小檗碱治疗实验性糖尿病心肌病作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分实验性2型糖尿病心肌病大鼠模型建立与评价
     目的:建立和评价实验性2型糖尿病心肌病(DC)大鼠模型,探究高糖脂饮食在模型诱导过程中的作用。方法:将雄性Wistar大鼠随机分成正常对照组(Control),高糖脂饮食组(HSF)和高糖脂饮食负荷小剂量链脲佐菌素组(HSF-STZ).Control大鼠喂养常规饲料12周,HSF大鼠喂饲高糖高脂饲料12周,HSF-STZ大鼠喂饲高糖高脂饲料6周后一次性腹腔注射30 mg/kg STZ并继续给予高糖高脂饲料6周以诱导2型糖尿病心肌病病变。监测大鼠一般状态;容积阻抗法测定心排量;左心室插管测定血流动力学指标;称重法测定大鼠心脏重量,计算心重指数(HW/BW)和左心室肥厚指数(LVW/BW):心脏赤道面横切作常规HE染色,观察病理变化并计算左心室前壁(LVWT)和室间隔厚度(IST);生化法测定血液糖、脂代谢指标和心肌组织胶原含量。结果:①HSF-STZ大鼠腹腔注射STZ并继续喂养6周后,与正常大鼠比较,进食量和饮水量分别显著增加16%和84%。②与Control大鼠比较,HSF大鼠喂养高糖高脂饲料4周后,总胆固醇(TCH,26%)和甘油三脂(TG,34%)水平显著升高;HSF-STZ大鼠腹腔注射STZ并继续喂养6周后血浆TCH(44%)、血浆游离脂肪酸(NEFA,100%)和心肌组织NEFA(69%)水平显著升高,高密度脂蛋白值(HDL)降低26%;同时血浆空腹血糖(FBG,233%)、糖化血红蛋白(HbAlc,35%)和糖化血清蛋白(GSP,28%)明显增加。③与Control大鼠比较,HSF-STZ大鼠左心室收缩压(LVSP,15%)、每搏输出量(SV,26%)和心排量(CO,23%)显著降低,左心室舒张末期压力(LVEDP,44%)和左心室最大舒张速率(一dp/dtmax,29%)明显升高。④与Control大鼠比较,HSF-STZ大鼠HW/BW和LVW/BW指数分别升高15%和10%。⑤HE染色结果显示HSF-STZ大鼠心肌纤维排列紊乱、断裂,心肌细胞肥大,细胞核边缘不清、融合,甚至消失;LVWT(33%).IST值(80%)和胶原含量(18%)显著增加。结论:①Wistar大鼠高糖高脂饲料喂养负荷链脲佐菌素(30 mg/kg)腹腔注射可建立实验性2型糖尿病心肌病大鼠模型。②高糖高脂饲料喂养可诱导肥胖和高血脂,在2型糖尿病心肌病大鼠模型发病过程中有重要作用。
     第二部分小檗碱治疗2型糖尿病心肌病作用及机制整体实验研究
     目的:建立实验性2型糖尿病心肌病大鼠模型,观察小檗碱对模型大鼠机体一般状况,血糖、血脂和心脏功能和结构,心肌组织NEFA、脂肪酸转运和氧化酶含量,以及心肌组织过氧化物增殖体激活受体(PPAR)α、PPARγ和葡萄糖转运体4 (GLUT4) mRNA基因和蛋白表达的影响。方法:糖尿病心朋病大鼠模型(DC rat model)建立同第一部分,小檗碱(Berberine)分为7.5、15和30 mg/kg组,阳性药包括二甲双胍(Metformin) 140 mg/kg组、罗格列酮(Rosiglitazone) 2 mg/kg组和卡托普利(Captopril) 45 mg/kg组,另设正常对照组(Control)。治疗组动物从注射STZ后72小时按相应剂量开始灌胃给药6周。定期监测各组大鼠一般体征变化;生化法检测血糖和血脂,以及心朋组织胶原(Collagen)、肌酸激酶(CK)和NEFA含量;容积阻抗法测定心排量,左心室插管测定血流动力学指标;称重法测定大鼠心脏重量,计算HW/BW和LVW/BW;心脏作常规HE染色,计算LVWT和IST; Elisa去检测心肌红织脂肪酸转运蛋白-1(FATP-1)、脂肪酸转运蛋白(FATPs)和脂肪酸β氧化酶(FA-β-oxidase)含量。实时定量PCR检测心肌组织PPARα、PPARγ和GLUT mRNA基因表达;Western blot去检测PPAR a、PPAR 7和GLUT4蛋白表达。结果:①Berberine 30 mg/kg和Metformin 140 mg/kg可显著抑制DC rat mode体重降低;Metformin 140 mg/kg降低模型大鼠饮水量10%,其余药物均未明显改变动物模型的饮食量。②与DC rat model比较,小檗碱30 mg/kg和Metformi 140 mg/kg可显著降低FBG(69%和67%)、GSP(40%和34%)、HbAlc(46%和42%)和果糖胺(FMN)(40%和34%)含量;Rosiglitazone 2 mg/kg可显著降低降低FBG(36%)和HbAl。(24%);Captopril 45 mg/kg可明显降低HbAl(31%)。③与DC rat model比较,Berberine 30 mg/kg组动物TCH(42%)、TG(42%)和低密度脂蛋白(LDL)值(40%)显著降低;Rosiglitazone 2 mg/k可显著降低TG(49%)和LDL(37%)水平;Metformin显著降低TG值达41%④与DC rat model比较,小檗碱30 mg/kg组动物LVSP (14%)和左心室最夕收缩速率(+dp/dtmax,81%)明显增加,LVEDP (80%)和-dp/dtmax (55%)显著降低,心排量增加60%; Captopril 45 mg/kg组LVSP(15%)和+dp/dtmax(77%显著增加,-dp/dtmax降低52%,心排量增加54%;Metformin 140 mg/kg组动物+dp/dtmax上升60%,心排量增加71%。⑤与DC大鼠模型比较,小檗碱30 mg/k治疗可明显降低HW/BW (6%)和LVW/BW (9%)指数、心肌组织胶原含量(32%)、IST(20%)和LVWT (46%)值;Metformin 140 mg/kg显著降低术型大鼠心肌胶原含量(26%)和IST水平(26%)。⑥光镜下观察左心室纵切片HE染色结果显示,Berberine 30 mg/kg.Metformin 140 mg/kg和Captopril 45 mg/kg治疗后,心肌组织病理损伤有明显的改善,心肌细胞排列较规则,细胞核清晰可见。⑦与正常大鼠比较,DC rat model心肌组织NEFA和CK含量分别显著升高69%和95%;与DC rat model比较,小檗碱7.5、15和30 mg/kg组动物心肌NEFA含量分别降低34%、27%和25%,阳性药Metformin 140 mg/kg(36%)和Captopril 45 mg/kg(24%)组动物心肌组织NEFA含量也显著下降;Berberine 30 mg/kg.Metformin.Rosiglitazone和Captopril组动物心肌组织CK水平分别降低20%、39%、26%和18%;另外,DC rat model心肌组织FATP一1 (68%).FATPs(22%)和FA-p-Oxidase(47%)含量较正常大鼠比较显著降低,小檗碱30 mg/kg治疗后,大鼠心肌组织FATP-1、FATPs和FA-β-oxidase含量分别提高了159%、56%和91%。⑧与正常大鼠比较,DC rat model心肌组织PPARαmRNA表达升高了80%,Berberine 30mg/kg(54%).Metformin 140mg/kg(40%).Rosiglitazone 2 mg/kg(47%)及Captopril 45 mg/kg(38%)可显著下调心肌组织的PPARαmRNA表达。⑨与正常大鼠比较,DC rat model心肌组织PPARγmRNA基因(38%)和蛋白(40%)表达明显降低;Berberine 30 mg/kg组动物PPARγ基因(50%)和蛋白(83%)表达与大鼠模型比较显著升高;同时,DC rat model心肌组织GLUT4 mRNA基因(34%)和蛋白(68%)表达明显比正常大鼠降低;与DC rat model比较,Berberine 30 mg/kg(32%)和Captopril 45 mg/kg(36%)组动物GLUT4 mRNA基因表达明显升高,另外Berberine 30 mg/kg(133%).Metformin 140 mg/kg(208%)和Rosiglitazone 2 mg/kg(166%)组动物GLUT4蛋白表达也显著升高。结论:小檗碱可显著改善高糖高脂负荷小剂量STZ诱导的实验性2型糖尿病心肌病大鼠模型心脏舒张功能和收缩功能损伤,并且抑制心肌胶原积聚和左心室重构;同时还可以显著降低大鼠模型血糖、血脂各项指标,并且对糖尿病大鼠一般体征状态有明显改善作用;其作用机制可能与提高心肌组织转录调控因子PPARγ和GLUT4 mRNA基因和蛋白表达,降低PPARαmRNA基因表达,上调下游目的因子FATP-1、FATPs和FA-β-oxidase含量,改善心肌组织脂肪酸的转运氧化能力,提高葡萄糖的转运能力,抑制心肌组织脂质积聚有关。
     第三部分小檗碱对3T3-L1前脂肪细胞分化、脂肪积聚和脂肪因子分泌的影响
     目的:培养小鼠3T3-L1前脂肪细胞,观察小檗碱对前脂肪细胞向脂肪细胞分化、细胞甘油三脂积聚以及脂肪因子基因表达的影响。方法:培养小鼠3T3-L1细胞,用含10%胎牛血清(FBS)、100U/mL青霉素、100μg/mL链霉素、5μg/mL胰岛素、1μM地塞米松和500μM 3-异丁基-1-甲基黄嘌呤的高糖DMEM培养基诱导分化(Day 0),为期3天(Day 0-Day 2).细胞于Day 3,Day 5和Day 7用小檗碱(5μM、10μM和20μM)处理,共给药3次,Day 8进入实验。未分化的细胞称为前脂肪细胞(Preadipocyte)。油红-O染色测定细胞内脂滴积聚,观察细胞内脂滴大小。生化法测定细胞内蛋白和甘油三脂含量。逆转录聚合酶链反应法(RT-PCR)检测调控前脂肪细胞分化基因和脂质代谢相关基因CCAAT/增强子结合蛋白(C/EBP)α、C/EBPβ、PPARγ、脂肪细胞脂质结合蛋白(aP2)和脂肪酸合成酶(FAS),以及脂肪因子脂联素(adiponectin)、瘦素(leptin)、抵抗素(resistin)、血管紧张素原(AGT)、纤溶酶原激活物抑制剂-1(PAI-1)和单核巨噬细胞趋化蛋白-1(MCP-1)基因表达。结果:①小檗碱(5、10和20μM)呈剂量依赖性分别降低脂肪细胞TG值26%、37%和43%,抑制脂质积聚。②小檗碱10μM和20μM可降低脂肪细胞C/EBP a(21%和47%)和PPAR y mRNA(21%和55%)基因表达;小檗碱20μM显著降低C/EBPβmRNA基因表达16%。③小檗碱10μM和20μM分别降低aP2基因18%和40%;20μM显著降低FAS基因表达18%。④前脂肪细胞中未见adiponectin. leptin和resistin基因表达,而脂肪细胞中adiponectin、leptin和resistin mRNA表达明显升高(P<0.001),小檗碱5μM、10μM和20μM呈剂量依赖性分别降低adiponectin(9%、46%和85%)、leptin(33%、75%和100%)和resistin(13%、63%和82%)在脂肪细胞中的表达。⑤3T3-L1前脂肪细胞分化为脂肪细胞后,细胞内AGT mRNA基因表达明显升高84%,小檗碱10μM和20μM分别降低脂肪细胞中AGT mRNA表达15%和24%。⑥3T3-L1前脂肪细胞与脂肪细胞均可以分泌PAI-1和MCP-1,且二者比较,PAI-1和MCP-1 mRNA基因表达并没有明显的差异;小檗碱20μM明显降低脂肪细胞内PAI-1(12%)和MCP-1 mRNA (28%)基因表达。结论:小檗碱可抑制3T3-L1前脂肪细胞向脂肪细胞分化,降低细胞内TG含量和脂滴积聚,这与其抑制细胞分化过程中转录因子C/EBPβ、C/EBP a和PPAR y以及下游与脂肪代谢调节相关的基因aP2和FAS基因表达有关。小檗碱可下调脂肪因子adiponectin、leptin、resistin、AGT、PAI-1和MCP-1基因表达,进一步证实小檗碱对肥胖、糖尿病和心血管疾病的保护作用。
1. Establishment and assessment of experimental type 2 diabetic cardiomyopathy rat model
     Objective Diabetic cardiomyopathy (DC) is a specific and independent diabetic complication occurred in the absence of coronary artery disease or systemic hypertension. Clinical and epidemiological evidences have demonstrated the existence of diabetic cardiomyopathy in humans. Diabetic cardiomyopathy is diagnosed in diabetic patients in accordance with ventricular dysfunction in the absence of coronary atherosclerosis and hypertension and often occurs as an unknown asymptomatic heart disease, which counteracts clinical diagnosis and treatment. The major impediment of development of research in this area is the lack of appropriate animal models as well as the lack of standardized measures for phenotypes associated with diabetic cardiomyopathy. Importantly, animal model of diabetic cardiomyopathy should reflect the clinical features of patients and fulfill the definition of the disease before the onset of mechanism and medical studies. This study was to establish and evaluate a kind of experimental rat model of type 2 diabetic cardiomyopathy and assess the contribution of high fat-sucrose diet to the pathology.
     Methods
     Male Wistar rats (150g-180g) were randomly divided into 3 groups, including the control group, high sucrose-high fat group (HSF) and high sucrose-high fat with low dose streptozotocin (STZ) group (HSF-STZ). Rats in the control group were fed with normal food, while rats in the HSF and HSF-STZ groups were fed with high sucrose-high fat diet (consisted of 20% sucrose,10% lard,2.5% cholesterol,1% bile salt and 67.5% normal food) for totally 12 weeks. Blood of all rats were collected after 12-hour fasting to measure fasting blood glucose (FBG), total cholesterol (TCH) and triglyceride (TG) before high sucrose-high fat diet and after 4 weeks of feeding (the fifth week). Then rats in HSF-STZ group were injected intraperitoneally (i.p.) singly with STZ (resolved in citric acid-sodium citrate buffer, pH=4.5) at the dose of 30 mg/kg after 6 weeks' high sucrose-high fat diet feeding. FBG were tested at 72 hours after injection and FBG≥7.77 mmol/L was considered as standard of the establishment of diabetes mellitus. Rats in control and HSF groups were i.p. with vehicle (citric acid-sodium citrate buffer, pH=4.5). At the end of experiment (the eleventh week), indexes of heart rate (HR), stroke volume (SV) and cardiac output (CO) of rats were detected by impedance plethysmography (IPG) method and left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximum rate of myocardial contraction and the maximum rate of myocardial diastole (±dp/dtmax) were measured by left ventricular catheterization by MP150 polygraph physiological signal recorder to evaluate cardiac function. The whole heart weight (HW), left ventricular weight (LVW), and ratios of HW/body weight (HW/BW), LVW/BW, interventricular septal thickness (IST), left ventricular wall thickness (LVWT) and left ventricular collagen concentration were measured to assess cardiac structure. Then artery blood of rats were gathered to detected FBG, glycosylated hemoglobin (HbA1c), glycosylated serum protein (GSP), TCH, high density lipoprotein (HDL) and nonesterified fatty acid (NEFA).
     Results
     Effects of high sucrose-high fat on blood sugar, blood lipid levels in rats. It showed no significant differences of blood glucose and lipid levels between each groups at the beginning of the experiment. After 4-week intake of high sucrose-high fat diet, serum TCH and TG of rats in HSF group significantly increased by 26% and 34%, and in HSF-STZ group significantly increased by 16% and 58%, when compared with the control group(P<0.05), whereas FBG didn't increase significantly.
     Effects of high sucrose-high fat diet with STZ injection on lipid metabolism in rats. The blood lipid maintained high level after another 6 weeks of high sucrose-high fat diet intake. At same time, plasma NEFA of rats in HSF and HSF-STZ groups significantly increased by 131% and 100%, while HDL significantly reduced by 38% and 26%, respectively, when compared with the control group. TCH level of rats in HSF-STZ group was significantly increased by 44%, when compared with the control rats. The indexes of blood lipid indexes showed no significant difference between HSF-STZ-treated rats and HSF-treated rats.
     Effects of high sucrose-high fat diet with STZ injection on blood sugar in rats. Plasma FBG, HbA1c and GSP significantly increased by 233%,35% and 28% respectively in HSF-STZ treated rats, when compared with control rats. However, values of blood sugar did not significantly increased in the HSF group, when compared with the control group.
     Effects of high sucrose-high fat diet with STZ injection on cardiac function in rats. The high sucrose-high fat diet plus STZ treated rats showed the same hemodynamic characteristics of diabetic cardiomyopathy. Levels of LVSP, SV and CO significantly reduced by 15%,26% and 23%, while LVEDP and -dp/dtmax significantly increased by 44% and 29%, when compared with the control rats. Meanwhile, LVSP significantly decreased by 12%, and LVEDP significantly increased by 43% in the HSF-treated rats, when compared with the control rats. However, changes of±dp/dtmax, SV and CO did not get any statistical differences in HSF rats, when compared with the control rats. Interestingly, SV significantly decreased in HSF-STZ treated rats, when compared with HSF-treated rats.
     Effects of high sucrose-high fat diet with STZ injection on cardiac structure in rats. Ratios of HW/BW and LVW/BW,IST and LVWT parameters, and collagen concentration significantly increased by 15%,10%,80%,33% and 18% in the HSF-STZ rats, when compared with the control rats. It also showed significant correlations between cardiac function and structure parameters.
     Conclusion
     In summary, experimental type 2 diabetic cardiomyopathy rat model can be established by high sucrose-high fat diet plus single low dosage of STZ injection. Diabetic cardiomyopathy rat model could be assessed efficiently and simply by synthetic indexes including glucose and lipid metabolism as well as heart function. The rat model demonstrated hyperglycemia, hyperlipidemia, and cardiac dysfunction especially diastolic dysfunction, which were similar to clinical symptoms.
     2. Berberine attenuates cardiac dysfunction in experimental type 2 diabetic cardiomyopathy rat model
     Objective
     Berberine, an isoquinoline alkaloid, derived from medical herbs including Berberis, Hydrastis canadensis, Coptis chinensis Franch. and Cortex Phellodendri Chinensis, has antibacterial and anti-inflammatory activities. Recent studies demonstrated the reduction of blood sugar and lipids, increase in insulin sensitivity in type 1 and typer 2 diabetic animals, antiarrhythmia, as well as inhibition of cardiac hypertrophy with berberine treatment. Clinical researches have indicated that berberine can improve metabolic dysfunction and decrease ventricular premature complexes in the patients with dyslipidemia and congestive heart failure. Up to now, however, little attention has been focus on the role of berberine for treating diabetic cardiomyopathy. Hence our experiments were aimed to explore the effects of berberine on cardiac dysfunction and metabolic disorders in the experimental type 2 diabetic cardiomyopathy rat model induced by high sucrose-fat diet and streptozotocin.
     Methods
     Animal treatment. Rat model of experimental type 2 diabetic cardiomyopathy was induced as described in experiment 1. To speak simply, the control rats were fed with normal food and administrated with vehicle for totally 12 weeks. Rat model of experimental type 2 diabetic cardiomyopathy were fed with high sucrose-high fat diet (consisted of 20% sucrose,10% lard,2.5% cholesterol,1% bile salt and 66.5% normal food) for 6 weeks, then i.p. injection with streptozotocin at the dose of 30 mg/kg following a 12 h fast at the seventh week, and fed with special food as before for another 6 weeks. Rat model were daily intragastrically with relative medication including berberine (7.5 mg/kg,15 mg/kg and 30 mg/kg), Metformin (140 mg/kg), Rosiglitazone (2 mg/kg), and Captopril (45 mg/kg) at 72 h after STZ i.p. injection for totally consecutive 6 weeks.
     Plasma profiles assessment. Whole blood samples were obtained from the right carotid artery of rats and collected in fresh vials containing anticoagulant, and plasma samples were prepared by centrifuging the whole blood for 10 min at 2000 g. Levels of fasting blood glucose, glycated hemoglobin, fructosamine, glycosylated serum protein, total cholesterol and triglyceride in plasma samples were determined using ultraviolet spectrophtometric method according to the manufacturer's protocol.
     Cardiac function, biomarker and histology assessment. At the thirteenth week, rats were anesthetized with pentobarbital sodium (35 mg/kg, i.p.) following a 12 h fast. Stroke volume and cardiac output were detected by means of non-invasive impedance plethysmography. On completion of the cardiac output measurements, a catheter was positioned in the left ventricle via the right carotid artery for measurement of left ventricular systolic pressure, left ventricular end diastolic pressure, the maximum rate of myocardial contraction (+dp/dtmax) and the maximum rate of myocardial diastole (-dp/dtmax). Data were collected using MP150 systems. After that, rat hearts and left ventricles were obtained and weighted to calculate the ratios of heart weight and left ventricular weight to the body weight, respectively.
     The homogenate of heart tissues were prepared in the physiological saline (1:9) and centrifuged for 10 min at 2000 g. The myocardial nonesterified free fatty acids were measured by the biochemical method.
     Hydroxyproline concentration was determined in heart tissue by alkaline hydrolysis method. Tissue samples were hydrolyzed in 2 mol/L sodium hydroxide at 100℃for 1 h. Chloramine-T (0.05 mol/L) was used to oxidize for 10 min at room temperature (pH=6.0-6.8). Then Ehrlich's reagent was added to each sample and the samples were mixed and incubated at 65℃for 15 min. The absorbance of samples were read at 550nm using a spectrophotometer to determine the content of hydroxyproline. Left ventricular collagen content was estimated from its hydroxyproline concentration, with multiplying its value by 7.46, since the imino acid represents 13.4% of collagen. Levels of myocardial fatty acid transport protein-1, fatty acid transport proteins and fatty acidβ-oxidase were assessed by ELISA.
     Then equator annulus of left ventricles were collected and placed in 10% buffered formalin. Sections (4μm) were cut and stained with hematoxylin and esosin (H&E). The left ventricular wall thickness and interventricular septum thickness were measured by Image-ProPlus 5.0 image analysis software (USA) on the H&E slices microscopically.
     Cardiac PPAR a, PPAR y and GLUT4 mRNA expression assessment. Tissue samples obtained from left ventricles were rapidly frozen in liquid nitrogen and stored at -70℃prior to quantitative real-time (RT)-polymerase chain reaction (PCR) analysis. Total RNAs were isolated using TRIzol reagent according to the manufacturer's protocol, and then reverse transcribed to synthesize cDNA. The RT primers were designed by Prime 5.0 software.
     Total Realtime PCR reaction system was performed in Rotor-Gene 3000 Realtime PCR instrument, as previously described. To allow for comparisons between samples and groups, quantities of all targets in test samples were normalized to the constitutive housekeeping gene glyceraldehyde phosphate dehydrogenase (GAPDH).
     Cardiac PPARα, PPAR y and GLUT4 protein expression assessment. Total GLUT4, PPARa and PPARy protein expression in the heart homogenate extracts were determined by Western blot as described previously. GAPDH was probed as an internal loading control. Western blot band density analysis was made using ImageJ. Total GLUT4, PPARa and PPARy proteins were shown in arbitrary units.
     Statistical analysis. All data were presented as mean±SEM and analyzed by one-way analysis of variance (ANOVA). Multiple group comparisons were made with least significant difference's (LSD) post hoc test by SPSS 17.0. Statistical significant difference was defined as a value of P< 0.05.
     Results
     Effects of berberine on general state, blood sugar and lipid levels in experimental type 2 diabetic cardiomyopathy rat model. The body weight of DC rat model significantly decreased at day 5 after i.p. with STZ and kept low level until the end of experiment, while the food and water intake significantly increased by 16% and 84%, when compared with the control rats. Berberine 30 mg/kg treatment could prevent the body weight reduction. In the rat model of diabetic cardiomyopathy, plasma fast blood glucose, glycated hemoglobin, glycosylated serum protein, fructosamine, total cholesterol, triglyceride and low density lipoprotein cholesterol significantly increased by 422%,40%,73%,86%, 205%,70% and 188% respectively, when compared with the control group. Berberine 30 mg/kg treatment significantly decreased plasma FBG, HbA1c, GSP, FMN, TCH, TG and LDL by 69%,40%,46%,40%,42%,42% and 40%, respectively, when compared with the drug-untreated rat model of DC. Metformin 140 mg/kg treatment significantly decreased FBG, HbA1c, GSP, FMN and TG levels by 67%,34%,42%,34% and 41% respectively in DC rat model. Rosiglitazone 2 mg/kg treatment could reduce plasma FBG, HbA1c, TG and LDL by 36%,24%,40% and 37%, when compared with DC rat model.
     Effects of berberine on cardiac function in experimental type 2 diabetic cardiomyopathy rat model. The rats treated with high fat-high sucrose plus STZ showed the same hemodynamic characteristics of diabetic cardiomyopathy. Cardiac output, left ventricular systolic pressure and +dp/dtmax in DC rat model significantly decreased by 36%,18% and 45%, while left ventricular end diastolic pressure and -dp/dtmax significantly increase by 44% and 38%, when compared with normal rats. Berberine 30 mg/kg could significantly increase CO, LVSP, and +dp/dtmax by 60%,14% and 81%, and decrease LVEDP and-dp/dtmax by 80% and 55%, while Berberine 15 mg/kg only increased LVSP significantly, when compared with the drug-untreated DC rat model. Metformin 140 mg/kg treatment significantly increased CO and +dp/dtmax by 71% and 60%, while Captoprile 45 mg/kg treatment could increase CO, LVSP,+dp/dtmax by 54%,15% and 77%, and decrease -dp/dt max by 52%, when compared with drug-untreated DC rat model.
     Effects of berberine on cardiac structure in experimental type 2 diabetic cardiomyopathy rat model. When rats treated with high fat-high sucrose food and STZ, the ratios of heart weight and left ventricular weight to the body weight, interventricular septum thickness, left ventricular thickness, and myocardial collagen content were significantly increased by 11%,10%,78%,33% and 22%. Berberine 30 mg/kg treatment decreased HW/BW, LVW/BW,IST, LVWT and collagen content by 6%,9%,20%,46% and 32% respectively in the DC rats, when compared with the drug-untreated rat model. Metformin, Rosiglitazone as well as Captopril treatment could significantly decrease IST by 26%,47% and 40% in the DC rat model.
     Effects of berberine on cardiac structure in experimental type 2 diabetic cardiomyopathy rat model. Levels of myocardial nonesterified free fatty acid and enzymes involved in fatty acids transport and oxidation were measured. Myocardial nonesterified fatty acid in the DC rat model was significantly increased by 69%, while fatty acid transport protein-1, fatty acid transport proteins and fatty acidβ-oxidase were decreased by 68%,22% and 47%, respectively, when compared with the normal rats. Berberine at the dosage of 7.5, 15 and 30 mg/kg and Metformin 140 mg/kg treatment significant reduced myocardial NEFA by 34%,27% and 25% respectively, when compared with the rat model of DC. Meanwhile, Berberine 30 mg/kg treatment could significantly increase FATP-1, FATPs, and FA-β-oxidase by 159%,56% and 91%, when compared with the drug-untreated rat model.
     Cardiac PPAR a, PPAR y and GLUT4 mRNA expression. Genes involved in cardiac glucose and lipid metabolism was evaluated by quantitative real-time PCR. As expected, cardiac mRNA expression of PPAR y and GLUT4 mRNA expression reduced by 38% and 34%, while PPAR a mRNA gene expression increased by 80% in the DC rat model, when compared with normal rats. Berberine 30 mg/kg treatment increase PPAR y and GLUT4 mRNA expression by 50% and 32%, and decreased PPAR a mRNA levels by 54% in the DC rat model, when compared with drug-untreated rat model.
     Cardiac PPARα, PPAR y and GLUT4 protein expression. Protein expression of PPAR y and GLUT4 reduced by 40% and 68% respectively in the DC rat model, when compared with control rats. Berberine treatment significantly increased PPAR y and GLUT4 protein expression by 83% and 133% in the DC rat model, when compared with the drug-untreated rat model. However, berberine at the dosage of 30 mg/kg did not show any detectable changes in the cardiac PPAR a protein expression.
     Conclusion
     Phenotypes such as hyperglycemia, hypercholesterolemia, cardiac dysfunction and left ventricular hypertrophy, cardiac lipid accumulation, which mimics to the diabetic cardiomyopathy, were found in the rat model induced by high fat-high sucrose food plus streptozotocin treatment. Berberine treatment could effectively recover the diastolic and systolic dysfunction, inhibit the cardiac left ventricular hypertrophy, lower plasma sugar and lipids levels in the DC rat model. It could also alleviate cardiac lipid accumulation, increase intracellular fatty acid transport proteins and fatty acid beta-oxidase, and impressively increase mRNA and protein expression of PPAR y and GLUT4 and repress PPAR a gene expression, indicating a protective effect of berberine on experimental diabetic cardiomyopathy.
     3. Inhibitory differentiation effect of berberine on 3T3-L1 fibroblasts
     Objective
     To study the effect of berberine on preadipocyte differentiation, lipid accumulation and adipokines secretory in the murine 3T3-L1 cell line.
     Methods
     Cell culture and treatments. Murine 3T3-L1 preadipocyte were grown on FALCON 6-well plates in a 5% CO2 atmosphere at 37℃and maintained in low glucose Dullbecco's Modified Eagle's medium supplemented with 10% fetal bovine serum,100 U/mL penicillin, and 100μg/mL streptomycin. The 2-day postconfluent 3T3-L1 cells (designed as Day 0) were incubated with 10% FBS/high glucose DMEM and antibiotics,500μM 3-isobutyl-1-methylxanthine, 1μM dexamethasone, and 5μg/ml insulin for 3 days (Day 0-2). Then the cells were incubated for 2 days in 10% FBS/HG-DMEM with insulin (Day 3-4), and, thereafter incubated in 10% FBS/HG-DMEM that was changed once every 2 days (Day 5-9). Cells receiving berberine chloride were given 10% FBS/HG-DMEM and insulin containing a final concentrantion of 5,10 and 20μM berberine in DMSO at Day 3 and Day4, then medium changed to only 10% FBS/HG-DMEM with berberine for last 5 days (Day 5-9).
     Oil-Red-O staining. After differentiation (Day 9), cells were stained with Oil-Red-O to detect droplets in adipocytes. Cells were washed 3 times with phosphate buffered saline (PBS), fixed with 4% paraformaldehyde for 30 min and then stained with 1.8 mg/ml Oil-Red-O in 60% isopropanol for 30 min. Cells were washed with 60% isopropanol until colorless and observed under a microscope in PBS. Stained oil droplets in the cells were dissolved by Nonidet-P40 (4%, v/v, diluted in isopropanol) with gentle agitation for 5 min. Supernatant was measured with a spectrophotometer at 500 nm.
     Reverse Transcription-Polymerase Chain Reaction. Total RNA was extracted from cultured 3T3-L1 adipocyte (Day 8) and preadipocyte by using QIAGEN RNeasy Mini Kit. Complementary DNA was generated from 2μg of total RNA and synthesized by using High Capacity cDNA Reverse Transcription Kit. The PCR conditions were as follows:for glyceraldehydes-3-phosphoate dehydrogenase (GAPDH) and adiponectin,25 cycles of 95℃for 30s,55℃for 30s,72℃for 30s; for resistin,27 cycles of 95℃for 30s,55℃for 30s,72℃for 30s; for peroxisome proliferator-activated receptor-y (PPAR y), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), angiotensinogen (AGT), monocyte chemoattractant protein 1 (MCP-1),28 cycles of 95℃for 30s,55℃for 30s,72℃for 30s; for CCAAT/enhancer binding protein (3 (C/EBP P), plasminogen activator inhibitor-1 (PAI-1),30 cycles of 95℃for 30s,55℃for 30s,72℃for 30s; for C/EBP a and leptin,31 cycles of 95℃for 30s,55℃for 30s,72℃for 30s. To allow for comparisons between samples and groups, quantities of all targets in test samples were normalized to GAPDH.
     Results
     Inhibitory effects of berberine on triglyceride content and lipid accumulation in 3T3-L1 cells. Berberine at the dosage of 5μM,10μM and 20μM significantly decreased triglyceride content (26%,37%, and 43%, respectively) and lipid accumulation of 3T3-L1 adipocyte in a dose-dependent manner.
     Effects of berberine on transcription factors during differentiation process in 3T3-L1 cells. Berberine 10μM and 20μM significantly decreased C/EBP a (21% and 47%) and PPAR y mRNA (21% and 55%) gene expression in 3T3-L1 adipocyte in a dose dependent manner. Berberine at a dose of 20μM significantly reduced C/EBPβmRNA gene expression by 16%, whereas 5μM significantly increased C/EBP (3 mRNA gene expression by 21%.
     Effects of berberine on expression of genes involved in lipid metabolism. Berberine at dosage of 10 and 20μM significantly decreased aP2 mRNA expression (18% and 40%). Berberine 20μM significantly reduced FAS mRNA expression by 18%, however, berberine 5μM significantly increased FAS gene expression by 15%.
     Effects of berberine on adipokines (adiponectin, leptin, resistin, MCP-1, PAI-1 AGT) in 3T3-L1 cells. Berberine 5μM,10μM and 20μM significantly decreased adiponectin (9%,46% and 85%), leptin (33%,75% and 100%) and resistin (13%,63% and 82%) mRNA expression of 3T3-L1 cells in a dose dependent manner. Berberine 10μM and 20μM significantly decreased AGT mRNA expression (15% and 17%). Berberine in dose of 20μM caused significant reduction of PAI-1 (12%) and MCP-1 (28%) mRNA expression, whereas 5μM significantly increased PAI-1 (10%) and MCP-1 (26%) mRNA expression in 3T3-L1 adipocyte.
     Conclusion
     Berberine inhibited triglyceride and lipid accumulation in 3T3-L1 adipocyte. Berberine could inhibit differentiation of 3T3-L1 fibroblast via reducing transcription factors such as C/EBPβ, C/EBP a and PPAR y and their downstream genes aP2 and FAS. In term of inhibitory effect on differentiation in 3T3-L1 cells of berberine, adipokines including adiponectin, leptin, resistin, and AGT also showed significant decrease with berberine treatment, which might indicate anti-obesity action as well as cardiovascular protective effect of berberine. However, the reduction effect of berberine on MCP-1 and PAI-1 mRNA expression might be independent of differentiation inhibitory action.
引文
[1]Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis [J]. Am J Cardiol, 1972,30(6):595-602.
    [2]David S. H. Bell. Heart failure:a serious and common comorbidity of diabetes [J]. Clinical Diabetes,2004,22(2):61-65.
    [3]Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications [J]. Endocr Rev,2004,25(4): 543-567.
    [4]董世芬洪缨,樊江波,等.实验性2型糖尿病心肌病大鼠模型的建立与评价[J].中国实验动物学报,2009,17(4):1-7.
    [5]Abe T, Ohga Y, Tabayashi N, Kobayashi S, et al. Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats [J]. Am J Physiol Heart Circ Physiol,2002,282(1):H138-E148.
    [6]周庆峰,李明月,李成伟.二十碳五烯酸对高糖与去甲肾上腺素诱导的心肌细胞肥大的抑制作用[J].中国药理学通报,2009,25(2):275-276.
    [7]符丽娟,王洪新,刘婉珠.坎地沙坦对糖尿病大鼠心肌细胞凋亡及Fas和Fas-L表达的影响[J].中国药理学通报,2009,25(10):1394-1395.
    [8]李晓,姜萍.一种评价心肌肌膜厚度的方法[J].中国药理学通报,2009,25(10):1389-1391.
    [9]Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart [J]. Physiol Rev,2005,85(3):1093-1129.
    [10]胡珺,陈芸芸,邢东明,等.脑缺血时乳酸的生成、转运、代谢和利用[J].中国药理学通报,2008,24(3):284-288.
    [11]M. Bartnik, K. Malmberg, L. Ryden. Diabetes and the heart:compromised myocardial function-a common challenge [J]. Eur Heart J Supplements,2003, 5(Suppl B):B33-B41.
    [12]Lopaschuk GD. Metabolic abnormalities in the diabetic heart [J]. Heart Fail Rev,2002,7(2):149-159.
    [13]Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice [J]. Am J Physiol Endocrinol Metab,2000,279(5):E1104-E1113.
    [14]Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts [J]. Biochim Biophys Acta,2005,1734(2):112-126.
    [15]Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes:Part Ⅱ:potential mechanisms [J]. Circulation,2002, 105(15):1861-1870.
    [16]David S.H. Bell. Diabetic cardiomyopathy [J]. Diabetes Care,2003,26(10): 2949-2951.
    [17]How OJ, Aasum E, Severson DL, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice [J]. Diabetes,2006, 55(2) 466-473.
    [18]冯兵,周小波,杨旭,等.干预代谢途径抑制缺氧/复氧诱导肥大心肌细胞凋亡-依赖及非依赖性Caspase的作用[J].中国药理学通报,2008,24(6):748-752.
    [19]Boudina S, Abel ED. Diabetic cardiomyopathy revisited [J]. Circulation, 2007,115(25):3213-3223.
    [20]Finck BN. The PPAR regulatory system in cardiac physiology and disease [J]. Cardiovasc Res,2007,73(2):269-277.
    [21]Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus [J]. J Clin Invest,2002,109(1):121-130.
    [22]Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy:modulation by dietary fat content [J]. Proc Natl Acad Sci,2003,100(3):1226-1231.
    [23]Duncan JG, Fong JL, Medeiros DM, et al. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1 alpha gene regulatory pathway [J]. Circulation,2007,115(7):909-917
    [24]Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function [J]. Curr Opin Cell Biol,1998,10(3):384-391.
    [25]Greene ME, Blumberg B, McBride OW, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA:expression in hematopoietic cells and chromosomal mapping [J]. Gene Expr,1995,4 (4-5): 281-299.
    [26]Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferators activated receptor [J]. Biochemistry,1993,32 (21): 5598-5604.
    [27]Yoshikawa T, Brkanac Z, Dupont BR, et al. Assignment of the human nuclear hormone receptor, NUC1 (PPARD), to chromosome 6p21.1-p21.2 [J]. Genomics,1996,35(3):637-638.
    [28]KL Gearing, M Gottlicher, M Teboul, et al. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor [J]. Proc Natl Acad Sci,1993,90(4):1440-1444.
    [29]Robyr D, Wolffe AP, Wahli W. Nuclear hormone receptor coregulators in action:diversity for shared tasks [J]. Mol Endocrinol,2000,14(3):329-347.
    [30]Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators [J]. Nature,1990,347(6294): 645-650.
    [31]Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome [J]. Nature,2001,414(6865):821-827.
    [32]Marjorie A. Peraza, Andrew D. Burdick, Holly E. Marin, et al. The toxicology of ligands for peroxisoome proliferator-activated receptors (PPAR) [J]. Toxicological Sciences,2006,90(2):269-295.
    [33]Guerre-Millo M, Gervois P, Raspe E, et al. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity [J]. J Biol Chem,2000,275(22):16638-16642.
    [34]Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus [J]. J Clin Invest,2002,109(1):121-130.
    [35]Barger PM, Brandt JM, Leone TC, et al. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth [J]. J Clin Invest,2000,105(12):1723-1730.
    [36]Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure [J]. Am J Physiol,1970,218(1):153-159.
    [37]Schupp M, Kintscher U, Fielitz J, et al. Cardiac PPARalpha expression in patients with dilated cardiomyopathy [J]. Eur J Heart Fail,2006,8(3): 290-294.
    [38]Campbell FM, Kozak R, Wagner A, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels:reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentration of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase [J]. J Biol Chem.2002,277(6):4098-4103.
    [39]Diep QN, Benkirane K, Amiri F, et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats [J]. J Mol Cell Cardiol,2004,36(2):295-304.
    [40]Park SY, Cho YR, Finck BN, et al. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver [J]. Diabetes,2005,54(9):2514-2524.
    [41]Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy:modulation by dietary fat content [J]. Proc Natl Acad Sci U S A,2003,100(3):1226-1231.
    [42]Harris IS, Treskov I, Rowley MW, et al. G-protein signaling participates in the development of diabetic cardiomyopathy [J]. Diabetes,2004,53(12): 3082-3090.
    [43]Horiuchi M, Yoshida H, Kobayashi K, Kuriwaki K, et al. Cardiac hypertrophy in juvenile visceral steatosis (jvs) mice with systemic carnitine deficiency[J]. FEBS Lett,1993,326(1-3):267-271.
    [44]Kuwajima M, Lu K, Sei M, Ono A, et al. Characteristics of cardiac hypertrophy in the juvenile visceral steatosis mouse with systemic carnitine deficiency [J]. J Mol Cell Cardiol,1998,30(4):773-781.
    [45]Asai T, Okumura K, Takahashi R, et al. Combined therapy with PPARalpha agonist and L-carnitine rescues lipotoxic cardiomyopathy due to systemic carnitine deficiency [J]. Cardiovasc Res,2006,70(3):566-577.
    [46]Eileen M. Burkart, Nandakumar Sambandam, Xianlin Han, et al. Nuclear receptors PPARβ/δ and PPARa direct distinct metabolic regulatory programs in the mouse heart [J]. J Clin Invest,2007,117(12):3930-3939.
    [47]Vikramadithyan RK, Hirata K, Yagyu H, et al. Peroxisome proliferator-activated receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy [J]. J Pharmacol Exp Ther,2005,313(2): 586-593.
    [48]Gilde AJ, van der Lee KA, Willemsen PH,et al. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism [J]. Circ Res,2003,92(5):518-524.
    [49]Panagia M, Gibbons GF, Radda GK, Clarke K. PPAR-alpha activation required for decreased glucose uptake and increased susceptibility to injury during ischemia [J]. Am J Physiol Heart Circ Physiol,2005,288(6): H2677-H2683.
    [50]Hopkins TA, Sugden MC, Holness MJ, et al. Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice [J]. Am J Physiol Heart Circ Physiol,2003,285(1): H270-H276.
    [51]Park SY, Cho YR, Finck BN, et al. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver [J]. Diabetes,2005,54(9):2514-2524.
    [52]Jie Yan, Martin E. Young, Lei Cui, et al. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity [J]. Circulation,2009,119(21): 2818-2828.
    [53]Aasum E, Cooper M, Severson DL, Larsen TS. Effect of BM 17.0744, a PPARalpha ligand, on the metabolism of perfused hearts from control and diabetic mice [J]. Can J Physiol Pharmacol,2005,83(2):183-190.
    [54]Ji-Ming Ye, Patrick J. Doyle, Miguel A. Iglesias, et al. Cooney, et al. Peroxisome proliferator-activated receptor (PPAR)-α□ activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats, comparison with PPAR-y activation [J]. Diabetes,2001,50(2):411-417.
    [55]Diep QN, Benkirane K, Amiri F, et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin Ⅱ-infused rats [J]. J Mol Cell Cardiol,2004,36(2):295-304.
    [56]Iglarz M, Touyz RM, Viel EC, et al. Peroxisome proliferator-activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension [J]. Hypertension,2003,42(4): 737-743.
    [57]Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes [J]. Biochem Biophys Res Commun,2004,313(2):277-286.
    [58]Pesant M, Sueur S, Dutartre P, et al. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis [J]. Cardiovasc Res,2006,69(2):440-449.
    [59]Cheng L, Ding G, Qin Q, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy [J]. Nat Med,2004,10(11): 1245-1250.
    [60]Li AC, Glass CK. PPAR-and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis [J]. J Lipid Res,2004, 45(12):2161-2173.
    [61]Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and atherogenesis:regulators of gene expression in vascular cells [J]. Circ Res,2004,94(9):1168-1178.
    [62]Gilde AJ, Van Bilsen M. Peroxisome proliferator-activated receptors (PPARS):regulators of gene expression in heart and skeletal muscle [J]. Acta Physiol Scand,2003,178(4):425-434.
    [63]Riikka Lautamaki1, K. E. Juhani Airaksinen, Marko Seppanen, et al. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery Disease. A 16-week randomized, double-blind, placebo-controlled study [J]. Diabetes,2005,54(9):2787-2794.
    [64]Duan SZ, Ivashchenko CY, Russell MW, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice [J]. Circ Res,2005,97(4):372-379.
    [65]Yue TL, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone [J]. Circulation,2001,104(21): 2588-2594.
    [66]Fliegner D, Westermann D, Riad A, et al. Up-regulation of PPAR gamma in myocardial infarction [J]. Eur J Heart Fail,2008,10(1):30-38.
    [67]Nemoto S, Razeghi P, Ishiyama M, et al. PPAR-gamma agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation [J]. Am J Physiol Heart Circ Physiol,2005,288(1):H77-H82.
    [68]Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction [J]. Circulation,2002,106(24):3126-3132.
    [69]Way JM, Harrington WW, Brown KK, et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues [J]. Endocrinology,2001,142(3): 1269-1277.
    [70]Golfman LS, Wilson CR, Sharma S, et al. Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats [J]. Am J Physiol Endocrinol Metab, 2005,289(2):E328-E336.
    [1]肖培根,单玉懿,陈碧株.中药黄连生药学的研究[J].中草药,1984,15(3):30.
    [2]方忻平,王天志,张浩,等.国产黄连5种生物碱的含量测定[J].中国中药 杂志,1989,14(2):33-35,63.
    [3]李波,朱维良,陈凯先.小檗碱及其衍生物的研究进展[J].药学学报,2008,43(8):773-787.
    [4]朱红,代伟.黄连素治疗糖尿病临床研究[J].济宁医学院学报,1999,22(3):67.
    [5]袁育红.黄连素治疗2型糖尿病临床疗效观察[J].现代中西医结合杂志,1999,8(11):1777.
    [6]于秀辰,李靖,赵进喜.黄连素治疗2型糖尿病30例临床观察[J].中国临床医生,2003,31(5):48.
    [7]王晓新,金小平,徐志红.黄连素治疗2型糖尿病116例疗效观察[J].内蒙古医学杂志,2003,35(2):141-142.
    [8]乔秀丽.黄连素治疗II型糖尿病30例报告[J].中医药信息,2000,17(1):36.
    [9]李燕,俞景奎,王培祥.盐酸黄连素治疗肝原性糖尿病16例分析.现代中西医结合杂志,2000,(2):129-130.
    [10]高芳,岳桂华,王庆斌.黄连素改善II型糖尿病患者胰岛素抵抗的临床研究[J].甘肃中医,2002,15(6):34-36.
    [11]朱建辉.黄连素治疗老年2型糖尿病神经病变的临床观察[J].浙江中医药大学学报,2006,30(5):505-506.
    [12]毛方方,杨顺裕,康巧贞,等.黄连素治疗心律失常45例临床观察[J].实用内科杂志,1986,6(5):257-258.
    [13]申华峰,李万鹏.黄连素治疗心律失常82例[J].山东中医杂志,1994,13(3):110-111.
    [14]王玉玲,孟洪弟.黄连素治疗小儿室性快速心律失常33例疗效观察[J].大连医学院学报,1992,14(4):27-28.
    [15]薛荫富,陆荣秀,周凌云.黄连素治疗心律失常61例临床观察.南京医科大学学报,1995,15(1):188.
    [16]王长合.口服黄连素治疗频发房室性早搏34例[J].陕西中医,1997,18(9):388.
    [17]罗兴莲,于焕生.黄连素治疗室性心律失常30例[J].陕西中医,1997,18(3):118.
    [18]刘钧超,饶绍来.黄连素治疗室性早搏28例[J].广西中医药,1994,17(4):9-10.
    [19]李秀荣,李树青.慢心律与黄连素合用治疗顽固性室性早搏的疗效观察 [J].锦州医学院学报,1993,14(2):57-58.
    [20]何庆伟.黄连素治疗老年室性早博疗效观察[J].井冈山医专学报,2007,14(6):40,50.
    [21]冯大千.黄连素治疗室性早搏疗效与证型关系临床观察[J].山西中医,2003,19(3):12-13.
    [22]康巧真,叶菲,杨顺裕.黄连素治疗充血性心力衰竭17例疗效观察[J].中国自然医学杂志,2002,4(2):83-84.
    [23]刘风娟,王雪茹.黄连素治疗高血压病37例[J].河南医科大学学报,1995,30(3):329.
    [24]陈继烈.单用黄连素及并用黄连素与蛇根粉治疗高血压病的初步报告[J].中华内科杂志,1960,8:117.
    [25]钟树林,周永生,陈海明,等.黄连素治疗老年高血压病96例临床观察[J].中国老年学杂志,1997,17(6):349-350.
    [26]张爱真.黄连素保留灌肠治疗细菌性痢疾80例分析[J].中国误诊学杂志,2006,6(1):143-144.
    [27]韦君.黄连素外洗治疗小儿脓疱病10例[J].中国民间疗法,2005,13(9):37-38.
    [28]徐学君,何国兴.黄连素的临床新用途[J].中国药理学通报,1990,6(5):289.
    [29]贺柏杨,肖秀琴.三联治疗幽门螺杆菌阳性十二指肠球部溃疡34例[J].中国中西医结合脾胃杂志,1999,7(4):219.
    [30]刘晓军,张印辉,陈庆梅,等.雷尼替丁联合黄连素治疗消化性溃疡52例[J].西北药学杂志,1999,14(2):94.
    [31]叶爱民,余云龙.黄连素三联疗法治疗Hp感染消化性溃疡22例[J].基层医学论坛,2008,12:970-971.
    [32]邱亚莉,张威.黄连素治疗高脂血症与多烯康月见草油比较观察[J].实用中西医结合杂志,1996,9(11):643-644.
    [33]张金宝.黄连素的降脂作用观察[J].山东医药,2002,42(8):61.
    [34]冯栓林,刘顺兴,冯青燕,等.盐酸黄连素与小剂量阿司匹林抗血小板聚集功能的对比研究[J].山东医药,1996,36(2):11-12.
    [35]张玲玲,黄澜,徐艳峰,等.小檗碱对2型糖尿病ICR小鼠模型的治疗作用[J].中国比较医学杂志,2010,20(1):23-27.
    [36]陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986, 21(6):401.
    [37]刘继林.黄连治疗消渴病及其功能的本草学研究[J].四川中医,1999,17(11):17-19.
    [38]宋菊敏,李石良.黄连素对非胰岛素依赖性糖尿病大鼠的抗氧化作用[J].中草药,1992,23(11):590-591.
    [39]高从容,张家庆,黄庆玲.黄连素增加胰岛素抵抗大鼠模型胰岛素敏感性的实验研究[J].中国中西医结合杂志,1997,17(3):1 62.
    [40]Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis [J]. Am J Physiol Endocrinol Metab,2008,294(1): E148-E156.
    [41]陈其明.小檗碱对正常小鼠血糖调节的影响[J].药学学报,1987,22(3):161.
    [42]殷峻,胡仁明,陈名道,等.小檗碱、齐墩果酸和大蒜新素对糖代谢作用的体外研究[J].北京中医药大学学报,2003,26(2):36-38.
    [43]闫忠卿,冷三华,陆小红,等.小檗碱对肝细胞核因子4a表达及葡萄糖激酶活性的影响[J].中国中药杂志,2008,33(18):2105-2109.
    [44]刘栩晗,李国生,朱华,等.小檗碱对2型糖尿病中国地鼠肝脏葡萄糖激酶、葡萄糖-(?)-磷酸酶和磷酸烯醇式丙酮酸羧激酶mRNA表达的影响[J].中国比较医学杂志,2008,18(4):9-13.
    [45]李国生,刘栩晗,朱华,等.小檗碱对2型糖尿病中国地鼠的治疗作用[J].中国比较医学杂志,2007,17(10):559-562,567.
    [46]荣太梓,陆付耳,陈广,等.小檗碱对胰岛素分泌缺陷型糖尿病大鼠葡萄糖激酶相关糖代谢的影响[J].中草药,2007,38(5):725-728.
    [47]潘国宇,王广基,孙建国,等.小檗碱对葡萄糖吸收的抑制作用[J].药学学报,2003,38(12):911-914.
    [48]王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志,2004,24(10):926-928.
    [49]周丽斌,陈名道,宋怀东,等.小檗碱对脂肪细胞葡萄糖转运的影响及其机制研究[J].中华内分泌代谢杂志,2003,19(6):479-482.
    [50]陈立,杨明炜,汪忠煜,等.小檗碱与梓醇及其配伍对胰岛素抵抗3T3-L1脂肪细胞葡萄糖转运子4蛋白及C-Cb1相关蛋白表达的影响[J].中草药,2008,39(10):1510-1514.
    [51]于希忠,刘佳,程罗根,等.小檗碱对3T3-L1脂肪细胞炎症因子分泌和炎 症信号通路的影响[J].南京中医药大学学报,2010,26(3):217-221.
    [52]尚文斌,刘佳,于希忠,等.小檗碱对肥胖小鼠炎症因子分泌和炎症信号通路的作用[J].中国中药杂志,2010,35(11):1474-1477.
    [53]刘芳芳,杨明炜,王晓强,等.梓醇与小檗碱及其配伍对胰岛素抵抗3T3-L1脂肪细胞的影响[J].中草药,2007,38(10):1523-1526.
    [54]吕俊华,张世平,潘竞锵.小檗碱对D-半乳糖诱导糖基化模型大鼠血糖、血脂和肝肾功能的影响[J].中国中医基础医学杂志,2007,13(1):47-49.
    [55]张世平,沈飞海,吕俊华,等.小檗碱抑制D-半乳糖致大鼠蛋白糖基化的实验研究[J].辽宁中医学院学报,2006,8(1):94-96.
    [56]林媛,张世平,吕俊华.小檗碱对D-半乳糖诱导糖基化模型大鼠脑损害的干预作用[J].中国临床康复,2006,10(43):200-203.
    [57]刘长山,朱禧星.7种药物对醛糖还原酶的抑制作用[J].中国中药杂志,1997,22(6):372.
    [58]周丽斌,杨颖,尚文斌,等.小檗碱改善高脂饮食大鼠的胰岛素抵抗[J].放射免疫学杂志,2005,18(3):198-200.
    [59]何明坤,陆付耳,王开富,等.小檗碱对高脂血症伴胰岛素抵抗大鼠糖脂代谢的影响[J].中国医院药学杂志,2004,24(7):389-391.
    [60]高志强,冷三华,陆付耳,等.小檗碱对高果糖饲养诱导大鼠胰岛素抵抗和肝脏TNF-α表达的影响[J].中国药理学通报,2008,24(11):1479-1482.
    [61]杨小玉,陆付耳,黄琳,等.小檗碱对胰岛素抵抗大鼠氧化应激和内质网应激的影响[J].中国药理学通报,2008,24(9):1138-1142.
    [62]陈广,陆付耳,王增四,等.小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI-3K、GLUT4蛋白相关性的研究[J].中国药理学通报,2008,24(8):1007-1010.
    [63]孙焕,陆付耳,王增四,等.小檗碱改善高糖高脂诱导的胰岛NIT-1细胞凋亡的分子机制[J].中国药理学通报,2008,24(6):762-766.
    [64]刘文军,陆付耳,董慧,等.小檗碱对高糖高脂诱导的NIT-1胰岛p细胞凋亡的影响[J].中国病理生理杂志,2008,24(4):788-791.
    [65]王增四,陆付耳,陈光,等.小檗碱对NIT-1细胞胰岛素分泌和葡萄糖激酶活性的影响[J].药学学报,2007,42(10):1045-1049.
    [66]余渊,陆付耳,冷三华,等.转基因小鼠胰岛p细胞株胰岛素样生长因子1受体和胰岛素受体表达与小檗碱的干预效应[J].中国组织工程研究与临床康复,2007,11(32):6342-6345.
    [67]易屏,陆付耳,陈广,等.小檗碱抑制核因子NF-κBp65的核转位改善高糖诱导的3T3-L1细胞胰岛素抵抗的分子机制[J].中国医院药学杂志,2008,28(12):964-967.
    [68]易屏,陆付耳,陈广,等.小檗碱抑制IKKβ Ser 181磷酸化改善高糖诱导的3T3-L1脂肪细胞胰岛素抵抗的分子机制[J].中草药,2008,39(5):724-729.
    [69]祁冰,侯丽辉,吴效科,等.基因芯片研究小檗碱对胰岛素抵抗卵巢颗粒细胞基因表达的影响[J].科技导报,2008,26(23):70-73.
    [70]杨琳,祁冰,宋家欣,等.小檗碱、隐丹参酮对胰岛素抵抗卵巢颗粒细胞凋亡相关基因的影响[J].科技导报,2008,26(16):42-46.
    [71]杨静,阴津华,陈璐璐.小檗碱对人大网膜前脂肪细胞增殖与分化影响的初探[J].山西医科大学学报,2006,37(8):781-784.
    [72]辛华雯,吴笑春,李罄,等.盐酸小檗碱致大鼠肝脏代谢相关基因表达变化的基因芯片研究.中国药理学通报,2004,20(10):1122-1126.
    [73]李素迎,姚运纬,伍忍.盐酸小檗碱对链脲霉素致大鼠离体胰岛B细胞损伤的影响[J].中国现代医学杂志,2002,12(18):6-7.
    [74]刘慰华,黄河清,邓艳辉,等.黄连素对糖尿病肾损伤大鼠肾功能、氧化应激、肾脏醛糖还原酶的影响[J].中国药理学通报,2008,24(7):955-959
    [75]李凝,陆付耳,董慧,等.小檗碱对糖尿病大鼠早期肾脏高滤过状态的干预作用[J].中国比较医学杂志,2007,17(4):192-196,插2.
    [76]周吉银,周世文.小檗碱对2型糖尿病大鼠肾组织细胞周期蛋白依赖激酶9和细胞周期蛋白T1表达的影响[J].中国药理学与毒理学杂志,2008,22(2):81-87.
    [77]李凝,陆付耳,徐丽君,等.小檗碱对大鼠糖尿病早期肾脏转化生长因子-p1的影响[J].中国康复,2008,23(1):11-13.
    [78]刘长山,王秀军,柳林,等.黄连素对醛糖还原酶活性的抑制及其防治糖尿病神经病变的临床意义[J].中国中药杂志,2002,27(12):950-952.
    [79]周吉银,周世文.小檗碱对2型糖尿病大鼠视网膜正性转录延伸因子b表达的影响[J].中国新药与临床杂志,2008,27(4):243-248.
    [80]周吉银,周世文.小檗碱对2型糖尿病大鼠视网膜PPARα/δ/γ表达的影响[J].药学学报,2007,42(12):1243-1249.
    [81]赵洪涛,梁忆非,冯芹喜,等.黄连素对实验性2型糖尿病大鼠心肌SOD活性、MDA含量水平的影响[J].牡丹江医学院学报,2007,28(3):9-11.
    [82]周吉银,周世文.小檗碱对糖尿病大鼠心肌PPARs表达的影响[J].中国现代医学杂志,2008,18(10):1318-1323,1327.
    [83]唐国强,朱焕兵,洪令斌,等.小檗碱对2型糖尿病性神经痛大鼠疼痛的影响[J].现代医药卫生,2008,24(3):321-323.
    [84]单爱莲,谢明智.介绍一种小鼠高血脂模型[J].药学通报,1986,21(3):141.
    [85]王晶,刘蓉,严祥,等.盐酸小檗碱对大鼠非酒精性脂肪性肝病的干预[J].兰州大学学报·医学版,2007,33(4):8-11,15.
    [86]宋菊敏,等.黄连素对非胰岛素依赖性糖尿病大鼠的抗氧化作用[J].中草药,1992,23(11):590.
    [87]常伟,王红,尹华峰,等.小檗碱对胆固醇代谢及肝脏Insig一2基因表达的影响[J].中国药理学通报,2009,25(1):85-88.
    [88]何琦,金磊,周歧新,等.小檗碱对高脂兔模型脂代谢及脂肪PPARγ、 INSIG-2基因表达的影响[J].中国老年学杂志,2010,(30):1677-1679.
    [89]徐道华,周晨慧,刘钰瑜,等.小檗碱对糖皮质激素大鼠血脂异常的调节作用[J].时珍国医国药,2010,21(5):1033-1034.
    [90]王启章,郭毅,韩利民,等.小檗碱通过ERK,JNK信号转导途径对COX-2的抑制作用[J].第四军医大学学报,2009,30(24):2935-2939.
    [91]徐卫亭,黄婧娟,朱凌波,等.小檗碱对兔动脉粥样硬化、易损斑块及血脂的影响[J].苏州大学学报(医学版),2010,30(2):280-283.
    [92]周明学,徐浩,陈可冀,等.黄连提取物对ApoE基因敲除小鼠主动脉易损斑块Pe rilipin和PPAR-γ基因表达的影响[J].中国中西医结合杂志,2008,28(6):532-536.
    [93]周岚,何国厚,李承晏,等.小檗碱对颈动脉粥样硬化家兔血管紧张素的影响[J].卒中与神经疾病,2006,13(4):212-214,218.
    [94]何国厚,周岚,王云甫,等.小檗碱在预防家兔颈动脉粥样硬化中对血管紧张素II1型受体的影响[J].中国动脉硬化杂志,2006,14(12):1035-1037.
    [95]何国厚,王建,刘勇,等.小檗碱对颈动脉粥样硬化家兔NF-KB和VCAM-1表达的影响[J].中风与神经疾病杂志,2008,25(6):700-703.
    [96]何国厚,刘勇,艾志兵,等.小檗碱对兔颈动脉粥样硬化形成的干预作用[J].神经损伤与功能重建,2006,1(1):42-44.
    [97]艾志兵,何国厚,刘勇,等.小檗碱对家兔颈动脉粥样硬化干预的实验研究[J].中风与神经疾病杂志,2005,22(2):138-140.
    [98]王江华,陈先祥,蔡庆和,等.小檗碱抑制兔胆固醇结石形成的作用和机制[J].肝胆胰外科杂志,2007,19(5):288-290.
    [99]王立琴,张洁,冷萍.黄连素对实验性2型糖尿病小鼠脂代谢异常的影响[J].中西医结合心脑血管病杂志,2003,1(8):467-468.
    [100]陈三妹,徐敏,王芳,等.小檗碱对2型糖尿病大鼠巨噬细胞MMP-9和TIMP-1表达的影响[J].中国病理生理杂志,2008,24(8):1644-1646.
    [101]师凌云,田蜜,常伟,等.小檗碱对脂质代谢相关基因PPAR a和CPTIA表达的影响[J].中国药理学通报,2008,24(11):1461-1464.
    [102]姜听,王启章,郭毅.小檗碱对p38MAPK通路及COX-2 mRNA表达的作用[J].实用医药杂志,2008,25(6):716-719.
    [103]陈凤玲,杨志红,王宣春.小檗碱增加亲脂素在巨噬细胞的表达[J].新乡医学院学报,2007,24(6):544-547.
    [104]刘晓燕,严士敏,龚慧,等.小檗碱对THP-1巨噬细胞源性泡沫细胞胆固醇流出的影响[J].上海交通大学学报(医学版),2009,29(12):1415-1418.
    [105]宣波,李德兴,王幼林.小檗碱对大鼠实验性心肌梗塞的保护作用[J].中国药理学通报,1995,11(3):221.
    [106]Wang LH, Yu CH, Fu Y, et al. Berberine elicits anti-arrhythmic effects via IK1/Kir2.1 in the rat type 2 diabetic myocardial infarction model [J]. Phytother Res,2011,25(1):33-37.
    [107]郑凌云,周祖玉,陶大昌,等.黄连素对缺血再灌注心肌细胞损伤的保护作用[J].四川大学学报·医学版,2003,34(3):452-454.
    [108]汪永孝,谭月华,盛宝恒.小檗碱抗缺血性心律失常的作用及其机理[J].中国药理学与毒理学杂志,1993,7(2):108.
    [109]李萍,康毅,王国祥.小檗碱对大鼠再灌心律失常及钙调节的作用[J].中国药理学通报,1995,11(3):217.
    [110]唐青云,李国海,李久玲,等.静滴盐酸黄连素对心血管机能的影响[J].医药工业,1985,16(3):34-37.
    [111]方达超,故国新,侯淑贤,等.小檗碱对清醒大鼠血液动力学的影响[J].药学学报,1987,22(5):321.
    [112]罗来源,方达超,程斌.小檗碱对大鼠肛尾肌和兔主动脉条肾上腺素a受体的阻断作用[J].中国药理学报,1986,7(5):407.
    [113]姚伟星.小檗碱对大鼠输精管及肛尾肌中a2和a1肾上腺素受体的阻断作用[J].中国药理学报,1986,7(6):511.
    [114]胡文椒,黄冬冬,方达超,等.用兔主动脉条研究小檗碱和硝普钠对几种激动剂作用的影响[J].中国药理学通报,1988,4(2):101-104.
    [115]陈超;韩虹;方达超.药根碱对实验动物心肌缺血和复灌性损伤的保护作用[J].中国药理学通报,1989,5(6):373-376.
    [116]张群英,刘桦,刘岐,等.盐酸小檗碱对豚鼠血液动力学的影响[J].铁道医学,1987,15(6):337-340.
    [117]赵海苹,洪缨,谢俊大,等.小檗碱对肾性高血压心肌肥厚模型大鼠左心室重塑的影响[J].药学学报,2007,42(3):336-341.
    [118]吴庆玲,周祖玉,徐建国.黄连素对异丙肾上腺素诱导的大鼠心肌肥厚的影响[J].现代中西医结合杂志,2008,17(13):1956-1958.
    [119]赵海苹,洪缨,谢俊大,等.小檗碱对L-甲状腺素诱发心肌肥厚大鼠心血管功能的影响[J].北京中医药大学学报,2007,30(2):105-107,111.
    [120]杨静,周祖玉,徐建国.黄连素对L-甲状腺素诱发大鼠心肌肥厚的保护作用[J].四川大学学报·医学版,2004,35(2):223-225.
    [121]沈丹,吕娟丽,孙慧萍.小檗碱对L-甲状腺素诱发大鼠心肌肥厚的保护作用[J].武警医学院学报,2008,17(9):735-737,740.
    [122]洪缨,解欣然,谢俊大,等.小檗碱对压力超负荷致心肌肥厚模型大鼠心脏结构的影响[J].北京中医药大学学报,2006,29(7):465-467.
    [123]洪缨,王晶,赵海苹,等.小檗碱对2肾1夹致心肌肥厚大鼠心室重构的影响[J].北京中医药大学学报,2005,28(6):28-31.
    [124]朱小凤,刘志忠,徐兢,等.小檗碱抑制心肌梗死后心室重构的作用[J].中国介入心脏病杂志,2009,17(6):335-337.
    [125]解欣然,洪缨,董世芬.小檗碱抑制血管紧张素II诱导的心肌成纤维细胞增殖和胶原合成的作用及机制研究[J].北京中医药大学学报,2008,31(11):748-751.
    [126]罗剑珠,席时芳,施雪筠.小檗碱对心脏保存作用的实验研究[J].北京中医药大学学报,2000,23(2):27-29.
    [127]周祖玉,孙爱民,徐建国,等.黄连素对离体灌流心脏的能量保存作用[J].华西医科大学学报,2002,33(3):431-433.
    [128]渡边和夫.黄连的药理[J].现代东洋医学,1981,2(2):37.
    [129]张明发,沈雅琴.小檗碱的抗腹泻和抗炎作用[J].中国药理学报,1989,10(2):174.
    [130]蒋激扬,耿东升,吐尔逊江,等.黄连素的抗炎作用及其机制[J].中国药 理学通报,1998,14(5):434.
    [131]耿东升.黄连素的抗炎与免疫调节作用[J].解放军药学学报,2000,16(6):317.
    [132]段浩,张宏考,刘继军,等.小檗碱对兔颈动脉损伤后白介素-6等的影响[J].医药论坛杂志,2006,27(10):6-9.
    [133]余占海,张国英,张小恒,等.盐酸小檗碱对体外培养人牙周膜细胞生物活性的影响[J].实用口腔医学杂志,2007,23(5):637-640.
    [134]余占海,张国英,张小恒,等.盐酸小檗碱对大鼠牙周组织中白细胞介素-1β和肿瘤坏死因子-α表达的影响[J].中西医结合学报,2008,6(3):278-282.
    [135]张涛,黄会岭,胡格,等.小檗碱、绿原酸和黄芩苷对LPS损伤大鼠肠黏膜微血管内皮细胞表达ICAM-1的影响[J].畜牧兽医学报,2008,39(4):499-502.
    [136]邱全瑛,郝钰,王娟娟,等.小檗碱对人脐静脉内皮细胞与白细胞粘附作用的影响[J].中国病理生理杂志,1999,15(5):443.
    [137]王娟娟,方素萍,邱全瑛.小檗碱对淋巴细胞内第二信使cAMP和cGMP的影响[J].中国病理生理杂志,1999,15(8):762.
    [138]邱全瑛,郝钰,王娟娟,等.小檗碱对中性粒细胞与血管内皮细胞粘附的影响及机制探讨[J].中国病理生理杂志,1999,15(8):763.
    [139]邱全瑛,谭允育,赵岩松,等.黄柏和小檗碱对小鼠免疫功能的影响[J].中国病理生理杂志,1996,12(6):664.
    [140]吕燕宁,邱全瑛.小檗碱对小鼠DTH及其体内几种细胞因子的影响[J].中国免疫学杂志,2000,16(3):139.
    [141]杜丽蕊,何贤辉,徐丽慧,等.小檗碱对DNFB诱导的小鼠迟发型超敏反应的影响[J].细胞与分子免疫学杂志,2005,21(4):418-421.
    [142]杜丽蕊,何贤辉,徐丽慧,等.小檗碱对小鼠淋巴细胞体外增殖和细胞周期的影响[J].中国免疫学杂志,2004,20(10):687-692.
    [143]郝钰,邱全瑛,吴珺,等.小檗碱对淋巴细胞与血管内皮细胞粘附及粘附分子的影响[J].中国免疫学杂志,1999,15(11):523-525.
    [144]何贤辉,曾耀英,徐丽慧,等.黄连素对T淋巴细胞活化和增殖的抑制作用[J].中国病理生理杂志,2002,18(10):1183-1186.
    [145]潘力雄,姚志彬,陈以慈.黄连素对缺血性脑损伤的保护作用[J].中华实验外科杂志,1997,14(4):254.
    [146]吴俊芳,王平,潘鑫鑫,等.全脑缺血大鼠原癌基因c-fos表达及小檗碱的影响[J].中草药,1999,30(1):32-34.
    [147]陈施艳,林红,吴秀丽,等.小檗碱对大鼠脑缺血后MCP-1表达的影响[J].卒中与神经疾病,2008,15(6):323-326.
    [148]陈春花,胡琴,杨磊,等.小檗碱对局部脑缺血组织中HIF-1α表达的影响[J].解剖学报,2007,38(4):394-399.
    [149]席刚明,余冬子,范华燕,等.小檗碱对小鼠全脑缺血后神经元凋亡相关基因的影响[J].卒中与神经疾病,2001,8(6):323-325.
    [150]刘北忠,张静,杨俊卿,等.小檗碱对铝过负荷致小鼠慢性脑损伤的保护作用及机制[J].中草药,2008,39(9):1351-1355.
    [151]范文静,李天枢,田原僮,等.盐酸小檗碱对亚硝酸盐中毒小鼠脑急性缺氧的保护作用[J].中国康复理论与实践,2007,13(8):704-705.
    [152]吴俊芳,刘少林,潘鑫鑫,等.小檗碱对培养大鼠神经细胞“缺血”性损伤的保护作用[J].中国药理学通报,1999,15(3):243-246.
    [153]吴俊芳,刘少林,潘鑫鑫,等.小檗碱对氧化应激损伤中枢神经细胞的保护作用[J].中国药学杂志,1999,34(8):525-529.
    [154]袁拯忠,朱陵群,庞鹤,等.黄连解毒汤有效成分对缺氧/复氧时脑微血管内皮细胞核因子-KB的影响[J].中国中药杂志,2008,33(6):660-664.
    [155]王开富,陆付耳,徐晓萍,等.小檗碱阻止2型糖尿病大鼠血清p样淀粉蛋白升高的作用机制[J].医药导报,2006,25(3):177-179.
    [156]徐尚忠,张翼,任建英,等.小檗碱对豚鼠心室肌细胞L-及T-型钙离子通道的影响[J].中国药理学报,1997,18(6):515-518.
    [157]孙宏丽,罗大力,陈庆文,等.小檗碱对急性分离成年大鼠心室肌细胞内游离钙离子浓度的影响[J].哈尔滨医科大学学报,2002,36(1):19-22.
    [158]董德利,孙建平,罗大力,等.小檗碱对豚鼠心室肌细胞胞浆内游离钙离子浓度的影响[J].中国药理学与毒理学杂志,2000,14(2):128-130.
    [159]李新天,王幼林.小檗碱对培养大鼠心肌细胞胞内游离Ca2+的作用[J].药学学报,1997,32(10):721.
    [160]吴俊芳,刘天培,王金唏,等.小檗碱对培养大鼠神经细胞内游离Ca2+的影响[J].药学学报,1997,32(1):15-18.
    [161]陈明锴,罗和生,余保平,等.黄连素对结肠平滑肌细胞膜钙激活钾通道和延迟整流钾通道的影响[J].中国药理学通报,2004,20(6):632-635.
    [162]操寄望,罗和生,余保平,等.小檗碱对豚鼠结肠平滑肌细胞内游离钙浓 度的影响[J].生理学报,2000,52(4):343-346.
    [163]王燕斌,刘菁,杨昭徐.盐酸小檗碱对大鼠结肠平滑肌肌电和收缩性能的影响[J].北京中医药大学学报,2002,25(1):35-37.
    [164]王芳,赵刚,程岚,等.小檗碱对大鼠心室肌细胞短暂外向钾电流的影响[J].中国心脏起搏与心电生理杂志,2006,20(4):341-344.
    [165]张伟东,林木森,于锋.小檗碱对腹主动脉狭窄性心肌病大鼠心肌细胞钾电流的抑制作用[J].药学进展,2010,34(2):75-80.
    [166]蔡于琛,冼励坚.小檗碱体内外对人鼻咽癌细胞CNE-2生长的抑制作用[J].中草药,2006,37(10):1521-1526.
    [167]罗彪,韦启后,梁谨,等.小檗碱对人鼻咽癌细胞生长的抑制作用[J].右江医学,2006,34(4):373-374.
    [168]蒋艳,王毅,郝钰,等.小檗碱对人高转移肺癌系(PG)细胞增殖的影响及机制研究[J].中国病理生理杂志,2005,21(11):2170-2173.
    [169]张荣勋,MarkL.Posenblum, Dolores V.Dougherty黄连素及其与BCNU联合应用治疗恶性脑肿瘤的实验研究[J].中国神经精神疾病杂志,1993,19(2):86-89.
    [170]谭宇蕙,陈蔚文,吴映雅,等.小檗碱、吴茱萸碱和靛玉红对人胃癌细胞的作用比较[J].世界华人消化杂志,2005,13(4):472-476.
    [171]娄金丽,邱全瑛,林洪生,等.小檗碱对人胃癌细胞增殖、细胞周期及CD44V6表达的影响[J].中国免疫学杂志,2004,20(5):315-317.
    [172]马伟,王建华,陈蔚文,等.盐酸小檗碱促进胃癌细胞系分化的作用[J].中药新药与临床药理,1998,9(2):90-91.
    [173]黄林清,徐传福,周世文,等.小檗碱抗肿瘤作用实验研究[J].中国药理学通报,1997,13(2):189.
    [174]谭宇蕙,陈冠林,郭淑杰,等.小檗碱对人胃癌MGC-803细胞生长抑制及诱导凋亡的作用[J].中国药理学通报,2001,17(1):40-43.
    [175]李国英,杨林西.小檗碱诱导人胃癌细胞BGC-823细胞凋亡[J].中国现代医学杂志,2004,14(9):54-56.
    [176]李国英,杨林西,王玉平.小檗碱对人胃癌细胞株BGC-823增殖的影响[J].中药药理与临床,2002,18(6):10-12.
    [177]姚保泰,吴敏,王博,等.盐酸小檗碱对人胃癌细胞凋亡与P53、Bcl-2基因表达水平的影响[J].中华临床医学杂志,2006,7(1):1-4.
    [178]姚保泰,吴敏,王博,等.盐酸小檗碱抗大鼠胃癌前病变及其作用机制 [J].中国中西医结合消化杂志,2005,13(2):81-84.
    [179]姚保泰,吴敏,刘敏,等.盐酸小檗碱对实验性大鼠胃癌前病变细胞凋亡及生存素基因表达的影响.山东中医药大学学报,2005,29(2):143-145.
    [180]狄晓鸿,高英敏,郭红云.黄连素对人宫颈癌Hela细胞株的体外作用研究[J].中国中医药信息杂志,2008,(1):30-32.
    [181]来丽娜,赵娜,郭春花,等.小檗碱对HeLa细胞凋亡及其凋亡相关蛋白表达的影响[J].中草药,2008,39(2):244-247.
    [182]来丽娜,赵娜,范毅敏,等.小檗碱对HeLa细胞黏附和移动作用的体外实验研究[J].中国老年学杂志,2008,28(1):13-14.
    [183]吴刚,刘志苏,钱群,等.黄连素对肝癌细胞生长的影响以及机理[J].武汉大学学报·医学版,2008,(1):102-105.
    [184]Sudheer K.Mantena, Som D. Sharma, Santosh K. Katiyar. Berberine, a natural product, induce G1-phase cell cycle arrest and caspase-3-dependent apotosis in human prostate carcinoma cells [J]. Mol Cancer Ther,2006, 5(2):296-308.
    [185]蔡少平,刘泽.黄连素抑制结肠癌细胞中PGE2表达作用的研究[J].中国医药学报,2004,19(2):95-97.
    [186]台卫平,罗和平.黄连素对HT-29人结肠癌细胞系Ca2+的抑制作用[J].世界华人消化杂志,2003,11(10):1642-1644.
    [187]台卫平,罗和平.黄连素抑制结肠癌细胞环氧合酶-2的作用[J].中华内科杂志,2003,42(8):558-560.
    [188]台卫平,田耕,黄业斌,等.盐酸小檗碱抑制结肠癌细胞环氧化酶-2/钙离子途径[J].中国药理学通报,2005,21(8):950-953.
    [189]吴柯,杨俊霞,周歧新.小檗碱对结肠癌的体外作用研究[J].中国药房,2010,21(15):1360-1362.
    [190]王邦茂,翟春颖,方维丽,等.黄连素对脱氧胆酸诱导的HT-29人结肠癌细胞增殖的抑制作用及机制研究[J].中华消化杂志,2006,26(11):749-752.
    [191]陆宁,王邦茂,黄迺侠,等.黄连素对脱氧胆酸诱导的人结肠癌细胞株增殖抑制作用及机制[J].中华消化杂志,2006,26(9):632-633.
    [192]刘泽,蔡少平.小檗碱抑制结肠癌细胞中COX-2表达作用的研究[J].中国新药杂志,2004,13(9):796-799.
    [193]何百成,康全,杨俊卿,等.小檗碱抗肿瘤作用与Wnt/β-catenin信号转 导关系[J].中国药理学通报,2005,21(9):1108-1111.
    [194]常金荣,文彬,王汝俊,等.吴茱萸碱和盐酸小檗碱对HT29细胞生长抑制及凋亡的影响[J].中药新药与临床药理,2008,19(3):191-193.
    [195]王建军,辛爱学.黄连素对人宫颈癌Hep-2细胞作用研究[J].中华临床医药杂志,2003,4(7):39.
    [196]王春波,陆付耳,冷三华,等.小檗碱对HepG2细胞葡萄糖激酶活性及其mRNA表达的影响[J].中国药理学通报,2007,23(9):1145-1147.
    [197]刘锋,冷三华,陆付耳,等.小檗碱对HepG2细胞肝细胞核因子基因表达的影响[J].中国中西医结合消化杂志,2007,15(3):141-144.
    [198]张卫东,吴定国,王金松,等.黄连素对人肝癌Hep G2细胞周期及凋亡的影响[J].武汉大学学报·医学版,2008,29(6):766-768,786.
    [199]郝钰,徐泊文,郑宏,等.小檗碱抑制高转移性人巨细胞肺癌PG细胞侵袭和迁移的研究[J].中国病理生理杂志,2007,23(3):474-478.
    [200]郝钰,王萍,吴瑶,等.人参总皂苷和小檗碱对肺癌PG细胞分泌免疫抑制性细胞因子的影响[J].中西医结合学报,2008,6(3):278-282.
    [201]张贵平,张维文,区彗坚,等.小檗碱对人肺癌GLC-82细胞凋亡的影响[J].中国临床药理学与治疗学,2005,10(12):1389-1393.
    [202]娄金丽,邱全瑛,郝钰,等.小檗碱抗肿瘤新生血管形成作用机制的研究[J].中国免疫学杂志,2006,22(3):235-236,243.
    [203]郝钰,徐泊文,郑宏,等.小檗碱对人脐静脉内皮细胞增殖与凋亡的作用[J].中国病理生理杂志,2005,21(6):1124-1127.
    [204]陈淑珍,江敏,甄永苏,等HERG钾通道表达与小檗碱的抗肿瘤作用的关系[J].中国天然药物,2005,3(1):48-52.
    [205]杨菁,林菁.盐酸小檗碱对小鼠移植性肿瘤的抑制作用[J].中国药业,2009,18(1):4-5.
    [206]王志红,林菁.盐酸小檗碱对HL-60细胞的诱导分化及其作用机制[J].中国药科大学学报,2006,37(2):165-168.
    [207]徐建国,等.黄连素、利福平对福氏IIa痢菌R因子的作用[J].中华微生物学和免疫学杂志,1983,3(6):38.
    [208]李立津,王哲,胡文芝.氟哌酸和黄连素对志贺氏菌耐药性质粒消除研究[J].中华传染病杂志,1994,12(1):4-8.
    [209]杨春梅,马治平,王志鹏,等.黄连素、溴化乙锭、十二烷基硫酸钠对痢疾杆菌耐药质粒的消除作用[J].西北药学杂志,2000,15(2):64.
    [210]常明向,刘小平.黄连素与TMP联用抗菌作用实验研究[J].实用中西医结合杂志,1995,8(4):223.
    [211]储钟禄,姜云飞,王智慧,等.黄连素的抗血小板作用[J].第二军医大学学报,1989,10(2):193.
    [212]储钟禄.小檗碱的抗血小板作用和机制[J].中国中西医结合杂志,1994,14(8):510.
    [213]吴俊芳,刘天培.小檗碱对局灶性脑缺血大鼠血小板聚集及血浆TXB2和6-keto-PGF1α水平影响[J].药学学报,1995,30(2):98.
    [214]黄才国,储钟禄.小檗碱对兔血小板TXA2和血浆中PGI2生成的影响[J].中国药理学报(上海),1991,12(6):526-528.
    [215]黄才国,储钟禄,杨志铭.黄连素对家兔血小板cAMP和钙内流的影响[J].第二军医大学学报,1991,12(4):320-322.
    [216]李淑秀,朱玉翠,刘炎辉,等.黄连素对小鼠实验性血栓形成的影响[J].河南医学研究,1994,3(1):43-45.
    [217]冯栓林,刘顺兴,冯青燕,等.盐酸黄连素与小剂量阿司匹林抗血小板聚集功能的对比研究[J].山东医药,1996,36(2):11-12.
    [218]吴俊芳,刘天培.小檗碱对局灶性脑缺血大鼠血小板聚集及血浆TXB2和6-keto-PGF1α水平影响[J].药学学报,1995,30(2):98-102.
    [219]陆雷,张怀勤,陈国荣.小檗碱对糖尿病模型大鼠血清血小板糖蛋白GPVI表达的影响[J].医药导报,2007,26(11):1287-1291.
    [220]黄启荣.黄连黄柏抗盐酸-乙醇溃疡作用及其作用成分[J].国外医学:中医中药分册,1988,10(1):43.
    [221]李锋,张浩,华桦,等.黄连碱对应激所致小鼠胃黏膜损伤的保护作用[J].华西药学杂志,2007,22(6):713-714.
    [222]卢干,董秀云,李益农.小檗碱促进大鼠胃溃疡愈合的实验研究[J].新消化病学杂志,1996,4(3):130-131.
    [223]李备,潘永全,刘华蓉,等.黄连总碱对乙醇致大鼠胃粘膜损伤的保护作用及其机制研究[J].中成药,2006,28(1):72-78.
    [224]李备,潘永全,刘华蓉,等.黄连总生物碱对乙醇致大鼠胃黏膜损伤的保护作用及其机制探讨[J].中国中药杂志,2006,31(1):51-54.
    [225]潘龙瑞,明章银,蓝星莲,等.小檗碱对胃溃疡小鼠胃黏膜血管活性物质的影响[J].时珍国医国药,2007,18(4):771-772.
    [226]陈波华,邢洪君,张影,等.黄连等中药抑制幽门螺杆菌生长的试验研究 [J].黑龙江医药,1996,9(2):115.
    [227]李娟,傅颖媛.IgY、黄连、太子参影响幽门螺杆菌感染小鼠胃黏膜的变化[J].中国临床康复,2006,10(31):78-80.
    [228]李娟.抗Ⅰ型幽门螺杆菌IgY和黄连及太子参联合抗活性空泡细胞毒素A+和细胞毒素相关蛋白A+幽门螺杆菌的实验[J].中国临床康复,2006,10(19):78-82.
    [229]鲁劲松,刘玉庆,李明,等.黄连总生物碱对大鼠胃黏膜损伤的保护作用及其机制研究[J].中国中药杂志,2007,32(13):1333-1336.
    [230]Zhou H, Mineshita S. The effect of berberine chloride on experimental colitis in rats in vivo and in vitro. [J]. J Pharmacol Exp Ther,2000,294(3): 822-829.
    [231]舒德忠,万先惠,刘华蓉,等.盐酸小檗碱对葡聚糖硫酸钠所致小鼠结肠炎的作用研究[J].中国药学·英文版,2006,15(3):182-187.
    [232]纪桂贤,王邦茂,方维丽.盐酸小檗碱对DSS诱导的结肠炎小鼠血小板活化功能的影响[J].天津医科大学学报,2004,10(2):182-184.
    [233]马振亚.三黄注射液等七种中药制剂对结核杆菌的抗菌作用[J].陕西中医学院学报,1982,5(1):540.
    [234]庄萍,陈日兰,梁剑勤,等.黄连素对消化功能影响的药效研究[J].中国中医药信息杂志,2003,10(7):28-29.
    [235]黄晓东,罗和生,余保平,等.小檗碱对豚鼠回肠电解质转运影响的研究[J].中国病理生理杂志,2003,19(1):14-17.
    [236]谭正怀,张媛,程蕾,等.小檗碱、巴马亭及黄连总生物碱对胆碱能神经的作用[J].中药药理与临床,2006,22(6):20-22.
    [237]王黎,马瑶,付婷婷,等.黄连素对高脂饮食肝损伤大鼠肝中NO合成酶及凋亡相关基因的干预与调控[J].中国药师,2006,9(5):387-389.
    [238]王晶,刘蓉,严祥,等.盐酸小檗碱对大鼠非酒精性脂肪性肝病的干预[J].兰州大学学报·医学版,2007,33(4):8-11,15.
    [239]杨禄红,陆付耳,董慧,等.大黄素和黄连素对2型糖尿病大鼠胃肠动力的影响[J].世界华人消化杂志,2005,13(5):608-611.
    [240]刘晓霓,司银楚,高艳青,等.小檗碱对大鼠胃窦平滑肌细胞收缩作用的影响[J].中成药,2004,26(10):822-824.
    [241]Zhou JY, Zhou SW, Zhang KB, et al. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats [J]. Biol Pharm Bull,2008,31(6):1169-1176.
    [242]Liu X, Li G, Zhu H, et al. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRa and PPARa transcriptional programs [J]. Endocr J,2010,57(10):881-893.
    [243]Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J]. Nat Med,2004,10(12):1344-1351.
    [244]沈宁,李彩娜,环奕,等.小檗碱调节血糖血脂代谢紊乱机制研究进展[J].药学学报,2010,45(6):699-704.
    [245]Chen Y, Li Y, Wang Y, Wen Y, et al. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions [J]. Metabolism,2009,58(12):1694-1702.
    [246]Hu Y, Davies GE. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice [J]. Fitoterapia,2010,81 (5):358-366.
    [247]Zang M, Zuccollo A, Hou X, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells [J]. J Biol Chem,2004,279(46):47898-47905.
    [248]Leclerc I, Rutter GA. AMP-activated protein kinase:a new beta-cell glucose sensor?:Regulation by amino acids and calcium ions [J]. Diabetes,2004, 53(Suppl):S67-S74.
    [249]Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis [J]. Biochem J,2003, 375(Pt 1):1-16.
    [250]Zhang Q, Xiao X, Feng K, et al. Berberine Moderates Glucose and Lipid Metabolism through Multipathway Mechanism [J]. Evid Based Complement Alternat Med,2011, pii:924851.
    [251]Cheng Z, Pang T, Gu M, et al. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK [J]. Biochim Biophys Acta, 2006,1760(11):1682-1689.
    [252]Ma X, Egawa T, Kimura H, et al. Berberine-induced activation of 5'-adenosine monophosphate-activated protein kinase and glucose transport in rat skeletal muscles [J]. Metabolism,2010,59(11):1619-1627.
    [253]Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through-induction of glycolysis [J]. Am J Physiol Endocrinol Metab,2008, 294(1):E148-E156.
    [254]Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states [J]. Diabetes,2006,55(8):2256-2264.
    [255]Larance M, Ramm G, Stockli J, et al. Characterization of the role of the Rab GTPase-activating protein AS 160 in insulin-regulated GLUT4 trafficking [J]. J Biol Chem,2005,280(45):37803-37813.
    [256]Thong FS, Bilan PJ, Klip A. The Rab GTPase-activating protein AS 160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic [J]. Diabetes,2007,56(2):414-423.
    [257]Liu LZ, Cheung SC, Lan LL, et al. Berberine modulates insulin signaling transduction in insulin-resistant cells [J]. Mol Cell Endocrinol,2010, 317(1-2):148-153.
    [258]Zhang W, Xu YC, Guo FJ, et al. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus [J]. Chin Med J (Engl),2008, 121(21):2124-2128.
    [259]Zhou L, Wang X, Shao L, et al. Berberine acutely inhibits insulin secretion from beta-cells through 3',5'-cyclic adenosine 5'-monophosphate signaling pathway [J]. Endocrinology,2008,149(9):4510-4518.
    [260]Turner N, Li JY, Gosby A, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex Ⅰ:a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action [J]. Diabetes, 2008,57(5):1414-1418.
    [261]Cameron J, Ranheim T, Kulseth MA, et al. Berberine decreases PCSK9 expression in HepG2 cells [J]. Atherosclerosis,2008,201(2):266-273.
    [262]Kong WJ, Wei J, Zuo ZY, et al. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism.2008,57(8):1029-1037.
    [263]Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus [J]. Metabolism,2008,57(5):712-717.
    [264]Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression [J]. Metabolism,2010,59(2):285-292.
    [265]Kong WJ, Zhang H, Song DQ, et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression [J]. Metabolism,2009,58(1):109-119.
    [266]Harrington LS, Findlay GM, Gray A, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins [J]. J Cell Biol,2004,166(2):213-223.
    [267]Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies [J]. Curr Biol,2004,14(18):1650-1656.
    [268]Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity [J]. Nature, 2004,431(7005):200-205.
    [269]Liu LZ, Cheung SC, Lan LL, et al. Berberine modulates insulin signaling transduction in insulin-resistant cells [J]. Mol Cell Endocrinol,2010, 317(1-2):148-153.
    [270]Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action [J]. Biochem Biophys Res Commun,2010,397(3):543-547.
    [271]Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes [J]. J Clin Endocrinol Metab, 2008,93(4):1143-1152.
    [272]Taddei S, Ghiadoni L, Virdis A, et al. Mechanisms of endothelial dysfunction:clinical significance and preventive non-pharmacological therapeutic strategies [J]. Curr Pharm Des,2003,9(29):2385-2402.
    [273]Versari D, Daghini E, Virdis A, Endothelial dysfunction as a target for prevention of cardiovascular disease [J]. Diabetes Care,2009,32 (Suppl 2): S314-S321.
    [274]Xu B, Ji Y, Yao K, Cao YX, et al. Inhibition of human endothelial cell nitric oxide synthesis by advanced glycation end-products but not glucose: relevance to diabetes [J]. Clin Sci (Lond),2005,109(5):439-446.
    [275]Lieuw-A-Fa ML, van Hinsbergh VW, Teerlink T, et al. Increased levels of N (epsilon)-(carboxymethyl) lysine and N(epsilon)-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function:correlation with markers of endothelial dysfunction [J]. Nephrol Dial Transplant,2004, 19(3):631-636.
    [276]Hao M, Li SY, Sun CK, et al. Amelioration effects of berberine on diabetic microendothelial injury model by the combination of high glucose and advanced glycation end products in vitro [J]. Eur J Pharmacol,2011,654(3): 320-325.
    [277]Tang LQ, Wei W, Chen LM, et al. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats [J]. J Ethnopharmacol, 2006,108(1):109-115.
    [278]Tawfik HE, El-Remessy AB, Matragoon S, et al. Simvastatin improves diabetes-induced coronary endothelial dysfunction [J]. J Pharmacol Exp Ther,2006,319(1):386-395.
    [279]Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase [J]. Am J Physiol Heart Circ Physiol,2001,281(6):H2289-H2294.
    [280]Maritim AC, Sanders RA, Watkins JB 3rd. Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats [J]. J Nutr Biochem,2003,14(5):288-294.
    [281]Wang C, Li J, Lv X, et al. Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin [J]. Eur J Pharmacol,2009,620(1-3):131-137.
    [282]Xia X, Yan J, Shen Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis [J]. PLoS One,2011, 6(2):e16556.
    [283]Lou T, Zhang Z, Xi Z, et al. Berberine Inhibits Inflammatory Response and Ameliorates Insulin Resistance in Hepatocytes [J]. Inflammation,2010.
    [284]Chen FL, Yang ZH, Liu Y, et al. Berberine inhibits the expression of TNFalpha, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARgamma pathway [J]. Endocrine,2008,33(3):331-337.
    [285]Guo Y, Wang QZ, Li FM, et al. Biochemical pathways in the antiatherosclerotic effect of berberine [J]. Chin Med J (Engl),2008,121(13): 1197-1203.
    [286]Jeong HW, Hsu KC, Lee JW, et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages [J]. Am J Physiol Endocrinol Metab,2009,296(4):E955-E964.
    [1]Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis [J]. Am J Cardiol,1972,30(6): 595-602
    [2]David S. H. Bell. Heart failure:a serious and common comorbidity of diabetes [J]. Clinical Diabetes,2004,22(2):61-65.
    [3]Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications [J]. Endocr Rev,2004,25(4): 543-567.
    [4]Abe T, Ohga Y, Tabayashi N, et al. Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats [J]. Am J Physiol Heart Circ Physiol,2002, 282(1):H138-H148
    [5]Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy:evaluation by Doppler echocardiography. [J]. J Am Coll Cardiol,2006,48(8):1548-1551.
    [6]Khavandi K, Khavandi A, Asghar O, et al. Diabetic cardiomyopathy--a distinct disease?[J]. Best Pract Res Clin Endocrinol Metab,2009,23(3):347-360.
    [7]Boudina S, Abel ED. Diabetic cardiomyopathy revisited [J]. Circulation,2007, 115(25):3213-3223.
    [8]Berg TJ, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes [J]. Diabetes Care,1999,22(7):1186-1190.
    [9]Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity [J]. Endocrinology,2005,146(12):5341-5349.
    [10]McQueen AP, Zhang D, Hu P, et al. Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling:possible role of reduced capillary density [J]. J Mol Cell Cardiol,2005,39(6):882-892.
    [11]McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase (p110alpha) plays a critical role for the induction of physiological, but not pathological cardiac hypertrophy [J]. Proc Natl Sci USA,2003,100(21):12355-12360.
    [12]Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: Implications for human obesity [J]. Proc Natl Acad Sci U S A.,2000,97(4): 1784-1789.
    [13]Hsueh W, Abel ED, Breslow JL, et al. Recipes for creating animal models of diabetic cardiovascular disease [J]. Circ Res,2007,100(10):1415-1427.
    [14]葛志华,高福禄,王春艳,等C-Fos在dbldb自发性糖尿病小鼠颌下腺的表达[J].中国组织化学与细胞化学杂志.2006,15(5):559-562.
    [15]Park SY, Cho YR, Kim HJ, et al. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice [J]. Diabetes,2005,54(12):3530-3540.
    [16]Heiko Bugger, Jean E Shaffer, E. Dale Abel. Insulin resistance and increased fatty acid delivery independently impair mitochondrial function in the heart [J]. Circulation.2006:Ⅱ210-Ⅱ211.
    [17]Razeghi P, Young ME, Alcorn JL, et al. Metabolic gene expression in fetal and failing human heart [J]. Circulation,2001,104(24):2923-2931.
    [18]How OJ, Aasum E, Severson DL, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice [J]. Diabetes,2006, 55(2):466-473.
    [19]Neitzel AS, Carley AN, Severson DL. Chylomicron and palmitate metabolism by perfused hearts from diabetic mice [J]. Am J Physiol Endocrinol Metab, 2003,284(2):E357-365.
    [20]Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy:evidence of relationship with insulin resistance and left ventricular dysfunction [J]. J Car Fail,2006,12(8):644-652.
    [21]Murray AJ, Lygate CA, Cole MA, et al. Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart [J]. Cardiovasc Res,2006,71(1):149-157.
    [22]Regan TJ, Lyons MM, Ahmed SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus [J]. J Clin Invest,1977,60(4):884-899.
    [23]An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy [J]. Am J Physiol Heart Circ Physiol,2006,291(4): H1489-1506.
    [24]Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy:modulation by dietary fat content [J]. Proc Natl Acad Sci USA,2003,100(3):1226-1331.
    [25]Ceriello A. New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy [J].Diabetes Care,2003,26(3): 1589-1596.
    [26]Bell DS. Diabetic Cardiomyopathy [J]. Diabetes Care,2003,26(10): 2791-2795.
    [27]Poornima IG, Parikh P, Shannon RP. Diabetic Cardiomyopathy:The search for a unifying hypothesis [J]. Circ Res,2006,98(5):596-605.
    [28]Maciver DH, Townsend M. A novel mechanism of heart failure with normal ejection fraction [J]. Heart,2008,94(4):446-449.
    [29]Aurigemma GP, Zile MR, Gaasch WH. Contractile behavior of the left ventricle in diastolic heart failure:with emphasis on regional systolic function [J]. Circulation,2006,113(2):296-304.
    [30]Fang ZY, Leano R, Marwick TH. Relationship between longitudinal and radial contractility in subclinical diabetic heart disease [J]. Clin Sci (Lond), 2004,106(1):53-60.
    [31]Ozasa N, Furukawa Y, Morimoto T, et al. Relation among left ventricular mass, insulin resistance, and hemodynamic parameters in type 2 diabetes [J]. Hypertens Res,2008,31(3):425-432.
    [32]van Heerebeek L, Hamdani N, Handoko ML, et al. Diastolic stiffness of the failing diabetic heart:importance of fibrosis, advanced glycation end products, and myocyte resting tension [J]. Circulation,2008,117(1):43-51.
    [1]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med,2010,362(12):1090-1101.
    [2]He J, Gu D, Wu X, et al. Major causes of death among men and women in China [J]. N Engl J Med,2005,353(11):1124-1134.
    [3]Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications [J]. Endocr Rev,2004,25(4): 543-567.
    [4]李波,朱维良,陈凯先.小檗碱及其衍生物的研究进展[J].药学学报,2008,43(8):773-787.
    [5]赵海苹,洪缨,谢俊大,等.小檗碱对L-甲状腺素诱发心肌肥厚大鼠心血管功能的影响[J].北京中医药大学学报,2007,30(2):105-107,111.
    [6]解欣然,洪缨,董世芬.小檗碱抑制血管紧张素Ⅱ诱导的心肌成纤维细胞增殖和胶原合成的作用及机制研究[J].北京中医药大学学报,2008,31(11):748-751.
    [7]Belke DD, Larsen TS, Gibbs EM, et al. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice [J]. Am J Physiol Endocrinol Metab,2000,279(5):E1104-E1113.
    [8]Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus [J]. J Clin Invest,2002,109(1):121-130.
    [9]Duan SZ, Ivashchenko CY, Russell MW, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice [J]. Circ Res,2005,97(4):372-379.
    [10]Cefalu WT. Glycemic targets and cardiovascular disease [J]. N Engl J Med, 2008,358(24):2633-2635.
    [11]Cheng AY, Leiter LA. Diabetes and cardiovascular disease:the role of glycemic control [J]. Curr Diab Rep,2009,9(1):65-72.
    [12]ACCORD Study Group, Gerstein HC, Miller ME, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes [J]. N Engl J Med, 2011,364(9):818-828.
    [13]Mann JF, Schmieder RE, Dyal L, et al. Effect of telmisartan on renal outcomes:a randomized trial [J]. Ann Intern Med,2009,151(1):1-10.
    [14]Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus:a meta-analysis of randomised controlled trials [J]. Lancet,2009, 373(9677):1765-1772.
    [15]Reddi AS, Jyothirmayi GN, Bollineni JS. Long-term effects of antihypertensive treatment and good glycemic control on plasma lipids in diabetic rats [J]. J Diabetes Complications,1995,9(3):163-169.
    [16]Aryangat AV, Gerich JE. Type 2 diabetes:postprandial hyperglycemia and increased cardiovascular risk [J]. Vasc Health Risk Manag,2010,6:145-55.
    [17]Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [J]. Circulation, 2009,119(3):480-486.
    [18]Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes [J]. Circulation,2001,103(22): 2668-2673.
    [19]Pazin-Filho A, Kottgen A, Bertoni AG, et al. HbAlc as a risk factor for heart failure in persons with diabetes:the Atherosclerosis Risk in Communities (ARIC) study [J]. Diabetologia,2008,51(12):2197-2204.
    [20]Kelly DP, Strauss AW. Inherited cardiomyopathies [J]. N Engl J Med,1994, 330(13):913-919.
    [21]Marin-Garcia J, Goldenthal MJ. Understanding the impact of mitochondrial defects in cardiovascular disease:a review [J]. J Card Fail,2002,8(5): 347-361.
    [22]Lee Y, Naseem RH, Duplomb L, et al. Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice [J]. Proc Natl Acad Sci USA,2004,101(37):13624-13629.
    [23]Lopaschuk GD, Belke DD, Gamble J, et al. Regulation of fatty acid oxidation in the mammalian heart in health and disease [J]. Biochim Biophys Acta, 1994,1213(3):263-276.
    [24]Lopaschuk GD. Metabolic abnormalities in the diabetic heart [J]. Heart Fail Rev,2002,7(2):149-159.
    [25]Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes [J]. Circulation,2003,107(24):3040-3046.
    [26]Leichman JG, Aguilar D, King TM, et al. Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity [J]. Am J Clin Nutr,2006,84(2):336-341.
    [27]Stanley WC, Lopaschuk GD, Hall JL, et al. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions [J]. Cardiovasc Res,1997,33(2):243-257.
    [28]Khavandi K, Khavandi A, Asghar O, et al. Diabetic cardiomyopathy--a distinct disease? Best Pract Res Clin Endocrinol Metab [J].2009, 23(3):347-360.
    [29]Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [J]. Circulation, 2009,119(3):e21-181.
    [30]Pieske B, Wachter R. Impact of diabetes and hypertension on the heart. Curr Opin Cardiol,2008,23(4):340-349. Sowers JR, Stump CS. Insights into the biology of diabetic vascular disease:what's new? [J]. Am J Hypertens,2004, 17(11 Pt 2):2S-6S.
    [31]Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications [J]. Endocr Rev,2004,25(4): 543-567.
    [32]张玲玲,黄澜,徐艳峰,等.小檗碱对2型糖尿病ICR小鼠模型的治疗作用[J].中国比较医学杂志,2010,20(1):23-27.
    [33]Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression [J]. Metabolism,2010,59(2):285-292.
    [34]Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus [J]. Metabolism,2008,57(5):712-717.
    [35]陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986,21(6):401-406.
    [36]陆付耳,冷三华,屠庆年,等.黄连解毒汤与黄连素对2型糖尿病大鼠葡萄糖和脂质代谢影响的比较研究[J].华中科技大学学学报(医学版),2002,31(6):662-665.
    [37]殷峻,陈名道,唐金凤,等.小檗碱对实验大鼠糖脂代谢的影响[J].中华糖尿病杂志,2004,12(3):215-218.
    [38]Wang Y, Campbell T, Perry B, et al. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet-and streptozotocin-induced diabetic rats [J]. Metabolism,2011,60(2):298-305.
    [39]Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states [J]. Diabetes,2006,55(8):2256-2264.
    [40]Xia X, Yan J, Shen Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis [J]. PLoS One,2011, 6(2):e16556.
    [41]Yin J, Gao Z, Liu D, et al. Berberine improves glucose metabolism through induction of glycolysis [J]. Am J Physiol Endocrinol Metab,2008,294(1): E148-E156.
    [42]Zhang Q, Xiao X, Feng K, et al. Berberine Moderates Glucose and Lipid Metabolism through Multipathway Mechanism [J]. Evid. Based Complement Alternat Med,2011, pii:924851.
    [43]Lan T, Shen X, Liu P, et al. Berberine ameliorates renal injury in diabetic C57BL/6 mice:Involvement of suppression of SphK-SIP signaling pathway [J]. Arch Biochem Biophys,2010,502(2):112-120.
    [44]周吉银,周世文.小檗碱对糖尿病大鼠心肌PPARs表达的影响[J].中国现代医学杂志,2008,18(10):1318-1323,1327.
    [45]Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain [J]. Biochem J,2000,348 Pt 3:607-614.
    [46]Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration [J]. Am J Physiol Heart Circ Physiol,2007,293(1): H457-H466.
    [47]Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP [J]. Diabetes,2008,57(2):306-314.
    [48]Koo SH, Flechner L, Qi L, Zhang X, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism [J]. Nature,2005, 437(7062):1109-1111.
    [49]Collier CA, Bruce CR, Smith AC, et al. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle [J]. Am J Physiol Endocrinol Metab,2006,291(1):E182-189.
    [50]Matsui Y, Hirasawa Y, Sugiura T, et al. Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice [J]. Biol Pharm Bull.2010,33(6):963-970.
    [51]Hou M, Venier N, Sugar L, et al. Protective effect of metformin in CD1 mice placed on a high carbohydrate-high fat diet [J]. Biochem Biophys Res Commun,2010,397(3):537-542.
    [52]Tessari P, Tiengo A. Metformin treatment of rats with diet-induced overweight and hypertriglyceridemia decreases plasma triglyceride concentrations, while decreasing triglyceride and increasing ketone body output by the isolated perfused liver [J]. Acta Diabetol,2008,45(3): 143-145.
    [53]Sin HY, Kim JY, Jung KH. Total cholesterol, high density lipoprotein and triglyceride for cardiovascular disease in elderly patients treated with metformin [J]. Arch Pharm Res,2011,34(1):99-107.
    [54]Kirpichnikov D, McFarlane SI, Sowers JR. Metformin:an update [J]. Ann Intern Med,2002,137(1):25-33.
    [55]Forcheron F, Basset A, Abdallah P, et al. Diabetic cardiomyopathy:effects of fenofibrate and metformin in an experimental model--the Zucker diabetic rat [J]. Cardiovasc Diabetol,2009,8:16-28.
    [56]Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure [J]. Circ Res,2009,104(3):403-411.
    [57]Mohamad HE, Askar ME, Hafez MM. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs) [J]. Diabetol Metab Syndr,2011,3(1):4-15.
    [58]Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure:a consensus statement from the American Heart Association and American Diabetes Association [J]. Circulation,2003, 108(23):2941-2948.
    [59]Viljoen A, Sinclair A. Safety and efficacy of rosiglitazone in the elderly diabetic patient [J]. Vasc Health Risk Manag,2009,5(1):389-395.
    [60]Arakawa K, Ishihara T, Aoto M, Inamasu M, et al. An antidiabetic thiazolidinedione induces eccentric cardiac hypertrophy by cardiac volume overload in rats [J]. Clin Exp Pharmacol Physiol,2004,31(1-2):8-13.
    [61]Duan SZ, Ivashchenko CY, Russell MW, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice [J]. Circ Res,2005,97(4):372-379.
    [62]How OJ, Larsen TS, Hafstad AD, et al. Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice [J]. Arch Physiol Biochem, 2007,113(4-5):211-220.
    [63]Temel HE, Akyuz F. The effects of captopril and losartan on erythrocyte membrane Na+/K(+)-ATPase activity in experimental diabetes mellitus [J]. J Enzyme Inhib Med Chem,2007,22(2):213-217.
    [64]Zhang JZ, Gao L, Widness M, et al. Captopril inhibits glucose accumulation in retinal cells in diabetes [J]. Invest Ophthalmol Vis Sci,2003,44(9): 4001-4005.
    [65]Fournier A, Lalau JD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy [J]. N Engl J Med,1994,330(13):937.
    [66]Seghieri G, Yin W, Boni C, et al. Effect of chronic ACE inhibition on glucose tolerance and insulin sensitivity in hypertensive type 2 diabetic patients [J]. Diabet Med,1992,9(8):732-738.
    [67]Solski LV, Longyhore DS. Prevention of type 2 diabetes mellitus with angiotensin-converting-enzyme inhibitors [J]. Am J Health Syst Pharm,2008, 65(10):935-940.
    [68]Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system [J]. Drugs,2004,64(22):2537-2565.
    [69]Weisinger RS, Stanley TK, Begg DP, et al. Angiotensin converting enzyme inhibition lowers body weight and improves glucose tolerance in C57BL/6J mice maintained on a high fat diet [J]. Physiol Behav,2009,98(1-2): 192-197.
    [70]Tabbi-Anneni I, Buchanan J, Cooksey RC, et al. Captopril normalizes insulin signaling and insulin-regulated substrate metabolism in obese (ob/ob) mouse hearts [J]. Endocrinology,2008,149(8):4043-4050.
    [71]Lassila M, Davis BJ, Allen TJ, et al. Cardiovascular hypertrophy in diabetic spontaneously hypertensive rats:optimizing blockade of the renin-angiotensin system [J]. Clin Sci (Lond),2003,104(4):341-347.
    [72]Solski LV, Longyhore DS. Prevention of type 2 diabetes mellitus with angiotensin-converting-enzyme inhibitors [J]. Am J Health Syst Pharm,2008, 65(10):935-940.
    [73]Pahor M, Psaty BM, Alderman MH, et al. Therapeutic benefits of ACE inhibitors and other antihypertensive drugs in patients with type 2 diabetes [J]. Diabetes Care,2000,23(7):888-892.
    [1]Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism:implications for metabolic disease [J].2010, Physiol Rev, 90(1):367-417.
    [2]Ruberg FL. Myocardial lipid accumulation in the diabetic heart [J]. Circulation,2007,116(10):1110-1112.
    [3]Di Paola M, Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition [J]. Biochim Biophys Acta, 2006,1757(9-10):1330-1337.
    [4]Holland WL, Knotts TA, Chavez JA, et al. Lipid mediators of insulin resistance [J]. Nutr Rev,2007,65(6 Pt 2):S39-46.
    [5]Ouwens DM, Diamant M, Fodor M, et al. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification [J]. Diabetologia,2007, 50(9):1938-1948.
    [6]Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart [J]. FASEB J,2004, 18(14):1692-1700.
    [7]Wang J, Song Y, Wang Q, et al. Causes and characteristics of diabetic cardiomyopathy [J]. Rev Diabet Stud,2006,3(3):108-117.
    [8]Christoffersen C, Bollano E, Lindegaard ML, et al. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice [J]. Endocrinology,2003, 144(8):3483-3490.
    [9]Carley AN, Atkinson LL, Bonen A, et al. Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic dbldb mice [J]. Arch Physiol Biochem,2007,113(2):65-75.
    [10]Coort SL, Hasselbaink DM, Koonen DP, et al. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats [J]. Diabetes,2004,53(7):1655-1663.
    [11]Turcotte LP, Swenberger JR, Zavitz Tucker M, et al. Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats [J]. Diabetes,2001,50(6):1389-1396.
    [12]Bandyopadhyay GK, Yu JG, Ofrecio J, et al. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects [J]. Diabetes,2006,55(8):2277-2285.
    [13]Han XX, Chabowski A, Tandon NN, et al. Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle [J]. Am J Physiol Endocrinol Metab, 2007,293(2):E566-E575.
    [14]Smith AC, Mullen KL, Junkin KA, et al. Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia [J]. Am J Physiol Endocrinol Metab, 2007,293(1):E172-E181.
    [15]Christoffersen C, Bollano E, Lindegaard ML, et al. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice [J]. Endocrinology,2003,144(8):3483-3490.
    [16]Young ME, Guthrie PH, Razeghi P, et al. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart [J]. Diabetes,2002,51(8):2587-2595.
    [17]Chiu HC, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy [J]. J Clin Invest,2001,107(7):813-822.
    [18]Yagyu H, Chen G, Yokoyama M, et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy [J]. J Clin Invest,2003,111 (3):419-426.
    [19]Chiu HC, Kovacs A, Blanton RM, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy [J]. Circ Res, 2005,96(2):225-233.
    [20]Schaffer JE. Lipotoxicity:when tissues overeat [J]. Curr Opin Lipidol,2003, 14(3):281-287.
    [21]Aasum E, Hafstad AD, Severson DL, et al. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from dbldb mice [J]. Diabetes,2003,52(2):434-441.
    [22]Mazumder PK, O'Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant oblob mouse hearts [J]. Diabetes,2004,53(9):2366-2374.
    [23]Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts [J]. Biochim Biophys Acta,2005,1734(2):112-126.
    [24]Carroll R, Carley AN, Dyck JR, et al. Metabolic effects of insulin on cardiomyocytes from control and diabetic dbldb mouse hearts [J]. Am J Physiol Endocrinol Metab,2005,288(5):E900-E906.
    [25]Borradaile NM, Schaffer JE. Lipotoxicity in the heart [J]. Curr Hypertens Rep,2005,7(6):412-417.
    [26]Hallsten K, Virtanen KA, Lonnqvist F, et al. Rosiglitazone but not metformin enhances insulin-and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes [J]. Diabetes,2002,51(12): 3479-3485.
    [27]Iozzo P, Hallsten K, Oikonen V, et al. Effects of metformin and rosiglitazone monotherapy on insulin-mediated hepatic glucose uptake and their relation to visceral fat in type 2 diabetes [J]. Diabetes Care,2003,26(7):2069-2074.
    [28]Hallsten K, Virtanen KA, Lonnqvist F, et al. Enhancement of insulin-stimulated myocardial glucose uptake in patients with Type 2 diabetes treated with rosiglitazone [J]. Diabet Med,2004,21(12):1280-1287.
    [29]Lautamaki R, Airaksinen KE, Seppanen M, et al. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease:a 16-week randomized, double-blind, placebo-controlled study [J]. Diabetes,2005,54(9):2787-2794.
    [30]Shoghi KI, Finck BN, Schechtman KB, et al. In vivo metabolic phenotyping of myocardial substrate metabolism in rodents:differential efficacy of metformin and rosiglitazone monotherapy [J]. Circ Cardiovasc Imaging,2009, 2(5):373-381.
    [31]陈刚,林丽香,庄维持,等.卡托普利对糖尿病性心肌病大鼠心肌组织能量代谢和炎症反应的影响[J].第一军医大学学报,2004,24(7):827-829.
    [32]Tabbi-Anneni I, Buchanan J, Cooksey RC, et al. Captopril normalizes insulin signaling and insulin-regulated substrate metabolism in obese(ob/ob) mouse hearts [J]. Endocrinology,2008,149(8):4043-4050.
    [33]Affuso F, Mercurio V, Fazio V, et al. Cardiovascular and metabolic effects of berberine [J]. World J Cardiol,2010,2(4):71-77.
    [1]Gearing KL, Gottlicher M, Teboul M, et al. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor [J]. Proc Natl Acad Sci U S A,1993,90(4):1440-1444.
    [2]Robyr D, Wolffe AP, Wahli W. Nuclear hormone receptor coregulators in action:diversity for shared tasks [J]. Mol Endocrinol,2000,14(3):329-347.
    [3]Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome [J]. Nature,2001,414(6865):821-827.
    [4]Peraza MA, Burdick AD, Marin HE, et al. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR) [J]. Toxicological Sciences,2006,90(2):269-295
    [5]Guerre-Millo M, Gervois P, Raspe E, et al. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity [J]. J Biol Chem,2000,275(22):16638-16642)
    [6]Belke DD, Larsen TS, Gibbs EM, et al. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice [J]. Am J Physiol Endocrinol Metab,2000,279(5):E1104-E1113.
    [7]Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus [J]. J Clin Invest,2002,109(1):121-130.
    [8]Barger PM, Brandt JM, Leone TC, et al. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth [J]. J Clin Invest,2000,105(12):1723-1730.
    [9]Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure [J]. Am J Physiol,1970,218(1):153-159.
    [10]Schupp M, Kintscher U, Fielitz J, et al. Cardiac PPARalpha expression in patients with dilated cardiomyopathy [J]. Eur J Heart Fail,2006, 8(3):290-294.
    [11]Campbell FM, Kozak R, Wagner A, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels:reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentration of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase [J]. J Biol Chem.2002,277(6):4098-4103.
    [12]Park SY, Cho YR, Finck BN, et al. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver [J]. Diabetes,2005,54(9):2514-2524.
    [13]Harris IS, Treskov I, Rowley MW, et al.G-protein signaling participates in the development of diabetic cardiomyopathy [J]. Diabetes,2004, 53(12):3082-3090.
    [14]Horiuchi M, Yoshida H, Kobayashi K, et al.Cardiac hypertrophy in juvenile visceral steatosis (jvs) mice with systemic carnitine deficiency [J]. FEBS Lett,1993,326(1-3):267-271.
    [15]Kuwajima M, Lu K, Sei M, et al. Characteristics of cardiac hypertrophy in the juvenile visceral steatosis mouse with systemic carnitine deficiency [J]. J Mol Cell Cardiol,1998,30(4):773-781.
    [16]Diep QN, Benkirane K, Amiri F, et al.PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin Ⅱ-infused rats [J]. J Mol Cell Cardiol,2004,36(2):295-304.
    [17]Asai T, Okumura K, Takahashi R, et al. Combined therapy with PPARalpha agonist and L-carnitine rescues lipotoxic cardiomyopathy due to systemic carnitine deficiency [J]. Cardiovasc Res,2006,70(3):566-577.
    [18]Burkart EM, Sambandam N, Han X, et al. Nuclear receptors PPARβ/δ and PPARa direct distinct metabolic regulatory programs in the mouse heart [J]. J Clin Invest,2007,117(12):3930-3939.
    [19]Aasum E, Cooper M, Severson DL, et al. Effect of BM 17.0744, a PPARalpha ligand, on the metabolism of perfused hearts from control and diabetic mice [J]. Can J Physiol Pharmacol,2005,83(2):183-190.
    [20]Li AC, Glass CK. PPAR-and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis [J]. J Lipid Res,2004, 45(12):2161-2173.
    [21]Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis:regulators of gene expression in vascular cells [J]. Circ Res,2004,94(9):1168-1178.
    [22]Gilde AJ, Van Bilsen M. Peroxisome proliferator-activated receptors (PPARS):regulators of gene expression in heart and skeletal muscle [J]. Acta Physiol Scand,2003,178(4):425-434.
    [23]Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism [J]. Circ Res,2003,92(5):518-524.
    [24]Duan SZ, Ivashchenko CY, Russell MW, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice [J]. Circ Res,2005,97(4):372-329.
    [25]Lautamaki R, Airaksinen KE, Seppanen M, et al. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease:a 16-week randomized, double-blind, placebo-controlled study[J].Diabetes,2005,54(9):2787-2794.
    [26]Yue TI TL, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone [J]. Circulation,2001, 104(21):2588-2594.
    [27]Fliegner D, Westermann D, Riad A, et al. Up-regulation of PPAR gamma in myocardial infarction [J]. Eur J Heart Fail,2008,10(1):30-38.
    [28]Vikramadithyan RK, Hirata K, Yagyu H, et al. Peroxisome proliferator-activated receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy [J]. J Pharmacol Exp Ther,2005,313(2): 586-593.
    [29]Nemoto S, Razeghi P, Ishiyama M, et al. PPAR-gamma agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation [J]. Am J Physiol Heart Circ Physiol,2005,288(1):H77-H82.
    [30]Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction [J]. Circulation,2002,106(24):3126-3132.
    [31]Way JM, Harrington WW, Brown KK, et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues [J]. Endocrinology,2001,142(3): 1269-1277.
    [32]Golfman LS, Wilson CR, Sharma S, et al. Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats [J]. Am J Physiol Endocrinol Metab, 2005,289(2):E328-E336.
    [1]Kobayashi K. Adipokines:therapeutic targets for metabolic syndrome. Curr Drug Targets,2005,6(4):525-529.
    [2]Friedman JM. Modern science versus the stigma of obesity. Nat Med,2004, 10(6):563-569.
    [3]Friedman JM. Leptin and the regulation of body weight. Harvey Lect, 1999-2000,95:107-136.
    [4]Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK-and COX-2-dependent mechanisms. Nat Med,2005,11(10):1096-1103.
    [5]Shibata R, Ouchi N, Ito M, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med,2004,10(12):1384-1389.
    [6]Liao Y, Takashima S, Maeda N, et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc Res,2005,67(4):705-713.
    [7]Palanivel R, Fang X, Park M, et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc Res,2007,75(1):148-157.
    [8]Kistorp C, Faber J, Galatius S, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation,2005,112(12): 1756-1762.
    [9]Hu Y, Davies GE. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia,2010,81(5):358-366.
    [10]Hu Y, Fahmy H, Zjawiony JK, et al. Inhibitory effect and transcriptional impact of berberine and evodiamine on human white preadipocyte differentiation. Fitoterapia,2010,81(4):259-268.
    [11]Hu Y, Kutscher E, Davies GE. Berberine inhibits SREBP-1-related clozapine and risperidone induced adipogenesis in 3T3-L1 cells. Phytother Res,2010, 24(12):1831-1838.
    [12]Huang C, Zhang Y, Gong Z, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem Biophys Res Commun,2006,348(2):571-578.
    [13]Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest,2004,114(12): 1752-1761.
    [14]Cowherd RM, Lyle RE, McGehee RE Jr. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol,1999,10(1):3-10.
    [15]Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr.2000,130(12):3122S-3126S.
    [16]Huang C, Zhang Y, Gong Z, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem Biophys Res Commun,2006,348(2):571-578.
    [17]Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med,2001,7(8):941-946.
    [18]Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med,2001,7(8):947-953.
    [19]Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A,2001, 98(4):2005-2010.
    [20]Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem,2002,277(29): 25863-25866.
    [21]Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med,2002,8(11):1288-1295.
    [22]Hui X, Lam KS, Vanhoutte PM, et al. Adiponectin and Cardiovascular Health: an Update. Br J Pharmacol,2011.
    [23]Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol,2000,20(6):1595-1599.
    [24]Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol,2003, 23(1):85-89.
    [25]Ouchi N, Ohishi M, Kihara S, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension,2003,42(3):231-234.
    [26]Trujillo ME, Scherer PE. Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med,2005,257(2): 167-175.
    [27]Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes,2001,50(5):1126-1133.
    [28]Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet,2002,360(9326): 57-58.
    [29]Fu Y, Luo N, Klein RL, et al. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res,2005,46(7): 1369-1379.
    [30]Park SK, Oh SY, Lee MY, et al. CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue. Diabetes,2004,53(11):2757-2766.
    [31]Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med,1996, 334(5):292-295.
    [32]Lollmann B, Gruninger S, Stricker-Krongrad A, et al. Detection and quantification of the leptin receptor splice variants Ob-Ra, b, and, e in different mouse tissues. Biochem Biophys Res Commun,1997,238(2): 648-652.
    [33]Atkinson LL, Fischer MA, Lopaschuk GD. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem,2002, 277(33):29424-29430.
    [34]Phillips MS, Liu Q, Hammond HA, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet,1996,13(1):18-19.
    [35]Choi BH, Kim YH, Ahn IS, et al. The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling. Nutr Res Pract,2009,3(2):84-88.
    [36]Flier JS. Diabetes. The missing link with obesity? Nature,2001,409(6818): 292-293.
    [37]Steppan CM, Bailey ST, Bhat S, The hormone resistin links obesity to diabetes. Nature,2001,409(6818):307-312.
    [38]Savage DB, Sewter CP, Klenk ES, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes,2001,50(10):2199-2202.
    [39]Song H, Shojima N, Sakoda H, et al. Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem Biophys Res Commun,2002, 299(2):291-298.
    [40]Zhou L, Xia T, Li Y, Chen X, et al. Transcriptional regulation of the resistin gene. Domest Anim Endocrinol,2006,30(2):98-107.
    [41]Gong H, Ni Y, Guo X, Fei L, et al. Resistin promotes 3T3-L1 preadipocyte differentiation. Eur J Endocrinol,2004,150(6):885-892.
    [42]Engeli S. Role of the renin-angiotensin-aldosterone system in the metabolic syndrome. Contrib Nephrol,2006,151:122-134.
    [43]Raizada V, Skipper B, Luo W, et al. Intracardiac and intrarenal renin-angiotensin systems:mechanisms of cardiovascular and renal effects. J Investig Med,2007,55(7):341-359.
    [44]Giacchetti G, Faloia E, Mariniello B, et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens,2002,15(5):381-388.
    [45]Massiera F, Seydoux J, Geloen A, et al. Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology,2001, 42(12):5220-5225.
    [46]Massiera F, Bloch-Faure M, Ceiler D, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J, 2001,15(14):2727-2729.
    [47]Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest,2006,116(6):1494-1505.
    [48]Eiras S, Teijeira-Fernandez E, Salgado-Somoza A, et al. Relationship between epicardial adipose tissue adipocyte size and MCP-1 expression. Cytokine,2010,51(2):207-212.
    [49]Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Aatl Acad Sci U S A,2003,100(12):7265-7270.
    [50]Asplund-Carlson A, Hamsten A, Wiman B, et al. Relationship between plasma plasminogen activator inhibitor-1 activity and VLDL triglyceride concentration, insulin levels and insulin sensitivity:studies in randomly selected normo-and hypertriglyceridaemic men. Diabetologia,1993, 36(9):817-825.
    [51]Mavri A, Alessi MC, Juhan-Vague I. Hypofibrinolysis in the insulin resistance syndrome:implication in cardiovascular diseases. J Intern Med, 2004,255(4):448-456.
    [52]Giirlek A, Bayraktar M, Kirazli S. Increased plasminogen activator inhibitor-1 activity in offspring of type 2 diabetic patients:lack of association with plasma insulin levels. Diabetes Care,2000,23(1):88-92.
    [53]Alessi MC, Peiretti F, Morange P, et al. Production of plasminogen activator inhibitor 1 by human adipose tissue:possible link between visceral fat accumulation and vascular disease. Diabetes,1997,46(5):860-867.
    [54]Liang X, Kanjanabuch T, Mao SL, et al. Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab,2006, 290(1):E103-E113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700