TGF-β1诱导醛糖还原酶(AR)高表达的信号通路机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醛糖还原酶(Aldose Reductase, AR)为NADPH依赖性醛-酮还原酶家族成员之一,是多元醇代谢通路中的限速酶,可催化己糖或戊糖的NADPH依赖性还原反应,使之变成相应的糖醇或多元醇。本课题组前期发现并通过实验鉴定,AR作为转化生长因子-β1(transforming growth factor-β1, TGF-β1)相关反应性基因之一,并在其诱导的肾小球硬化、肾脏纤维化中起着重要作用。近年来,随着对AR研究的逐渐深入,学者们开始认识到,AR在体内的最适底物并非葡萄糖,而是细胞内的一些有毒醛类化合物,例如4-hydroxy-trans-2-nonenal (HNE), AR对于这类底物的结合能力远高于糖类化合物。该类醛化合物最主要的来源为脂质过氧化,特别是ROS介导的脂质过氧化过程。
     有研究显示,TGF-β1致纤维化的作用机制中与ROS和氧化应激关系密切,ROS可以激活大量加剧组织损伤的信号通路,Nrf2就是其中之一,它的活化可以反过来加速ROS的生成以及ECM的沉积,提示ROS和Nrf2可能参与了TGF-β1上调AR的表达。Nrf2作为一个转录因子,其本身是否受到ROS通路的调节,是否在TGF-β1上调AR的表达中也具有桥梁作用,目前未见国内外报道。
     本课题从研究HMC表达AR与TGF-β1的相关性研究作为切入点,首次阐明了ROS和Nrf2在其中的作用及其分子机制。采用电子自旋共振(electron spin resonance,ESR)技术、Real-time PCR、Western Blot、报告基因等实验方法,证明了TGF-β1可以诱导HMC表达AR的增加;ROS和Nrf2参与了TGF-β1上调AR的表达。揭示了作为TGF-β1的相关反应性基因,AR的表达受其调控,分别体现在核酸、蛋白水平和活性上。进一步的信号通路研究表明,TGF-β1引起细胞内ROS水平增高,进而激活Nrf2信号通路,从而导致AR的转录水平以及翻译水平上调。对AR基因的启动子研究更加证明了转录因子Nrf2在TGF-β1诱导的AR上调过程中起着重要作用。
     目的探索ROS-Nrf2信号通路介导TGF-β1诱导HMC高表达AR过程的机制。
     方法HMC体外培养;Western blot、real-time RT-PCR、荧光法检测TGF-β1因子诱导HMC中AR高表达;ESR技术检测TGF-β1作用HMC后ROS量的变化;瞬时转染Nrf2siRNA和加入抗氧化剂NAC和SOD,对AR高表达的影响;加入外源性H202对Nrf2表达的影响:双荧光素酶报告系统检测Nrf2对含有ARE结合位点AR启动子转录活性的影响。
     结果
     1. TGF-β1可以诱导HMC表达AR的增加;随着TGF-β1作用时间的延长和剂量的增大,AR的基因表达水平发生变化,在24h内表达上调明显;AR蛋白表达增高和AR活性水平增强,与作用时间和剂量呈正相关。
     2. TGF-β1可以诱导HMC产生ROS的增加;随着TGF-β1作用时间的延长和剂量的增大,ROS数量发生变化,在30min内达到最多,与TGF-β1剂量呈正相关;
     3. TGF-β1可以诱导HMC表达Nrf2的增加,随着TGF-β1作用剂量的增大,Nrf2的蛋白表达水平逐渐增高,与TGF-β1作用剂量呈正相关;加入外源性ROS刺激HMC,Nrf2的蛋白表达水平增高。
     4.抗氧化剂SOD、NAC能够抑制TGF-β1诱导ROS的生成增多,进而抑制TGF-β1诱导AR基因水平、蛋白表达水平的增高和AR活性的增强。
     5.抗氧化剂SOD、NAC和Nrf2 siRNA都可以有效干扰Nrf2的表达,下调Nrf2表达能够抑制’TGF-β1诱导的AR基因水平、蛋白表达水平的增高和AR活性的增强。
     6.双荧光素酶报告基因证实,与转染pGL3-basic的对照组相比,HA-Nrf2可以使AR启动子区含有ARE结合位点的1.06k-AR-luc、ARE质粒转录活性显著增加;突变ARE序列的两个位点(ARE1、ARE2)后,可以显著降低ARE质粒的转录活性。
     结论
     1.作为TGF-β1的相关反应性基因,AR的表达受其调控,分别体现在核酸、蛋白水平和活性上。
     2.进一步的信号通路研究表明,TGF-β1引起细胞内ROS水平增高,并进而激活Nrf2信号通路,从而导致AR的转录水平、翻译水平上调以及酶活性增强。
     3.对AR基因的启动子研究更加证明了转录因子Nrf2在TGF-β1诱导的AR上调过程中起着重要作用。
Aldose reductase (Aldose Reductase, AR) is a member of the NADPH-dependent aldo-keto reductase superfamily, the rate-limiting enzyme in polyol pathway. It can catalyze the NADPH-dependent reduction reaction of hexose and pentose and turn it into the corresponding sugar alcohols or polyols. Our group previously transfer the TGF-β1 gene into rat MC and obtained 28 TGF-β1-responsive gene clones in the screening of positive clones. By sequencing and comparing in Genebank, we found AR, one of TGF-β1-responsive genes.
     Glomerulosclerosis is a final common outcome of glomerular injury in various types of human glomerular diseases. Under normal circumstances, the normal mesangial cells can express a certain level of TGF-β1, which is necessary for cell physiological activities. It plays an important role in the regulation of extracellular matrix metabolism, involves in inflammation and interstitial fibrosis and is considered to be one of the important cytokines leading to fibrosis. Because TGF-β1 is an important mediator in glomerulonephritis and glomerulosclerosis and closely related to ECM deposition, we takes into account that AR may induce the proliferation of MC and then will participate in the pathogenesis of glomerular sclerosis.
     It has been reported that many growth factors including TGF-β1 induce fibrosis under the participation of oxidative stress. Some scholars believe that renal fibrosis and ROS are also related to oxidative stress. ROS played an important role in the course of a variety of fibrotic diseases and ROS can activate a large number of signaling pathways, thus to exacerbate the tissue injury. Nrf2 is one of the activated pathways and its activation would accelerate the generation of ROS and ECM deposition. Nrf2 is an important transcription factor, it enters into the nucleus, binding to specific DNA sequences and inducing the expression of downstream genes.
     It is not sufficient to simply explain TGF-β1 induced renal fibrosis, TGF-β1 induced high expression of AR, TGF-β1 induced metabolic changes with Smad pathway and MAPK pathway. ROS is both free radical oxidative stress factors and a growth factor signaling molecules. Here, we infer that, ROS are involved in TGF-β1 fibrosis, Nrf2 is also a bridge in the development process of renal fibrosis. Nrf2's research in this area is still rare.
     Objective To explore the pathway mechanism that TGF-β1 induced high expression of AR.
     Methods Cultured HMC; Western blot, real-time RT-PCR, fluorescence detection of TGF-β1 cytokine-induced AR expression in HMC; ESR detection of the ROS volume in TGF-β1 treated HMC; Transient transfection of Nrf2 siRNA and the addition of anti oxidants NAC and SOD, the impact to high expression of AR; the addition of exogenous H2O2 on the expression of Nrf2; dual luciferase reporter system detects the Nrf2 impact to transcriptional activity of AR promoter containing ARE binding sites.
     Results Treated by 4ng/ml and 10ng/ml TGF-β1 factor, AR mRNA levels, protein expression and activity in HMC were increased, positively correlated to the acting time and dosage of TGF-β1, compared with the control group. Respectively, after the effect of 4ng/ ml and 10ng/ml TGF-β1, AR mRNA expression levels began to increase with the increased affecting time or concentration, leading to a peak at 24h. Compared with the control group, it rose 9.78 times and 11.53 times higher (P<0.01), mRNA levels then appeared to reduce.
     AR protein expression and activity increased with increasing time and concentration of TGF-β1(P<0.05), reached the peak at 48h, compared with the control group, increased by 24.19 and 27.44 times(P<0.01);at the 6h TGF-β1 effect time point, Nrf2 protein expression increased, respectively,4.27 times and 4.75 times, compared with control group(P<0.05); at TGF-β1 concentration of 10 ng/ml point, Nrf2 protein expression reach its peak,4.85 times than control group, and the difference was statistically significant (P<0.01). With the increased TGF-β1 dose, Nrf2 protein expression increased with TGF-β1 effect dose and they are positively correlated;
     Nrf2 siRNA interference, transfection of Nrf2 siRNA (10 nM) 72h, real-time RT-PCR, Western blot and fluorescence methods were used to detect AR protein expression and AR activity, the results show that with comparisons to negative control group, AR mRNA levels decreased by 48.7%(P<0.01), AR protein levels decreased 53.1%(P<0.01), AR activity level decreased 34.6%, (P<0.01); After 72h Nrf2 siRNA,36h TGF-β1 stimulation, compared with Nrf2 siRNA group, expression of AR protein levels and AR activity were increased by 2.66 times and 2.73 times (P<0.01), but lower than TGF-β1 stimulation group (P<0.01). H2O2 and TGF-β1 was respectively added in HMC, Western blot results showed that, Nrf2 protein levels were significantly higher (increased by 3.80 times and 3.79 times) (P<0.01); were added SOD and free radical scavengers NAC, then add H2O2 and TGF-β1 stimulation, Western blot results showed that, Nrf2 protein levels were significantly lower than that H2O2 and TGF-β1 stimulation group (P<0.01), but higher than the normal control group, and statistically differences (P<0.01).4ng/ml and 10ng/ml of TGF-β1 factor acting on the HMC, ESR detection of the amount of ROS, as the concentration of TGF-β1, the amount of ROS generation increased.
     When the concentration of TGF-β1 was 10 ng/ml, ROS generate the most, is 17.35-fold of the control group (P<0.01), positively correlated with TGF-β1 dose, negatively correlated with effect time. After antioxidant NAC, SOD treatment, and then 4 ng/ml TGF-β1 stimulation, ESR signal levels stimulated by TGF-β1 are significantly higher(P<0.01); By adding antioxidant NAC, SOD, stimulating by TGF-β1, ESR signals are significantly decreased, compared to stimulation of TGF-β1 alone group, by 42% and 44%(P<0.01). AR mRNA levels, protein expression and activity were reduced by 57.2%,61%,51%; ESR detection of ROS quantity, when the concentration of TGF-β1 was10 ng/ml, ROS is 17.35 times of the control group at the peak, and differences were statistically significant (P<0.01).
     Dual-luciferase reporter system detected, compared with transfected pGL3-basic control group, HA-Nrf2 increased transcriptional activity of binding sites containing ARE,1.06-AR-luc and ARE plasmid, in AR promoter region by 52.33 times and 49.67 times (P<0.01); mutant ARE sequences of two loci ARE1, ARE2, compared to unmutant ARE plasmid, its transcriptional activity decreased by 93% and 92.7%(P<0.01).
     Conclusion
     1. Expression of AR in HMC can be successfully induced by TGF-β1; With the increase of TGF-β1 effect time and dose, AR gene expression levels increased significantly in the 24h; AR expression and AR activity levels increased, positively correlated to effect time and dose.
     2. TGF-β1 can successfully induce ROS expression increase in HMC; With the increase of TGF-β1 effect time and dose, ROS levels increased significantly in 30min to the top, positively related to TGF-β1 dose; antioxidants SOD, NAC can inhibit TGF-β1-induced ROS generation and inhibit TGF-β1-induced increase of AR expression and AR activity. ROS mediate TGF-β1 induced increase of AR expression in HMC.
     3. TGF-β1 can successfully induce the expression of Nrf2 in HMC; Nrf2 siRNA can interfere with the expression of Nrf2, and inhibit TGF-β1-induced AR expression increase and AR activity enhancement. Nrf2 mediates TGF-β1 induced increase of AR expression in MC.
     4. Exogenous ROS can successfully induce the increase of Nrf2 expression in HMC. Antioxidants can interfere with the high expression of Nrf2, ROS mediated TGF-β1 induced high expression of Nrf2.
     5. Nrf2 can increase the expression of AR protein. Nrf2, through the regulation of ARE sequence in AR promoter region plays its roles. AR is likely to be one of Nrf2 downstream molecules.
引文
[1]Pawluczyk, I.Z. and Harris, K.P. Cytokine interactions promote synergistic fibronectin accumulation by mesangial cells. Kidney Int 1998; 54:62-70.
    [2]Reddy, A.B., Tammali, R., Mishra, R., Srivastava, S., Srivastava, S.K. and Ramana, K.V. Aldose reductase deficiency protects sugar-induced lens opacification in rats. Chem Biol Interact 2011.
    [3]Obrosova, I.G., Chung, S.S. and Kador, P.F. Diabetic cataracts:mechanisms and management. Diabetes Metab Res Rev 2010; 26:172-180.
    [4]Oates, P.J. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 2008; 9:14-36.
    [5]Ramana, K.V., Chandra, D., Srivastava, S., Bhatnagar, A., Aggarwal, B.B. and Srivastava, S.K. Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 2002; 277:32063-32070.
    [6]Ramana, K.V., Bhatnagar, A. and Srivastava, S.K. Aldose reductase regulates TNF-alpha-induced cell signaling and apoptosis in vascular endothelial cells. FEBS Lett 2004; 570:189-194.
    [7]Srivastava, S.K., Yadav, U.C., Reddy, A.B., Saxena, A., Tammali, R., Mohammad, S., Ansari, N.H., Bhatnagar, A., Petrash, M.J., Srivastava, S. and Ramana, K.V. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 2011.
    [8]Varma, T., Liu, S.Q., West, M., Thongboonkerd, V., Ruvolo, P.P., May, W.S. and Bhatnagar, A. Protein kinase C-dependent phosphorylation and mitochondrial translocation of aldose reductase. FEBS Lett 2003; 534:175-179.
    [9]Attisano, L. and Wrana, J.L. Signal transduction by the TGF-beta superfamily. science 2002; 296:1646-1647.
    [10]Poncelet, A.C., de Caestecker, M.P. and Schnaper, H.W. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney International 1999; 56:1354-1365.
    [11]Zdunek, M., Silbiger, S., Lei, J. and Neugarten, J. Protein kinase CK2 mediates TGF-betal-stimulated type IV collagen gene transcription and its reversal by estradiol. Kidney Int 2001; 60:2097-2108,
    [12]Wang, Z., Wei, X., Zhang, Y., Ma, X., Li, B., Zhang, S., Du, P., Zhang, X. and Yi, F. NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem 2009; 24:619-626.
    [13]Kiyomoto, H., Rafiq, K., Mostofa, M. and Nishiyama, A. Possible underlying mechanisms responsible for aldosterone and mineralocorticoid receptor-dependent renal injury. J Pharmacol Sci 2008; 108:399-405.
    [14]Tesar, V. Oxidative stress in glomerular injury. FEBS JOURNAL 2009; 276:76-76.
    [15]Herrera, B., Alvarez, A.M., Sanchez, A., Fernandez, M., Roncero, C., Benito, M. and Fabregat, I. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J 2001; 15:741-751.
    [16]Hong, Y.H., Peng, H.B., La Fata, V. and Liao, J.K. Hydrogen peroxide-mediated transcriptional induction of macrophage colony-stimulating factor by TGF-betal. J Immunol 1997; 159:2418-2423.
    [17]Junn, E., Lee, K.N., Ju, H.R., Han, S.H., Im, J.Y., Kang, H.S., Lee, T.H., Bae, Y.S., Ha, K.S., Lee, Z.W., Rhee, S.G. and Choi, I. Requirement of hydrogen peroxide generation in TGF-beta 1 signal transduction in human lung fibroblast cells:involvement of hydrogen peroxide and Ca2+ in TGF-beta 1-induced IL-6 expression. J Immunol 2000; 165:2190-2197.
    [18]Gooch, J.L., Gorin, Y., Zhang, B.X. and Abboud, H.E. Involvement of calcineurin in transforming growth factor-beta-mediated regulation of extracellular matrix accumulation. J Biol Chem 2004; 279:15561-15570.
    [19]Grande, J.P. Mechanisms of progression of renal damage in lupus nephritis: pathogenesis of renal scarring. Lupus 1998; 7:604-610.
    [20]Bakin, A.V., Stourman, N.V., Sekhar, K.R., Rinehart, C., Yan, X., Meredith, M.J., Arteaga, C.L. and Freeman, M.L. Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase Ⅱ detoxifying proteins. Free Radic Biol Med 2005; 38:375-387.
    [21]Srivastava, S., Dixit, B.L., Cai, J., Sharma, S., Hurst, H.E., Bhatnagar, A. and Srivastava, S.K. Metabolism of lipid peroxidation product,4-hydroxynonenal (HNE) in rat erythrocytes:role of aldose reductase. Free Radic Biol Med 2000; 29:642-651.
    [1]Ooi, B.S., Cohen, D.J. and Veis, J.H. Biology of the mesangial cell in glomerulonephritis--role of cytokines. Proc Soc Exp Biol Med 1996; 213:230-237.
    [2]Schocklmann, H.O., Lang, S. and Sterzel, R.B. Regulation of mesangial cell proliferation. Kidney Int 1999; 56:1199-1207.
    [3]Schnaper, H.W., Hayashida, T., Hubchak, S.C. and Poncelet, A.C. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003; 284:F243-252.
    [4]Dai, C. and Liu, Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-betal in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J Am Soc Nephrol 2004; 15:1402-1412.
    [5]Bottinger, E.P. and Bitzer, M. TGF-beta signaling in renal disease. J Am Soc Nephrol 2002;13:2600-2610.
    [6]Lin, W., Zhang, N., Zhang, S., Gu, J. and Guo, M. Upregulation of MMP-2 by all-trans retinoic acid is mediated by TGF-beta 1 in cultured rat mesangial cell. Fibrinolysis & Proteolysis 2000; 14:235-241.
    [7]Sharma, V.K., Bologa, R.M., Xu, G.P., Li, B., Mouradian, J., Wang, J., Serur, D., Rao, V. and Suthanthiran, M. Intragraft TGF-beta 1 mRNA:a correlate of interstitial fibrosis and chronic allograft nephropathy. Kidney Int 1996; 49:1297-1303.
    [8]Yamamoto, T., Noble, N.A., Cohen, A.H., Nast, C.C., Hishida, A., Gold, L.I. and Border, W.A. Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 1996; 49:461-469.
    [9]Lin, W., Zhang, N. and Qin, R. [Effect of aldose reductase expression by transforming growth factor-betal on rat mesangial cell]. Zhonghua Yi Xue Za Zhi 2001; 81:744-747.
    [10]Reddy, A.B., Tammali, R., Mishra, R., Srivastava, S., Srivastava, S.K. and Ramana, K.V. Aldose reductase deficiency protects sugar-induced lens opacification in rats. Chem Biol Interact 2011.
    [11]Obrosova, I.G., Chung, S.S. and Kador, P.F. Diabetic cataracts:mechanisms and management. Diabetes Metab Res Rev 2010; 26:172-180.
    [12]Oates, P.J. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 2008; 9:14-36.
    [13]Dixit, B.L., Balendiran, G.K., Watowich, S.J., Srivastava, S., Ramana, K.V., Petrash, J.M., Bhatnagar, A. and Srivastava, S.K. Kinetic and structural characterization of the glutathione-binding site of aldose reductase. J Biol Chem 2000; 275:21587-21595.
    [14]Srivastava, S.K., Yadav, U.C., Reddy, A.B., Saxena, A., Tammali, R., Mohammad, S., Ansari, N.H., Bhatnagar, A., Petrash, M.J., Srivastava, S. and Ramana, K.V. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 2011.
    [15]Ramana, K.V., Chandra, D., Srivastava, S., Bhatnagar, A., Aggarwal, B.B. and Srivastava, S.K. Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 2002; 277:32063-32070.
    [16]Stribling, D. Clinical trials with aldose reductase inhibitors. Exp Eye Res 1990; 50:621-624.
    [17]Ramana, K.V., Chandra, D., Srivastava, S., Bhatnagar, A. and Srivastava, S.K. Aldose reductase mediates the mitogenic signals of cytokines. Chem Biol Interact 2003; 143-144:587-596.
    [18]Karin, M., Takahashi, T., Kapahi, P., Delhase, M., Chen, Y., Makris, C., Rothwarf, D., Baud, V., Natoli, G, Guido, F. and Li, N. Oxidative stress and gene expression:the AP-1 and NF-kappaB connections. Biofactors 2001; 15:87-89.
    [19]Ramana, K.V., Friedrich, B., Bhatnagar, A. and Srivastava, S.K. Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-alpha in human lens epithelial cells. FASEB J 2003; 17:315-317.
    [20]Ramana, K.V., Bhatnagar, A. and Srivastava, S.K. Aldose reductase regulates TNF-alpha-induced cell signaling and apoptosis in vascular endothelial cells. FEBS Lett 2004; 570:189-194.
    [21]Attisano, L. and Wrana, J.L. Signal transduction by the TGF-beta superfamily. science 2002; 296:1646-1647.
    [22]Poncelet, A.C., de Caestecker, M.P. and Schnaper, H.W. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney International 1999; 56:1354-1365.
    [23]Herrera, B., Alvarez, A.M., Sanchez, A., Fernandez, M., Roncero, C., Benito, M. and Fabregat, I. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J 2001; 15:741-751.
    [24]Shah, D., Aggarwal, A., Bhatnagar, A., Kiran, R. and Wanchu, A. Association between T lymphocyte sub-sets apoptosis and peripheral blood mononuclear cells oxidative stress in systemic lupus erythematosus. Free Radic Res 2011.
    [25]Hong, Y.H., Peng, H.B., La Fata, V. and Liao, J.K. Hydrogen peroxide-mediated transcriptional induction of macrophage colony-stimulating factor by TGF-betal. J Immunol 1997; 159:2418-2423.
    [26]Junn, E., Lee, K.N., Ju, H.R., Han, S.H., Im, J.Y., Kang, H.S., Lee, T.H., Bae, Y.S., Ha, K.S., Lee, Z.W., Rhee, S.G. and Choi, I. Requirement of hydrogen peroxide generation in TGF-beta 1 signal transduction in human lung fibroblast cells:involvement of hydrogen peroxide and Ca2+ in TGF-beta 1-induced IL-6 expression. J Immunol 2000; 165:2190-2197.
    [27]Grande, J.P. Mechanisms of progression of renal damage in lupus nephritis: pathogenesis of renal scarring. Lupus 1998; 7:604-610.
    [28]Shen, G., Hebbar, V., Nair, S., Xu, C., Li, W., Lin, W., Keum, Y.S., Han, J., Gallo, M.A. and Kong, A.N. Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J Biol Chem 2004; 279:23052-23060.
    [29]Finkel, T. and Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408:239-247.
    [30]Kang, K.W., Lee, S.J. and Kim, S.G. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 2005; 7:1664-1673.
    [31]Hu, T., Ramachandrarao, S.P., Siva, S., Valancius, C., Zhu, Y, Mahadev, K., Toh, I., Goldstein, B.J., Woolkalis, M. and Sharma, K. Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol 2005; 289:F816-825.
    [32]Thannickal, V.J. and Fanburg, B.L. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 1995; 270:30334-30338.
    [33]Bakin, A.V., Stourman, N.V., Sekhar, K.R., Rinehart, C., Yan, X., Meredith, M.J., Arteaga, C.L. and Freeman, M.L. Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase II detoxifying proteins. Free Radic Biol Med 2005; 38:375-387.
    [34]Zhang, D.D. and Hannink, M. Distinct cysteine residues in Keapl are required for Keapl-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 2003; 23:8137-8151.
    [1]Reddy, A.B., Tammali, R., Mishra, R., Srivastava, S., Srivastava, S.K. and Ramana, K.V. Aldose reductase deficiency protects sugar-induced lens opacification in rats. Chem Biol Interact 2011.
    [2]Obrosova, I.G., Chung, S.S. and Kador, P.F. Diabetic cataracts:mechanisms and management. Diabetes Metab Res Rev 2010; 26:172-180.
    [3]Oates, P.J. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 2008; 9:14-36.
    [4]Sharma, K. and Ziyadeh, F.N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 1995; 44:1139-1146.
    [5]Pawluczyk, I.Z. and Harris, K.P. Cytokine interactions promote synergistic fibronectin accumulation by mesangial cells. Kidney Int 1998; 54:62-70.
    [6]Baricos, W.H., Cortez, S.L., Deboisblanc, M. and Xin, S. Transforming growth factor-beta is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol 1999; 10:790-795.
    [7]Graham, A., Heath, P., Morten, J.E. and Markham, A.F. The human aldose reductase gene maps to chromosome region 7q35. Hum Genet 1991; 86:509-514.
    [8]Graham, A., Brown, L., Hedge, P.J., Gammack, A.J. and Markham, A.F. Structure of the human aldose reductase gene. J Biol Chem 1991; 266:6872-6877.
    [9]Srivastava, S.K., Yadav, U.C., Reddy, A.B., Saxena, A., Tammali, R., Mohammad, S., Ansari, N.H., Bhatnagar, A., Petrash, M.J., Srivastava, S. and Ramana, K.V. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 2011.
    [10]Ramana, K.V., Chandra, D., Srivastava, S., Bhatnagar, A., Aggarwal, B.B. and Srivastava, S.K. Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 2002; 277:32063-32070.
    [11]Derylo, B., Babazono, T., Glogowski, E., Kapor-Drezgic, J., Hohman, T. and Whiteside, C. High glucose-induced mesangial cell altered contractility:role of the polyol pathway. Diabetologia 1998; 41:507-515.
    [12]Kapor-Drezgic, J., Zhou, X.P., Babazono, T., Dlugosz, J.A., Hohman, T. and Whiteside, C. Effect of high glucose on mesangial cell protein kinase C-delta and-epsilon is polyol pathway-dependent. Journal of the American Society of Nephrology 1999; 10:1193-1203.
    [13]林文生,张农,秦蓉等.转化生长因子p1对大鼠系膜细胞醛糖还原酶表达的影响.中华医学杂志.2001;81(12):744-747.
    [14]蒋涛,刘国元,赵仲华等TGF-β1对醛糖还原酶在大鼠系膜细胞及人肾小球肾炎中表达的影响.复旦学报医学版2004;31:565-569.
    [15]Huang, P., Zhang, Y.J., Jiang, T., Zeng, W.J. and Zhang, N. Aldose reductase is a potent regulator of TGF-beta 1 induced expression of fibronectin in human mesangial cells. Molecular Biology Reports 2010; 37:3097-3103.
    [16]Huang, P., Zhang, Y.J., Huang, Y., Zhao, J.J., Jiang, T. and Zhang, N. [Effect of PKC signalling pathway and aldose reductase on expression of fibronectin induced by transforming growth factor-beta1 in human mesangial cells]. Zhonghua Bing Li Xue Za Zhi 2010; 39:405-409.
    [17]Jiang T, L.G., Zhao ZH, et al Effect of aldose reductase expression in rat mesangial cell and human glomerulonephritis by transforming growth factor-β1. Fudan Univ J Med Sci.2004; 31::571-575.
    [18]Phillips, A.O., Steadman, R., Morrisey, K., Martin, J., Eynstone, L. and Williams, J.D. Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation. Kidney Int 1997; 52:973-984.
    [19]Ihn, H. Pathogenesis of fibrosis:role of TGF-beta and CTGF. Curr Opin Rheumatol 2002; 14:681-685.
    [20]Bonner, J.C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004; 15:255-273.
    [21]Leask, A., Denton, C.P. and Abraham, D.J. Insights into the molecular mechanism of chronic fibrosis:The role of connective tissue growth factor in scleroderma. Journal of Investigative Dermatology 2004; 122:1-6.
    [22]Yu, C., Wang, F., Jin, C., Huang, X., Miller, D.L., Basilico, C. and McKeehan, W.L. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. Am J Pathol 2003; 163:1653-1662.
    [23]Pilewski, J.M., Liu, L., Henry, A.C., Knauer, A.V. and Feghali-Bostwick, C.A. Insulin-like growth factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis and contribute to extracellular matrix deposition. Am J Pathol 2005; 166:399-407.
    [24]Sobchak, D.M. and Monakova, E.A. [Immune parameters in patients with chronic hepatitis C and with various histologic changes]. Klin Med (Mosk) 2004; 82:49-52.
    [25]Liebau, C., Merk, H., Schmidt, S., Roesel, C., Karreman, C., Prisack, J.B., Bojar, H. and Baltzer, A.W. Interleukin-12 and interleukin-18 change ICAM-Ⅰ expression, and enhance natural killer cell mediated cytolysis of human osteosarcoma cells. Cytokines Cell Mol Ther 2002; 7:135-142.
    [26]Sharma, K. and Ziyadeh, F.N. Hyperglycemia and Diabetic Kidney-Disease-the Case for Transforming Growth-Factor-Beta as a Key Mediator. Diabetes 1995; 44:1139-1146.
    [27]Attisano, L. and Wrana, J.L. Signal transduction by the TGF-beta superfamily. science 2002; 296:1646-1647.
    [28]E, H. and L, A. Measurement of microvessel density in primary tumors. Methods Mol Med 2001; 57:115-121.
    [29]Dai, C., Yang, J. and Liu, Y. Transforming growth factor-betal potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem 2003; 278:12537-12545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700