbin H, Dardik R, Vander S, Nisgav Y, Kalev-Landoy M, Melamed S. Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci 2006;47:2491-2497.
    7. Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000;20:8693-8700.
    8. Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli:conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 2006;133:3-14.
    9. Huang X, Ying LT, Chiang C. Region-specific requirement for cholesterol modification of sonic hedgehog in patterning the telencephalon and spinal cord. Development 2007; 134:2095-2105.
    10. Di Marcotullio L, Ferretti E, De Smaele E, Screpanti I, Gulino A. Suppressors of Hedgehog signaling-Linking aberrant development of neural progenitors and tumorigenesis. Molecular Neurobiology 2006;34:193-204.
    11. Ho KS, Scott MP. Sonic hedgehog in the nervous system:functions, modifications and mechanisms. Current Opinion in Neurobiology 2002; 12:57-63.
    12. Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE. Dual degradation signals control Gli protein stability and tumor formation. Gene Dev 2006;20:276-281.
    13. Pan Y, Bai CYB, Joyner AL, Wang BL. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Molecular and Cellular Biology 2006;26:3365-3377.
    14. Wang BW, Li YY. Evidence for the direct involvement of beta TrCP in Gli3 protein processing. P Natl Acad Sci USA 2006;103:33-38.
    15. Zhang Q, Zhang L, Wang B, Ou CY, Chien CT, Jiang J. A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Developmental Cell 2006; 10:719-729.
    16. Wilson L, Maden M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Developmental Biology 2005;282:1-13.
    17. Roussa E, Krieglstein K. Induction and specification of midbrain dopaminergic cells:focus on SHH, FGF8, and TGF-beta. Cell Tissue Res 2004;318:23-33.
    18. Merchan P, Bribian A, Sanchez-Camacho C, Lezameta M, Bovolenta P, de Castro F. Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Molecular and Cellular Neuroscience 2007;36:355-368.
    19. Oh S, Huang X, Chiang C. Specific requirements of sonic hedgehog signaling during oligodendrocyte development. Dev Dynam 2005;234:489-496.
    20. Calloni GW, Glavieux-Pardanaud C, Le Douarin NM, Dupin E. Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. P Natl Acad Sci USA 2007; 104:19879-19884.
    21. Cayuso J, Ulloa F, Cox B, Briscoe J, Marti E. The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity. Development 2006; 133:517-528.
    22. Akazawa C, Tsuzuki H, Nakamura Y, et al. The upregulated expression of sonic hedgehog in motor neurons after rat facial nerve axotomy. J Neurosci 2004;24:7923-7930.
    23. Zhang L, Hua F, Yuan GH, Zhang YD, Chen Z. Sonic hedgehog signaling is critical for cytodifferentiation and cusp formation in developing mouse molars. J Mol Histol 2008;39:87-94.
    24. Wu CL, Chen SD, Hwang CS, Yang DI. Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Commun 2009;385:112-117.
    25. Morrison JC. Elevated intraocular pressure and optic nerve injury models in the rat. J Glaucoma 2005; 14:315-317.
    26. Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 2000;41:431-442.
    27. Mermoud A, Baerveldt G, Mickler DS, Wu GS, Rao NA. Animal model for uveitic glaucoma. Graefes Arch Clin Exp Ophthalmol 1994;232:553-560.
    28. Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995;61:379-382.
    29. Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997;64:85-96.
    30. Ueda J, Sawaguchi S, Hanyu T, et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 1998;42:337-344.
    31. Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 2002;43:402-410.
    32. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991;32:484-491.
    33. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D'Anna SA, Kerrigan D, Pease ME. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci 2001;42:975-982.
    34. Gellrich NC, Schimming R, Zerfowski M, Eysel UT. Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats. Br J Ophthalmol 2002;86:233-237.
    35. Misantone LJ, Gershenbaum M, Murray M. Viability of retinal ganglion cells after optic nerve crush in adult rats. J Neurocytol 1984; 13:449-465.
    36. Potts RA, Dreher B, Bennett MR. The loss of ganglion cells in the developing retina of the rat. Brain Res 1982;255:481-486.
    37. Naskar R, Wissing M, Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 2002;43:2962-2968.
    38. Vidal-Sanz M, Villegas-Perez MP, Bray GM, Aguayo AJ. Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye dil. Exp Neurol 1988;102:92-101.
    39. Chauhan BC, LeVatte TL, Jollimore CA, et al. Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 2004;45:144-152.
    40. Levkovitch-Verbin H, Quigley HA, Martin KR, Zack DJ, Pease ME, Valenta DF. A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci 2003;44:3388-3393.
    41. Cohen MM, Jr. The hedgehog signaling network. Am J Med Genet A 2003;123A:5-28.
    42. Di Marcotullio L, Ferretti E, De Smaele E, Screpanti I, Gulino A. Suppressors of hedgehog signaling:Linking aberrant development of neural progenitors and tumorigenesis. Mol Neurobiol 2006;34:193-204.
    43. Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 2001;7:706-711.
    44. Zhang F, Li C, Wang R, et al. Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 2007; 150:938-949.
    45. Saika S, Muragaki Y, Okada Y, et al. Sonic hedgehog expression and role in healing corneal epithelium. Invest Ophthalmol Vis Sci 2004;45:2577-2585.
    46. Jensen AM, Wallace VA. Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 1997;124:363-371.
    47. Levine EM, Roelink H, Turner J, Reh TA. Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J Neurosci 1997;17:6277-6288.
    48. Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16:2743-2748.
    49. Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000;406:1005-1009.
    50. Incardona JP, Gaffield W, Kapur RP, Roelink H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 1998;125:3553-3562.
    51. Tas S, Avci O. Rapid clearance of psoriatic skin lesions induced by topical cyclopamine. A preliminary proof of concept study. Dermatology 2004;209:126-131.
    52. Miyazaki K, Saika S, Yamanaka O, Okada Y, Ohnishi Y. Treatment of eyelid epithelial neoplasm by targeting sonic hedgehog signaling:an experimental study. Jpn J Ophthalmol 2006;50:305-311.
    53. Bijlsma MF, Leenders PJ, Janssen BJ, Peppelenbosch MP, Ten Cate H, Spek CA. Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury. Exp Biol Med (Maywood) 2008;233:989-996.
    54. van den Heuvel M, Ingham PW. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 1996;382:547-551.
    55. Stone DM, Hynes M, Armanini M, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996;384:129-134.
    56. Denef N, Neubuser D, Perez L, Cohen SM. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 2000;102:521-531.
    57. Jia J, Tong C, Wang B, Luo L, Jiang J. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 2004;432:1045-1050.
    1. Nybakken, K. and N. Perrimon, Hedgehog signal transduction:recent findings. Curr Opin Genet Dev,2002.12(5):p.503-11.
    2. Marti, E. and P. Bovolenta, Sonic hedgehog in CNS development:one signal, multiple outputs. Trends Neurosci,2002.25(2):p.89-96.
    3. Jeong, J. and A.P. McMahon, Cholesterol modification of Hedgehog family proteins. J Clin Invest,2002.110(5):p.591-6.
    4. Cohen, M.M., Jr., The hedgehog signaling network. Am J Med Genet A, 2003.123A(1):p.5-28.
    5. Di Marcotullio, L., et al., Suppressors of hedgehog signaling:Linking aberrant development of neural progenitors and tumorigenesis. Mol Neurobiol,2006.34(3):p.193-204.
    6. Huangfu, D. and K.V. Anderson, Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development,2006.133(1):p.3-14.
    7. Huntzicker, E.G., et al., Dual degradation signals control Gli protein stability and tumor formation. Genes Dev,2006.20(3):p.276-81.
    8. Ho, K.S. and M.P. Scott, Sonic hedgehog in the nervous system:functions, modifications and mechanisms. Curr Opin Neurobiol,2002.12(1):p.57-63.
    9. Pan, Y., et al., Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol,2006. 26(9):p.3365-77.
    10. Zhang, Q., et al., A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell,2006.10(6):p. 719-29.
    11. Jensen, A.M. and V.A. Wallace, Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development,1997.124(2):p.363-71.
    12. Neumann, C.J. and C. Nuesslein-Volhard, Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science,2000.289(5487):p.2137-9.
    13. Perron, M., et al., A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. Development,2003.130(8):p.1565-77.
    14. Zhang, X.M. and X.J. Yang, Regulation of retinal ganglion cell production by Sonic hedgehog. Development,2001.128(6):p.943-57.
    15. Shkumatava, A., et al., Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development,2004.131 (16):p.3849-58.
    16. Wang, Y., et al., Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development,2005.132(22):p.5103-13.
    17. Stenkamp, D.L., et al., Embryonic retinal gene expression in sonic-you mutant zebrafish. Dev Dyn,2002.225(3):p.344-50.
    18. Jadhav, A.P., S.H. Cho, and C.L. Cepko, Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A,2006.103(50):p.18998-9003.
    19. Bourikas, D., et al., Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci,2005.8(3):p.297-304.
    20. Kolpak, A., J.Zhang, and Z.Z. Bao, Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration. J Neurosci,2005.25(13):p.3432-41.
    21. Wallace, V.A. and M.C. Raff, A role for Sonic hedgehog in axon-to-astrocyte signalling in the rodent optic nerve. Development,1999. 126(13):p.2901-9.
    22. Soukkarieh, C., et al., Pax2 regulates neuronal-glial cell fate choice in the embryonic optic nerve. Dev Biol,2007.303(2):p.800-13.
    23. Merchan, P., et al., Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci, 2007.36(3):p.355-68.
    24. Levine, E.M., et al., Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J Neurosci,1997.17(16): p.6277-88.
    25. Stenkamp, D.L., et al., Function for Hedgehog genes in zebrafish retinal development. Dev Biol,2000.220(2):p.238-52.
    26. Stenkamp, D.L. and R.A. Frey, Extraretinal and retinal hedgehog signaling sequentially regulate retinal differentiation in zebrafish. Dev Biol,2003. 258(2):p.349-63.
    27. Orentas, D.M., et al., Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development,1999. 126(11):p.2419-29.
    28. Lai, K., et al., Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci,2003.6(1):p.21-7.
    29. Palma, V., et al., Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development,2005.132(2):p.335-44.
    30. Calloni, G.W., et al., Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proc Natl Acad Sci U S A,2007.104(50):p.19879-84.
    31. Cayuso, J., et al., The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity. Development,2006.133(3):p.517-28.
    32. Takabatake, T., et al., Hedgehog and patched gene expression in adult ocular tissues. FEBS Lett,1997.410(2-3):p.485-9.
    33. Wang, Y.P., et al., Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nat Neurosci,2002.5(9):p. 831-2.
    34. Fuccillo, M., A.L. Joyner, and G. Fishell, Morphogen to mitogen:the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci,2006.7(10):p.772-83.
    35. Tropepe, V., et al., Retinal stem cells in the adult mammalian eye. Science,2000.287(5460):p.2032-6.
    36. Ahmad, I., L. Tang, and H. Pham, Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun,2000.270(2): p.517-21.
    37. Coles, B.L., et al., Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A,2004.101(44):p.15772-7.
    38. Moshiri, A., C.R. McGuire, and T.A. Reh, Sonic hedgehog regulates proliferation of the retinal ciliary marginal zone in posthatch chicks. Dev Dyn,2005.233(1):p.66-75.
    39. Moshiri, A. and T.A. Reh, Persistent progenitors at the retinal margin of ptc+/- mice. J Neurosci,2004.24(1):p.229-37.
    40. Livesey, F.J. and C.L. Cepko, Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci,2001.2(2):p.109-18.
    41. Das, A.V., et al., Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling. Dev Biol,2006. 299(1):p.283-302.
    42. Raymond, P.A., et al., Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol,2006.6:p.36.
    43. Ooto, S., et al., Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A,2004.101 (37):p. 13654-9.
    44. Fischer, A.J. and T.A. Reh, Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci,2001.4(3):p. 247-52.
    45. Surace, E.M., et al., Inhibition of ocular neovascularization by hedgehog blockade. Mol Ther,2006.13(3):p.573-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700