cAMP促肿瘤细胞存活机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第二信使环腺苷酸(cyclic AMP,cAMP)是重要的胞内调节因子。其由三磷酸腺苷(ATP)通过腺苷酸环化酶(AC)催化生成,能被磷酸二酯酶(PDE)降解成5’-AMP。多种胞外刺激如:激素、生长因子、神经递质等,通过G蛋白偶联受体活化AC,使胞内cAMP浓度升高,进而调控细胞增殖、细胞凋亡等诸多细胞生命活动。cAMP下游的效应因子如PKA(protein kinase A)和cAMP反应元件结合蛋白(cAMP element-binding protein,CREB)等介导了其生物学功能的发挥。实验表明PKA及CREB在内分泌组织的肿瘤发生中起着重要作用。而且长期的研究揭示高水平的cAMP浓度能促进肿瘤的发生发展,其中一个很重要的原因是cAMP能促进肿瘤细胞存活。然而在非恶性细胞中cAMP发挥双向调节的作用,既能促进细胞死亡也能抑制细胞死亡,因细胞类型及胞外刺激剂的不同而不同。我们课题组的前期工作说明,cAMP对MAPK家族主要成员JNK、p38的抑制作用是其在非恶性细胞中双向调节细胞存活的关键机制。
     一个让人不解的问题是为什么在非恶性细胞中cAMP是双向调节作用,而在肿瘤细胞中则成为单向的促存活作用?其中的分子机制仍未见报道。为回答这一科学问题,我们开展了相关研究,希望能阐明cAMP促肿瘤细胞存活的机制,为寻找新的抗肿瘤靶点奠定基础。
     我们以TNF-α敏感的成纤维瘤细胞L929细胞为研究模型。首先观测了多种cAMP“激动剂”对TNF-α诱导的L929细胞死亡的影响,实验结果表明提高胞内cAMP浓度显著抑制TNF-α诱导的L929细胞坏死,证实了cAMP在肿瘤细胞中的促存活作用。而后发现JNK活性促进TNF-α诱导的L929细胞死亡,而p38活性则起拮抗作用。cAMP促L929细胞的存活机制与其显著抑制JNK的活性,而同时不抑制p38活性密切相关。进一步研究显示cAMP抑制p38通路的重要负调控机制——DLC的表达上调——在L929细胞中存在缺陷,而cAMP抑制JNK通路的重要负调控机制——cFLIPL和MKP1的表达上调——在L929细胞中却没有缺陷。因为p38抑制因子及外源过表达DLC分子均能逆转cAMP保护作用,所以是L929细胞中一个促凋亡机制的缺陷,导致了cAMP在肿瘤细胞的“净”存活效应。这为我们提出的科学问题,提供了一种可能分子机制的解释。
     同时在研究中我们发现cAMP对JNK通路的抑制在其抑制TNF-α诱导L929细胞死亡方面发挥了重要作用。其中一个重要原因是cAMP通过CREB介导的转录,上调cFLIPL分子抑制MKK7活化,从而抑制JNK活性。但是除了cFLIPL,是否还有其它蛋白参与了调控MKK7分子,还不清楚。因此我们又开展了一些探索性的工作——寻找MKK7分子相互作用蛋白,以期能找到新的负向调控MKK7-JNK通路的分子,进而为更好地理解cAMP抑制JNK通路的机制奠定基础。
     我们利用酵母双杂交技术,从人胎脑文库中筛选到三个未见报道的MKK7相互作用蛋白:ORF60、GNB2L1、UBA3。通过免疫共沉淀的方法确定三个蛋白均能与MKK7相互作用,免疫印迹实验表明GNB2L1能增强本底JNK磷酸化的作用,ORF60与UBA3有部分抑制JNK活性的作用。荧光素酶分析结果显示GNB2L1能增强JNK下游转录因子AP-1的转录活性,而ORF60与UBA3则不同程度的抑制AP-1的活性,与免疫印迹结果相一致。提示克隆可能与MKK7相互作用后而影响JNK通路的活性。因而,我们筛选到了新的MKK7相互作用蛋白,并具有一定的生物学功能,为今后深入研究cAMP调控MKK7-JNK通路奠定了基础,为揭示cAMP促肿瘤细胞存活机制研究提供了新思路。
The second messenger cyclic AMP (cAMP) is an important intracellular mediator, which is produced from ATP by adenylyl cyclases (AC) and can be degraded to 5’-AMP by phosphodiesterases. AC is stimulated by a variety of extracellular stimuli, such as hormones, growth factors and neurotransmitters through G-protein (Gs)-coupled membrane receptors. cAMP regulates many cellular activities, from proliferation to apoptosis, in a cell type-dependent manner. The biological functions of cAMP are mediated by its downstream effectors such as protein kinase A (PKA) and CREB (cAMP element-binding protein). PKA and CREB have been shown to contribute to the tumorgenesis of endocrine tissues. Furthermore, it has been long disclosed that cAMP elevation is associated with impaired cell death of various tumor cells. However, in non-malignant cells cAMP can either promote or suppress cell death, depending on cell type and stimulus used. The prievious studies of our group suggest that, at least in fibroblasts, the crosstalk between the cAMP signaling pathway and MAPKs JNK (c-Jun N-terminal protein kinase) /p38 pathways is the key mechanism by which cAMP plays a dual role in the regulation of cell death.
     It remains unknown why cAMP can either promote or suppress cell death in non-maligant cells, but always exhibits a pro-survival role in tumor cells. Since resistance to cell death has been implicated in cancer pathogenesis, it is of great importance to elucidate the underlying mechanisms.
     So we carried out work to investigate the possible mechanisms. We chose the TNF-α-sensitive fibroblastoma L929 cells as the research model. Then we found that elevation of cAMP suppressed TNF-α-induced necrotic cell death in L929 fibroblastoma cells via CREB-mediated transcription. The pro-survival role of cAMP was associated with selective unresponsiveness of L929 cells to the inhibition of p38 activation by cAMP, even though cAMP significantly inhibited the activation of JNK under the same conditions. Further exploration revealed that the induction of DLC, the major mediator of p38 inhibition by cAMP, was impaired in L929 cells. Enforced inhibition of p38 activation by using p38 specific inhibitor or ectopic expression of DLC reversed the protection of L929 cells by cAMP from TNF-α-induced cell death. These data suggest that the lack of a pro-apoptotic pathway in tumor cells leads to a net survival effect of cAMP.
     On the other hand, our data suggest that cAMP suppresses TNF-α-induced cell death of L929 fibroblastoma cells via, at least partially, inhibiting the activation of JNK pathway. The induction of c-FLIPL by cAMP via CREB-mediated transcription led to the inhibition of JNK activation by targeting MKK7, the upstream kinase of JNK pathway. However, it remains unknown whether there are other negative-regulators in the regulation of JNK by cAMP. So we further designed research to screen the cellular proteins that interact with MKK7 by yeast two-hybrid assay from human fetal brain cDNA library.
     We identified three new MKK7-interacting proteins by yeast two-hybrid screen. They were ORF60, GNB2L1 and UBA3. Co-immunoprecipitaion assay confirmed the specific interaction with MKK7. Furthermore, immunoblotting analysis and luciferase assay showed that GNB2L1 could enhance the activation of JNK and downstream transcriptional factor AP-1, while the overexpression of ORF60 and UBA3 could inhibit the activation of JNK and AP-1. Our finding of the three new interacting proteins of MKK7 might facilitate the studies to elucidate the complicated mechanisms by which cAMP suppresses JNK pathway and plays a pro-survival role in tumor cells.
引文
1. Huang W, Zhu X. Signal Transduction. Beijing: People's Medical Publishing House; 2005.
    2. Anholt RR, Rivers AM. Olfactory transduction: cross-talk between second-messenger systems. Biochemistry 1990, 29:4049-4054.
    3. Sunahara RK, Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002, 2:168-184.
    4. Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003, 370:1-18.
    5. Kopperud R, Krakstad C, Selheim F, Doskeland SO. cAMP effector mechanisms. Novel twists for an 'old' signaling system. FEBS Lett 2003, 546:121-126.
    6. Doskeland SO, Maronde E, Gjertsen BT. The genetic subtypes of cAMP-dependent protein kinase--functionally different or redundant? Biochim Biophys Acta 1993, 1178:249-258.
    7. Feliciello A, Gottesman ME, Avvedimento EV. cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal 2005, 17:279-287.
    8. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999, 3:413-422.
    9. Best JL, Amezcua CA, Mayr B, Flechner L, Murawsky CM, Emerson B, Zor T, Gardner KH, Montminy M. Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci U S A 2004, 101:17622-17627.
    10. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001, 2:599-609.
    11. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 2004, 119:1041-1054.
    12. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 2005, 102:4459-4464.
    13. Guevara Patino JA, Ivanov VN, Lacy E, Elkon KB, Marino MW, Nikolic-Zugic J. TNF-alpha is the critical mediator of the cyclic AMP-induced apoptosis of CD8+4+ double-positive thymocytes. J Immunol 2000, 164:1689-1694.
    14. Kizaki H, Nakada S, Ohnishi Y, Azuma Y, Mizuno Y, Tadakuma T. Tumour necrosis factor-alpha enhances cAMP-induced programmed cell death in mouse thymocytes. Cytokine 1993, 5:342-347.
    15. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 1999, 100:305-311.
    16. Lomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB. TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 1995, 154:1634-1643.
    17. Zhang J, Bui TN, Xiang J, Lin A. Cyclic AMP inhibits p38 activation via CREB-induced dynein light chain. Mol Cell Biol 2006, 26:1223-1234.
    18. Negrotto S, Pacienza N, D'Atri LP, Pozner RG, Malaver E, Torres O, Lazzari MA, Gomez RM, Schattner M. Activation of cyclic AMP pathway prevents CD34(+) cell apoptosis. Exp Hematol 2006, 34:1420-1428.
    19. Fladmark KE, Gjertsen BT, Doskeland SO, Vintermyr OK. Fas/APO-1(CD95)-induced apoptosis of primary hepatocytes is inhibited by cAMP. Biochem Biophys Res Commun 1997, 232:20-25.
    20. Kostylina G, Simon D, Fey MF, Yousefi S, Simon HU. Neutrophil apoptosis mediated by nicotinic acid receptors (GPR109A). Cell Death Differ 2008, 15:134-142.
    21. Zhang J, Wang Q, Zhu N, Yu M, Shen B, Xiang J, Lin A. Cyclic AMP inhibits JNK activation by CREB-mediated induction of c-FLIP(L) and MKP-1, thereby antagonizing UV-induced apoptosis. Cell Death Differ 2008, 15:1654-1662.
    22. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000, 103:239-252.
    23. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol 2002, 20:55-72.
    24. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. Cell Res 2005, 15:36-42.
    25. Heasley LE, Han SY. JNK regulation of oncogenesis. Mol Cells 2006, 21:167-173.
    26. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001, 410:37-40.
    27. Pumiglia KM, Decker SJ. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 1997, 94:448-452.
    28. Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002, 12:258-266.
    29. Hsueh YP, Lai MZ. c-Jun N-terminal kinase but not mitogen-activated protein kinase is sensitive to cAMP inhibition in T lymphocytes. J Biol Chem 1995, 270:18094-18098.
    30. Rao GN, Runge MS. Cyclic AMP inhibition of thrombin-induced growth in vascular smooth muscle cells correlates with decreased JNK1 activity and c-Jun expression. J Biol Chem 1996, 271:20805-20810.
    31. Choi SC, Kim BS, Song MY, Choi EY, Oh HM, Lyou JH, Han WC, Moon HB, Kim TH, Oh JM, et al. Downregulation of p38 kinase pathway by cAMP response element-binding protein protects HL-60 cells from iron chelator-induced apoptosis. Free Radic Biol Med 2003, 35:1171-1184.
    32. Feng WG, Wang YB, Zhang JS, Wang XY, Li CL, Chang ZL. cAMP elevators inhibit LPS-induced IL-12 p40 expression by interfering with phosphorylation of p38 MAPK in murine peritoneal macrophages. Cell Res 2002, 12:331-337.
    33. Rahman A, Anwar KN, Minhajuddin M, Bijli KM, Javaid K, True AL, Malik AB. cAMP targeting of p38 MAP kinase inhibits thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 2004, 287:L1017-1024.
    34. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 2004, 24:3057-3067.
    35. Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X, Floering LM, Collins S. Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol2005, 25:5466-5479.
    36. Laderoute KR, Mendonca HL, Calaoagan JM, Knapp AM, Giaccia AJ, Stork PJ. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 1999, 274:12890-12897.
    37. Bhattacharyya S, Brown DE, Brewer JA, Vogt SK, Muglia LJ. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 2007, 109:4313-4319.
    38. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997, 388:190-195.
    39. Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T, Yeh WC, Yagita H, Okumura K, Nakano H. An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 2006, 25:5549-5559.
    40. Rosenberg D, Groussin L, Jullian E, Perlemoine K, Bertagna X, Bertherat J. Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann N Y Acad Sci 2002, 968:65-74.
    41. Sastry KS, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A, Carson JP, Weber MJ, Register TC, Chen YQ, et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 2007, 282:14094-14100.
    42. Garcia-Bermejo L, Perez C, Vilaboa NE, de Blas E, Aller P. cAMP increasing agents attenuate the generation of apoptosis by etoposide in promonocytic leukemia cells. J Cell Sci 1998, 111 ( Pt 5):637-644.
    43. von Knethen A, Brune B. Attenuation of macrophage apoptosis by the cAMP-signaling system. Mol Cell Biochem 2000, 212:35-43.
    44. Boucher MJ, Duchesne C, Laine J, Morisset J, Rivard N. cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition. Biochem Biophys Res Commun 2001, 285:207-216.
    45. Chiu HF, Chih TT, Hsian YM, Tseng CH, Wu MJ, Wu YC. Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP levels in human hepatoma 2.2.15 cells. Biochem Pharmacol 2003, 65:319-327.
    46. Nishihara H, Hwang M, Kizaka-Kondoh S, Eckmann L, Insel PA. Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK. J Biol Chem 2004, 279:26176-26183.
    47. Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci U S A 2003, 100:8921-8926.
    48. James MA, Lu Y, Liu Y, Vikis HG, You M. RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway. Cancer Res 2009, 69:2108-2116.
    49. Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S. Activation of cAMP signalinginhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood 2009, 114:608-618.
    50. Gold SM, Zakowski SG, Valdimarsdottir HB, Bovbjerg DH. Higher Beck depression scores predict delayed epinephrine recovery after acute psychological stress independent of baseline levels of stress and mood. Biol Psychol 2004, 67:261-273.
    51. Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol Psychiatry 2003, 54:269-282.
    52. Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 1999, 18:7719-7730.
    53. Xie C, Zhang N, Zhou H, Li J, Li Q, Zarubin T, Lin SC, Han J. Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor-induced death in L929 cells. Mol Cell Biol 2005, 25:6673-6681.
    54. Grooten J, Goossens V, Vanhaesebroeck B, Fiers W. Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumour necrosis factor-induced cytotoxicity. Cytokine 1993, 5:546-555.
    55. Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W. Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 1997, 9:801-808.
    56. Seamon KB, Padgett W, Daly JW. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A 1981, 78:3363-3367.
    57. Jackisch R, Bruckner-Schmidt R, Hertting G. Endogenously formed PGE2 mediates the increase in cAMP accumulation in rabbit splenic fibroblasts following alpha-receptor stimulation. Eur J Pharmacol 1981, 71:151-155.
    58. Kunisch E, Jansen A, Kojima F, Loffler I, Kapoor M, Kawai S, Rubio I, Crofford LJ, Kinne RW. Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-alpha on synovial fibroblasts via specific E prostanoid receptors/cAMP. J Immunol 2009, 183:1328-1336.
    59. Thon L, Mohlig H, Mathieu S, Lange A, Bulanova E, Winoto-Morbach S, Schutze S, Bulfone-Paus S, Adam D. Ceramide mediates caspase-independent programmed cell death. FASEB J 2005, 19:1945-1956.
    60. Binder C, Binder L, Kroemker M, Schulz M, Hiddemann W. Influence of cycloheximide-mediated downregulation of glucose transport on TNF alpha-induced apoptosis. Exp Cell Res 1997, 236:223-230.
    61. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008, 133:693-703.
    62. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 1998, 18:967-977.
    63. Lin A. Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 2003, 25:17-24.
    64. Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005, 15:11-18.
    65. Zhang J, Shen B, Lin A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol Sci 2007, 28:286-295.
    66. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006, 124:601-613.
    67. Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J Biol Chem 1998, 273:4027-4034.
    68. Ventura JJ, Hubner A, Zhang C, Flavell RA, Shokat KM, Davis RJ. Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 2006, 21:701-710.
    69. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 2003, 9:1180-1186.
    70. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995, 364:229-233.
    71. Whitmarsh AJ, Yang SH, Su MS, Sharrocks AD, Davis RJ. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 1997, 17:2360-2371.
    72. Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res 2009, 15:2583-2587.
    73. Kim YH, Kim SS. Increase of MnSOD expression and decrease of JNK activity determine the TNF sensitivity in bcl2-transfected L929 cells. Cytokine 1999, 11:274-281.
    74. Luschen S, Scherer G, Ussat S, Ungefroren H, Adam-Klages S. Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kappaB, elicits caspase activity, and enhances cytotoxicity. Exp Cell Res 2004, 293:196-206.
    75. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989, 340:245-246.
    76. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
    77. Zhou H, Zheng M, Chen J, Xie C, Kolatkar AR, Zarubin T, Ye Z, Akella R, Lin S, Goldsmith EJ, Han J. Determinants that control the specific interactions between TAB1 and p38alpha. Mol Cell Biol 2006, 26:3824-3834.
    78. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 2002, 62:1261-1273.
    79. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 1994, 91:839-843.
    80. Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep 2004, 5:1137-1141.
    81. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z. RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 2005, 19:309-320.
    82. Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH. RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol 2006, 26:413-424.
    83. Ozaki T, Watanabe K, Nakagawa T, Miyazaki K, Takahashi M, Nakagawara A. Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB. Oncogene 2003, 22:3231-3242.
    84. Sang N, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG, De Luca A. RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J Biol Chem 2001, 276:27026-27033.
    85. Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ. RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 2000, 14:2549-2558.
    86. Fomenkov A, Zangen R, Huang YP, Osada M, Guo Z, Fomenkov T, Trink B, Sidransky D, Ratovitski EA. RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 2004, 3:1285-1295.
    87. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 2007, 25:207-217.
    88. Zhang W, Cheng GZ, Gong J, Hermanto U, Zong CS, Chan J, Cheng JQ, Wang LH. RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 2008, 283:16416-16426.
    89. Mamidipudi V, Cartwright CA. A novel pro-apoptotic function of RACK1: suppression of Src activity in the intrinsic and Akt pathways. Oncogene 2009, 28:4421-4433.
    90. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008, 10:1324-1332.
    91. Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, Mitchell LH, McCahill A, Hundsrucker C, Klussmann E, et al. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 2006, 398:23-36.
    92. Bolger GB, McCahill A, Yarwood SJ, Steele MR, Warwicker J, Houslay MD. Delineation of RAID1, the RACK1 interaction domain located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5. BMC Biochem 2002, 3:24.
    93. Smith KJ, Baillie GS, Hyde EI, Li X, Houslay TM, McCahill A, Dunlop AJ, Bolger GB, Klussmann E, Adams DR, Houslay MD. 1H NMR structural and functional characterisation of a cAMP-specific phosphodiesterase-4D5 (PDE4D5) N-terminal region peptide that disrupts PDE4D5 interaction with the signalling scaffold proteins, beta-arrestin and RACK1. Cell Signal 2007, 19:2612-2624.
    94. Steele MR, McCahill A, Thompson DS, MacKenzie C, Isaacs NW, Houslay MD, Bolger GB. Identification of a surface on the beta-propeller protein RACK1 that interacts with the cAMP-specific phosphodiesterase PDE4D5. Cell Signal 2001, 13:507-513.
    95. Kamitani T, Kito K, Fukuda-Kamitani T, Yeh ET. Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J Biol Chem 2001, 276:46655-46660.
    96. Rao-Naik C, delaCruz W, Laplaza JM, Tan S, Callis J, Fisher AJ. The rub family of ubiquitin-like proteins. Crystal structure of Arabidopsis rub1 and expression of multiple rubs in Arabidopsis. J Biol Chem 1998, 273:34976-34982.
    97. Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer toconjugating enzymes. Cell 2008, 134:268-278.
    98. Jones D, Crowe E, Stevens TA, Candido EP. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 2002, 3:RESEARCH0002.
    99. Tateishi K, Omata M, Tanaka K, Chiba T. The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J Cell Biol 2001, 155:571-579.
    100. Kurz T, Pintard L, Willis JH, Hamill DR, Gonczy P, Peter M, Bowerman B. Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 2002, 295:1294-1298.
    101. Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 1999, 18:6829-6834.
    102. Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L. A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res 2008, 7:1274-1287.
    103. Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 2004, 118:83-97.
    104. Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS. Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 2006, 281:34096-34103.
    105. Gao F, Cheng J, Shi T, Yeh ET. Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFkappaB-dependent transcription. Nat Cell Biol 2006, 8:1171-1177.
    106. Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G, Yarden Y. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem 2006, 281:21640-21651.
    107. Russell RC, Ohh M. NEDD8 acts as a 'molecular switch' defining the functional selectivity of VHL. EMBO Rep 2008, 9:486-491.
    108. Stickle NH, Chung J, Klco JM, Hill RP, Kaelin WG, Jr., Ohh M. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol 2004, 24:3251-3261.
    109. Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C, Hay RT. Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep 2008, 9:280-286.
    1. Sunahara RK, Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002, 2:168-184.
    2. Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003, 370:1-18.
    3. Kopperud R, Krakstad C, Selheim F, Doskeland SO. cAMP effector mechanisms. Novel twists for an 'old' signaling system. FEBS Lett 2003, 546:121-126.
    4. Doskeland SO, Maronde E, Gjertsen BT. The genetic subtypes of cAMP-dependent protein kinase--functionally different or redundant? Biochim Biophys Acta 1993, 1178:249-258.
    5. Feliciello A, Gottesman ME, Avvedimento EV. cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal 2005, 17:279-287.
    6. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999, 3:413-422.
    7. Best JL, Amezcua CA, Mayr B, Flechner L, Murawsky CM, Emerson B, Zor T, Gardner KH, Montminy M. Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci U S A 2004, 101:17622-17627.
    8. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001, 2:599-609.
    9. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 2004, 119:1041-1054.
    10. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 2005, 102:4459-4464.
    11. Guevara Patino JA, Ivanov VN, Lacy E, Elkon KB, Marino MW, Nikolic-Zugic J. TNF-alpha is the critical mediator of the cyclic AMP-induced apoptosis of CD8+4+ double-positive thymocytes. J Immunol 2000, 164:1689-1694.
    12. Kizaki H, Nakada S, Ohnishi Y, Azuma Y, Mizuno Y, Tadakuma T. Tumour necrosis factor-alpha enhances cAMP-induced programmed cell death in mouse thymocytes. Cytokine 1993, 5:342-347.
    13. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 1999, 100:305-311.
    14. Lomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB. TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 1995, 154:1634-1643.
    15. Aharoni D, Dantes A, Oren M, Amsterdam A. cAMP-mediated signals as determinants for apoptosis in primary granulosa cells. Exp Cell Res 1995, 218:271-282.
    16. Zhang J, Bui TN, Xiang J, Lin A. Cyclic AMP inhibits p38 activation via CREB-induced dynein light chain. Mol Cell Biol 2006, 26:1223-1234.
    17. Negrotto S, Pacienza N, D'Atri LP, Pozner RG, Malaver E, Torres O, Lazzari MA, Gomez RM, Schattner M. Activation of cyclic AMP pathway prevents CD34(+) cell apoptosis. ExpHematol 2006, 34:1420-1428.
    18. Fladmark KE, Gjertsen BT, Doskeland SO, Vintermyr OK. Fas/APO-1(CD95)-induced apoptosis of primary hepatocytes is inhibited by cAMP. Biochem Biophys Res Commun 1997, 232:20-25.
    19. Kostylina G, Simon D, Fey MF, Yousefi S, Simon HU. Neutrophil apoptosis mediated by nicotinic acid receptors (GPR109A). Cell Death Differ 2008, 15:134-142.
    20. Zhang J, Wang Q, Zhu N, Yu M, Shen B, Xiang J, Lin A. Cyclic AMP inhibits JNK activation by CREB-mediated induction of c-FLIP(L) and MKP-1, thereby antagonizing UV-induced apoptosis. Cell Death Differ 2008, 15:1654-1662.
    21. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997, 388:190-195.
    22. Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T, Yeh WC, Yagita H, Okumura K, Nakano H. An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 2006, 25:5549-5559.
    23. Gold SM, Zakowski SG, Valdimarsdottir HB, Bovbjerg DH. Higher Beck depression scores predict delayed epinephrine recovery after acute psychological stress independent of baseline levels of stress and mood. Biol Psychol 2004, 67:261-273.
    24. Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol Psychiatry 2003, 54:269-282.
    25. Rosenberg D, Groussin L, Jullian E, Perlemoine K, Bertagna X, Bertherat J. Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann N Y Acad Sci 2002, 968:65-74.
    26. Sastry KS, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A, Carson JP, Weber MJ, Register TC, Chen YQ, et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 2007, 282:14094-14100.
    27. Garcia-Bermejo L, Perez C, Vilaboa NE, de Blas E, Aller P. cAMP increasing agents attenuate the generation of apoptosis by etoposide in promonocytic leukemia cells. J Cell Sci 1998, 111 ( Pt 5):637-644.
    28. von Knethen A, Brune B. Attenuation of macrophage apoptosis by the cAMP-signaling system. Mol Cell Biochem 2000, 212:35-43.
    29. Boucher MJ, Duchesne C, Laine J, Morisset J, Rivard N. cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition. Biochem Biophys Res Commun 2001, 285:207-216.
    30. Chiu HF, Chih TT, Hsian YM, Tseng CH, Wu MJ, Wu YC. Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP levels in human hepatoma 2.2.15 cells. Biochem Pharmacol 2003, 65:319-327.
    31. Nishihara H, Hwang M, Kizaka-Kondoh S, Eckmann L, Insel PA. Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK. J Biol Chem 2004, 279:26176-26183.
    32. Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosisprotein (IAP)-2. Proc Natl Acad Sci U S A 2003, 100:8921-8926.
    33. James MA, Lu Y, Liu Y, Vikis HG, You M. RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway. Cancer Res 2009, 69:2108-2116.
    34. Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S. Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood 2009, 114:608-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700