落叶松体细胞胚TCTP与NFYA基因克隆及其在ABA调控过程中的表达机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落叶松(Larixspp.)是我国北方重要的速生造林用材树种,具有非常诱人的育种前景和经济效益。落叶松干细胞繁育体系的建立为现代分子育种技术进行遗传改良奠定了基础,是研究植物胚胎发育及细胞全能性的理想实验材料,为林木优良品系大规模繁育提供了一套全新的技术体系。然而,目前针叶树体细胞胚发生体系中,胚性细胞系诱导困难、畸形胚发生率高、体细胞胚生根率低等问题,成为体细胞胚发生技术应用于生产的“瓶颈”。大量研究表明,脱落酸(ABA)在植物胚胎发育过程中起重要调控作用。胚胎发育早期,ABA可以促进胚胎早期形成及顶端-基部对称轴的建立;胚胎发育后期能够促进营养物质的合成与积累,诱导并维持胚胎进入休眠状态。本研究以落叶松胚性细胞系d202不同发育阶段的胚性培养物为试验材料,建立模拟外源ABA有无的体细胞胚发育模型,观察并分析了ABA对落叶松体细胞胚发育的影响;研究了LaTCTP和4个LaNFYAs家族成员在体细胞胚发育过程中的表达模式;进一步利用RNA-seq技术对关键时期的材料进行转录组测序和表达谱分析,结合差异基因表达与生理生化分析,初步探讨了ABA调控落叶松体细胞胚发育的分子机理。主要结果如下:
     (1)将继代培养14d的落叶松胚性胚柄团(Embryonal Suspensor Mass,ESMs),分别转接到ABA和No-ABA分化与成熟培养基上,建立了模拟外源ABA有无的体细胞胚发育模型。结果表明,ABA可以抑制细胞分裂,诱导早期胚胎形成,并促进胚胎的进一步发育与成熟。而当ABA不存在的情况下,H2O2含量逐渐增加,组织内部胁迫程度加重,ESMs由白色逐渐转变为褐色,体细胞胚发育受阻,最终没有正常的胚胎形成;偶尔会有几个畸形胚,但并不能萌发形成植株。
     (2)通过同源克隆技术,获得了LaTCTP的cDNA及基因序列。序列分析表明其具有TCTP蛋白家族的特征序列TCTP1和TCTP2。利用qRT-PCR检测了LaTCTP在落叶松体细胞胚发育过程中的表达模式。结果表明,LaTCTP可能受生长素诱导。体细胞胚发育早期,随着外源生长素含量的下降,LaTCTP表达下调;此时H2O2含量达到最大值,这有助于PCD发生,促进早期胚胎形成;早期胚胎进一步发育过程中,LaTCTP表达量维持在较高水平,表明细胞活动较为旺盛,对促进胚胎的进一步发育有重要作用;而在褐化组织中H2O2含量较高,LaTCTP表达上调,可能与胁迫诱导相关。综上所述,LaTCTP可能参与了ESMs的快速增殖、早期胚胎形成及胚胎的进一步发育。
     (3)通过对比TAIL-PCR、FPNI-PCR扩增LaTCTP5′侧翼序列的优略性,进一步优化了PCR反应条件和参数;在此基础上,通过缩短接头序列的长度,引入阻抑PCR原理,将其命名为Suppression and nested mediated PCR(SNM-PCR);此方法增加了简并引物与基因组DNA的结合效率和特异性扩增,提高了LaTCTP5′侧翼序列扩增效率,并成功克隆了LaNFYAs5′侧翼序列。该技术为快速、高效克隆落叶松基因启动子序列,进一步研究并分析基因功能奠定了基础。
     (4)通过同源克隆和RACE技术,克隆并鉴定了4个落叶松NFYA同源基因,分别命名为LaNFYA1、LaNFYA2、LaNFYA3、LaNFYA4。序列分析表明它们均具有亚基结合结构域(SAD)和DNA结合结构域(HD)。进一步分析发现,3'UTR区域均存在miR169结合位点,表明其可能受miR169调控。5′侧翼序列分析表明LaNFYAs是一类与抗逆和激素应答相关基因。qRT-PCR结果表明,正常体细胞胚发生过程中,LaNFYAs的表达量均在第7d时达到最大值;而No-ABA处理的ESMs中,前14d,LaNFYA1、LaNFYA2、LaNFYA3表达均没有明显变化;暗示这三个基因可能受ABA诱导。另外,还发现LaNFYA4表达模式与其它三个基因不同,前7d表达趋势与正常体细胞胚一致;第14d时,正常体细胞胚发育中表达量急剧下降,而No-ABA处理ESMs中的表达量则继续上调,表明LaNFYA4不仅与ABA应答相关,还与ESMs细胞褐化后产生胁迫诱导相关。
     (5)通过RNA-seq分析发现:当ESMs转接到分化与成熟培养基后,由于生长素的撤除,导致376个与细胞生长相关基因下调表达;在ABA作用下,5~7d时形成黄色胚头,期间有302个基因上调表达,促进早期胚胎形成;而在No-ABA的情况下,细胞一直处于渗透胁迫状态,7~10d时胚性细胞逐渐褐化,在此期间有333个与胁迫及活性氧清除相关基因上调表达,以抵御或缓减胁迫对细胞造成的伤害。
     综上所述,通过以上研究结果表明,ESMs转接至ABA和No-ABA分化与成熟培养基2d时,由于生长素的缺失,维持细胞旺盛分裂的条件不复存在,诱使与细胞生长相关基因下调表达,导致细胞生长、分裂速度下降;此时两种ESMs生理状态相似,下调基因基本相同,表明此时ABA对落叶松ESMs作用不明显。在No-ABA情况下,细胞长期处于渗透胁迫状态,为抵御或缓减胁迫所造成的伤害,启动了大量与胁迫及活性氧清除相关基因,但仍无法阻止ESMs细胞由白色变为褐色,最终逐渐死亡。而在ABA作用下,2d后诱导了ABA应答基因(LaNFYAs)上调表达,可能促进了内源生长素合成;5d后诱导了生长素应答基因(LaTCTP)上调表达,促进早期胚胎形成及进一步发育。相关研究结果为深入研究ABA在落叶松体细胞胚发育的分子调控机理奠定了基础。
Japanese larch (Larix leptolepis) is an important conifer species, which has significanteconomic and ecological value. Somatic embryogenesis provides a useful experimental systemto investigate the regulatory mechanisms of plant development, which can be applied toimprove genetic traits and large-scale breeding. However, a number of challenges are presentin conifer somatic embryogenesis, such as difficulties with embryonal-suspensor mass (ESM)induction, a high frequency of abnormal embryos developing during the maturation stage, anddifficulties with in vitro synchronization. These obstacles create a bottleneck in the productionof somatic embryos. Therefore, understanding the molecular mechanisms underlying thedifferent developmental stages of somatic embryogenesis is important to overcome theseproblems. Several studies have suggested that abscisic acid (ABA)plays an importantregulatory role in plant embryogenesis. In somatic embryogenesis in conifers, exogenouslyapplied ABA not only can block the proliferation of ESMs and induce further development ofearly proembryos, it can also stimulate the deposition of storage compounds within the somaticembryo, induce and maintain embryo dormancy. Based on the somatic embryogenesis of larch,we had studied the effects of exogenously applied ABA, established somatic embryogenesismodel of mock exogenous ABA presence or absence and analyzed the sequence characteristicsand expression patterns of TCTP and four NFYA members. Furthermore, RNA-seq was appliedto the analysis of expression profiles between morphological changes' materials, together withthe analysis of physiological and biochemical, we initially explored the ABA regulatorymechanism during somatic embryogenesis in larch. The following results were obtained:
     (1) To study the effects of ABA during somatic embryogenesis, ABA was removed fromthe differentiation and maturation medium. ESMs were cultured on subculture medium for14days, transferred to differentiation and maturation medium either with ABA (normal somaticembryogenesis) or without ABA, established somatic embryogenesis model of mockexogenous ABA presence or absence. As a results, ABA can inhibit cell division and induce the early embryo formation, and promote further development and maturation of embryo. WhenABA was removed from the medium, H2O2levels will increased, ESMs underwent browningon the8day and gradually died. Eventually, only a few partially malformed embryosdeveloped at42days and did not have the ability to germinate.
     (2) cDNA and genomic sequences of a TCTP gene were cloned from L. leptolepis,designated LaTCTP, which contained two signature sequences TCTP1and TCTP2. Theexpression profile of LaTCTP during somatic embryogenesis was determined by qRT-PCR. Asa results, the expression of LaTCTP decreased gradually during the first5days after transfer ofESMs to differentiation and maturation medium, which may be caused by the absence of auxin.At this point, H2O2level reaches the maximum, which can induce the occurrence of PCD topromote early embryos formation; In somatic embryos rapid development stage, LaTCTPexpression remained high expression levels, which have an important role to promote thefurther development of somatic embryos; while upregulation of LaTCTP in browning,whichhas higher H2O2levels, may be associated with stress-induced. In summary, LaTCTP probablyparticipates in the proliferation of ESMs, formation and further development of early embryos.
     (3) By comparing the amplification of LaTCTP's5'flanking sequence using TAIL-PCRand FPNI-PCR, the PCR conditions and parameters were optimization. On the basis of this,new method has created by reducing the length of the linker sequenceand integrated into theprinciple of suppression PCR, designatedsuppression and nested mediated PCR (SNM-PCR);This method increases the binding efficiency of random primers with genomic DNA andamplification specificity, which improved the amplification efficiency of LaTCTP5'flankingsequences and successfully obtained LaNFYAs5'flanking sequences. SNM-PCR has laid thefoundationfor fast and effectively cloning promoter sequences and further analysis of genefunction.
     (4) Four NFYA homologs were isolated and characterized from L. leptolepis, designatedLaNFYA1, LaNFYA2, LaNFYA3and LaNFYA4. Multiple-sequence alignments showed that thefour putative proteins harbored two functional domains: a subunit association domain (SAD)and a DNA-binding homeo domain (HD). Further analysis showed that miR169target sequences were present in the mRNAsequences of all four genes, which suggested thatLaNFYAs may be regulated by miR169. Promoter analyses of the LaNFYAs indicated that theymay be stress-and hormone-responsive genes. The expression profile of LaNFYAs duringsomatic embryogenesis was determined by qRT-PCR. The level of LaNFYAs transcriptsincreased gradually during the first7days and reached their highest levels at7days.However,the removal of ABA resulted in no significant changes in the levels of LaNFYA1,LaNFYA2and LaNFYA3transcripts in the first14days, which was suggested that theexpressions of LaNFYA1, LaNFYA2and LaNFYA3were induced by ABA. In addition, it wasfound that the mRNA transcript levels of LaNFYA4increased significantly and had almost thesame mRNA accumulation pattern as in normal embryos during the first7days of culturing,and the mRNA transcript abundance of LaNFYA4increased continuously between7and14days on No-ABA treatment, which suggested that LaNFYA4may notonly be closely associatedwith the ABA response, but also involved in the stress response.
     (5)The RNA-seq was applied to the analysis of expression profiles betweenmorphological changes' materials. As a results, When ESMstransferred todifferentiationandmaturation medium, the removal of auxin andcytokininresulted in376genesassociated withcell growth downregulated; In theinductionofABAandPEG4000, yellow embryo “head”appeared at5to7days,there are302genesupregulated to promoting the formationofearlyembryos; while the removal of ABA, PEG4000makeESMscells in astate ofosmotic stress,embryoniccellsgradually underwentbrowning at7to10days, in the meantimethereare333stress-related genesupregulatedin order to resistormitigate thedamage caused bystress.
     In conclusion, thisstudy showedthat during the first two daysafterESMstransferredtodifferentiation andmaturation medium(ABA and No-ABA), due to the absenceofauxinandcytokinin, the conditions of maintainvigorouscelldivision does not exist, whichinducea number ofgenes associatedwithcell growthdownregulated, leading to the rate ofcellgrowth anddivision decreased;At this stage, the ESMstreated by ABA and No-ABA, havesimilarphysiological status and substantially identicaldown-regulated genes, which indicatingthat the role ofABA is not obvious.while in the caseofonlyPEG4000, ESMs was in astate ofosmotic stress for long time, thecellsstarteda lot ofstress-relatedgenes to resistormitigatethedamage caused bystress. However, it still can notstop thecellsunderwentbrowningand diegradually; In theinductionofABAandPEG4000, ABA-responsive genes (LaNFYAs) wereupregulated after twodays, which might promotethe synthesis ofendogenousauxin;Auxin-responsive genes (LaTCTP) were induced after fivedays to promoteformationandfurtherdevelopment ofearly embryo. This study will benefit future studies on ABAregulatory mechanisms during somatic embryogenesis in Larix spp.
引文
Aderkas Pv, Klimaszewska K&Bonga J (1990) Diploid and haploid embryogenesis in Larix leptolepis, L.decidua, and their reciprocal hybrids. Canadian Journal of Forest Research20(1):9-14
    Ammirato PV (1977) Hormonal control of somatic embryo development from cultured cells of carawayInteractions of abscisic acid, zeatin, and gibberellic acid. Plant Physiology59(4):579-586
    Ara H, Jaiswal U&Jaiswal V (1999) Germination and plantlet regeneration from encapsulated somaticembryos of mango (Mangifera indica L.). Plant cell reports19(2):166-170
    Ara H, Jaiswal U&Jaiswal V (2000) Synthetic seed: prospects and limitations. Curr Sci78(12):1438-1444
    Arcuri F, Papa S, Meini A, Carducci A, Romagnoli R, Bianchi L, Riparbelli MG, Sanchez J-C, Palmi M&Tosi P (2005) The translationally controlled tumor protein is a novel calcium binding protein of thehuman placenta and regulates calcium handling in trophoblast cells. Biology of reproduction73(4):745-751
    Attree S&Fowke L (1993) Embryogeny of gymnosperms: advances in synthetic seed technology ofconifers. Plant Cell, Tissue and Organ Culture35(1):1-35
    Attree S, Tautorus T, Dunstan D&Fowke L (1990) Somatic embryo maturation, germination, and soilestablishment of plants of black and white spruce (Picea mariana and Picea glauca). Canadian journalof botany68(12):2583-2589
    Audic S&Claverie J-M (1997) The significance of digital gene expression profiles. Genome research7(10):986-995
    B hlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH&Nilsson O (2006)CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. science312(5776):1040-1043
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. cell116(2):281-297
    Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F&Kubiak JZ (2009) Complex relationship betweenTCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells.Carcinogenesis30(4):555-565
    Becwar MR&Pullman GS (1995) Somatic embryogenesis in loblolly pine (Pinus taeda L.) Somaticembryogenesis in woody plants. Springer, p287-301
    Benech-Arnold RL, Giallorenzi MC, Frank J&Rodriguez V (1999) Termination of hull-imposed dormancyin developing barley grains is correlated with changes in embryonic ABA levels and sensitivity. SeedScience Research9(1):39-47
    Berkowitz O, Jost R, Pollmann S&Masle J (2008) Characterization of TCTP, the translationally controlledtumor protein, from Arabidopsis thaliana. Plant Cell20(12):3430-3447
    Bewley JD (1997) Seed germination and dormancy. The Plant Cell9(7):1055-1066
    Bl chl A, March GG-d, Sourdioux M, Peterbauer T&Richter A (2005) Induction of raffinoseoligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L.). PlantScience168(4):1075-1082
    Bommer U-A&Thiele B-J (2004) The translationally controlled tumour protein (TCTP). The internationaljournal of biochemistry&cell biology36(3):379-385
    Bozhkov PV, Filonova LH&von Arnold S (2002) A key developmental switch during Norway sprucesomatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell deathand extracellular acidification. Biotechnology and Bioengineering77(6):658-667
    Brioudes F, Thierry A-M, Chambrier P, Mollereau B&Bendahmane M (2010) Translationally controlledtumor protein is a conserved mitotic growth integrator in animals and plants. Proceedings of theNational Academy of Sciences107(37):16384-16389
    Cairney J&Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. NewPhytologist176(3):511-536
    Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J&Childs K (2006) Expressed sequence tags from loblolly pine embryos reveal similarities withangiosperm embryogenesis. Plant molecular biology62(4-5):485-501
    Capron A, Chatfield S, Provart N&Berleth T (2009) Embryogenesis: pattern formation from a single cell.The Arabidopsis book/American Society of Plant Biologists7
    Capuana M&Debergh PC (1997) Improvement of the maturation and germination of horse chestnut somaticembryos. Plant Cell, Tissue and Organ Culture48(1):23-29
    Chan THM, Chen L&Guan X-Y (2012) Role of translationally controlled tumor protein in cancerprogression. Biochemistry research international2012
    Chanderbali AS, Yoo M-J, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, Albert VA,Leebens-Mack J, Altman NS&Ma H (2010) Conservation and canalization of gene expression duringangiosperm diversification accompany the origin and evolution of the flower. Proceedings of theNational Academy of Sciences107(52):22570-22575
    Charrière F, Sotta B, Miginiac é&Hahne G (1999) Induction of adventitious shoots or somatic embryos onin vitro cultured zygotic embryos of Helianthus annuus: Variation of endogenous hormone levels. PlantPhysiology and Biochemistry37(10):751-757
    Chen SH, Wu P-S, Chou C-H, Yan Y-T, Liu H, Weng S-Y&Yang-Yen H-F (2007) A knockout mouseapproach reveals that TCTP functions as an essential factor for cell proliferation and survival in atissue-or cell type-specific manner. Molecular biology of the cell18(7):2525-2532
    Choi Y&Jeong J (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucroseconcentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plantcell reports20(12):1112-1116
    Choudhary K, Singh M, Rathore M&Shekhawat N (2009) Somatic embryogenesis and in vitro plantregeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume. PlantBiotechnology Reports3(3):205-211
    Chugh A&Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. CurrentScience83(6):715-730
    Ciavatta VT (2002) Identification, Cloning, Expression Analysis and Functional Characterization of GenesExpressed Early in Loblolly Pine Embryogenesis. Atlanta: Institute of Paper Science and Technology
    Combier J-P, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P&CrespiM (2006) MtHAP2-1is a key transcriptional regulator of symbiotic nodule development regulated bymicroRNA169in Medicago truncatula. Genes&development20(22):3084-3088
    De Smet I, Lau S, Mayer U&Jürgens G (2010) Embryogenesis-the humble beginnings of plant life. ThePlant Journal61(6):959-970
    Dodeman VL, Ducreux G&Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. Journalof experimental botany48(8):1493-1509
    Dogra P (1967) Seed sterility and disturbances in embryogeny in conifers with particular reference to seedtesting and tree breeding in Pinaceae. Studia forestalia suecica (45)
    Dong J-Z&Dunstan DI (1997) Characterization of cDNAs representing five abscisic acid-responsive genesassociated with somatic embryogenesis in Picea glauca, and their responses to abscisic acidstereostructure. Planta203(4):448-453
    Dudits D, Gy rgyey J, B gre L&Bakó L (1995) Molecular biology of somatic embryogenesis In vitroembryogenesis in plants. Springer, p267-308
    Dunstan DI, Bock CA, Abrams GD&Abrams SR (1992) Metabolism of (+)-and ()-abscisic acid bysomatic embryo suspension cultures of white spruce. Phytochemistry31(5):1451-1454
    Durzan D&Gupta PK (1988) Somatic embryogenesis and polyembryogenesis in conifers. Adv. Biotechnol.Process9:53-81
    Durzan DJ (2008) Monozygotic cleavage polyembryogenesis and conifer tree improvement. Cytology andGenetics42(3):159-173
    Eckardt NA (2005) MicroRNAs regulate auxin homeostasis and plant development. Plant Cell17(5):1335-1338
    Edwards D, Murray JA&Smith AG (1998) Multiple genes encoding the conserved CCAAT-boxtranscription factor complex are expressed in Arabidopsis. Plant Physiology117(3):1015-1022
    Engelmann F (1991) In vitro conservation of tropical plant germplasm-a review. Euphytica57(3):227-243
    Ermolayev V, Weschke W&Manteuffel R (2003) Comparison of Al-induced gene expression in sensitiveand tolerant soybean cultivars. Journal of experimental botany54(393):2745-2756
    Ferguson IB, Watkins CB&Harman JE (1983) Inhibition by calcium of senescence of detached cucumbercotyledons effect on ethylene and hydroperoxide production. Plant Physiology71(1):182-186
    Ficcadenti N&Rotino G (1995) Genotype and medium affect shoot regeneration of melon. Plant Cell,Tissue and Organ Culture40(3):293-295
    Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B&von Arnold S (2000) Two waves ofprogrammed cell death occur during formation and development of somatic embryos in thegymnosperm, Norway spruce. J Cell Sci113Pt24:4399-411
    Finkelstein R, Reeves W, Ariizumi T&Steber C (2008) Molecular Aspects of Seed Dormancy. PlantBiology59(1):387
    Finkelstein RR, Gampala SS&Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell14(suppl1):S15-S45
    Fischerova L, Fischer L, Vondrakova Z&Vagner M (2008) Expression of the gene encoding transcriptionfactor PaVP1differs in Picea abies embryogenic lines depending on their ability to develop somaticembryos. Plant cell reports27(3):435-441
    Frey A, Godin B, Bonnet M, Sotta B&Marion-Poll A (2004) Maternal synthesis of abscisic acid controlsseed development and yield in Nicotiana plumbaginifolia. Planta218(6):958-964
    Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T&Bommer U-A (1999) The growth-related,translationally controlled protein P23has properties of a tubulin binding protein and associatestransiently with microtubules during the cell cycle. Journal of Cell Science112(8):1257-1271
    Gaspar T, Kevers C, Penel C, Greppin H, Reid DM&Thorpe TA (1996) Plant hormones and plant growthregulators in plant tissue culture. In Vitro Cellular&Developmental Biology-Plant32(4):272-289
    Gnanasekar M, Dakshinamoorthy G&Ramaswamy K (2009) Translationally controlled tumor protein is anovel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun386(2):333-337
    Goldberg RB, De Paiva G&Yadegari R (1994) Plant embryogenesis: zygote to seed. science266(5185):605-614
    Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA&Gagliano WB (1998) Maternal control ofembryogenesis by MEDEA, a polycomb group gene in Arabidopsis. science280(5362):446-450
    Gupta PK (1996) Method for reproducing conifers by somatic embryogenesis using a maltose enrichedmaintenance medium. Google Patents
    Gupta PK&Durzan DJ (1987) Biotechnology of somatic polyembryogenesis and plantlet regeneration inLoblolly pine. Biotechnology5:147-151
    Gupta PK, Pullman G, Timmis R, Kreitinger M, Carlson WC, Grob J&Welty E (1993) Forestry in the21stcentury: the biotechnology of somatic embryogenesis. Biotechnology11:454-459
    Gupta PK&Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis usingabscisic acid and osmotic potential variation. Google Patents
    Gusmaroli G, Tonelli C&Mantovani R (2001) Regulation of the CCAAT-Binding NF-Y subunits inArabidopsis thaliana. Gene264(2):173-185
    Gusmaroli G, Tonelli C&Mantovani R (2002) Regulation of novel members of the Arabidopsis thalianaCCAAT-binding nuclear factor Y subunits. Gene283(1):41-48
    Gutmann M, von Aderkas P, Label P&Lelu M-A (1996) Effects of abscisic acid on somatic embryomaturation of hybrid larch. Journal of experimental botany47(12):1905-1917
    Hannah MA, Zuther E, Buchel K&Heyer AG (2006) Transport and metabolism of raffinose familyoligosaccharides in transgenic potato. Journal of experimental botany57(14):3801-3811
    Hardev S (1978) Embryology of gymnosperms. Encyclopedia of plant anatomy: Spezieller Teil Bd10
    Hatzopoulos P, Fong F&Sung ZR (1990) Abscisic acid regulation of DC8, a carrot embryonic gene. PlantPhysiology94(2):690-695
    He Y&Gan S (2001) Identical promoter elements are involved in regulation of the OPR1gene bysenescence and jasmonic acid in Arabidopsis. Plant molecular biology47(5):595-605
    Hinojosa-Moya J, Xoconostle-Cázares B, Piedra-Ibarra E, Méndez-Tenorio A, Lucas WJ&Ruiz-Medrano R(2008) Phylogenetic and structural analysis of translationally controlled tumor proteins. Journal ofmolecular evolution66(5):472-483
    Huang H, Wang G, Zhao Y, Shi P, Luo H&Yao B (2010) Direct and efficient cloning of full-length genesfrom environmental DNA by RT-qPCR and modified TAIL-PCR. Applied microbiology andbiotechnology87(3):1141-1149
    Ikeda M, Umehara M&Kamada H (2006) Embryogenesis-related genes; its expression and roles duringsomatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnology23(2):153-161
    Jagadeeswaran G, Saini A&Sunkar R (2009) Biotic and abiotic stress down-regulate miR398expression inArabidopsis. Planta229(4):1009-1014
    Ji J&Braam J (2010) Restriction site extension PCR: a novel method for high-throughput characterizationof tagged DNA fragments and genome walking. PLoS One5(5):e10577
    Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somaticembryogenesis. Plant Growth Regulation47(2-3):91-110
    Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y&Seo M (2010) Comprehensivehormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABAtransport and hormone interactions. Plant and cell physiology51(12):1988-2001
    Karami O, Aghavaisi B&Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants.Journal of chemical biology2(4):177-190
    Karssen C, Brinkhorst-Van der Swan D, Breekland A&Koornneef M (1983) Induction of dormancy duringseed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes ofArabidopsis thaliana (L.) Heynh. Planta157(2):158-165
    Kharenko OA, Zaharia LI, Giblin M, eki V, Taylor DC, Palmer CD, Abrams SR&Loewen MC (2011)Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri.Plant Cell, Tissue and Organ Culture (PCTOC)105(3):415-422
    Kim M, Jung Y, Lee K&Kim C (2000) Identification of the calcium binding sites in translationallycontrolled tumor protein. Archives of pharmacal research23(6):633-636
    Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H&Harada H (1992)Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot.Plant molecular biology19(2):239-249
    Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H&Harada H (1993) cDNA cloning of ECP40,an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis.Plant molecular biology21(6):1053-1068
    Klimaszewska K (1989) Plantlet development from immature zygotic embryos of hybrid larch throughsomatic embryogenesis. Plant Science63(1):95-103
    Kutter C, Sch b H, Stadler M, Meins F&Si-Ammour A (2007) MicroRNA-mediated regulation of stomataldevelopment in Arabidopsis. Plant Cell19(8):2417-2429
    Langhansova L, Konradova H&Vaněk T (2004) Polyethylene glycol and abscisic acid improve maturationand regeneration of Panax ginseng somatic embryos. Plant cell reports22(10):725-730
    Lecouteux CG, Lai F-M&McKersie BD (1993) Maturation of alfalfa (Medicago sativa L.) somaticembryos by abscisic acid, sucrose and chilling stress. Plant Science94(1):207-213
    Li D, Deng Z, Liu X&Qin B (2013a) Molecular cloning, expression profiles and characterization of a noveltranslationally controlled tumor protein in rubber tree (Hevea brasiliensis). Journal of plant physiology170(5):497-504
    Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K&Wang J (2009) SOAP2: an improved ultrafast tool forshort read alignment. Bioinformatics25(15):1966-1967
    Li S-g, Li W-f, Han S-y, Yang W-h&Qi L-w (2013b) Stage-specific regulation of four HD-ZIP IIItranscription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene522(2):177-183
    Li W-F, Zhang S-G, Han S-Y, Wu T, Zhang J-H&Qi L-W (2013c) Regulation of LaMYB33by miR159during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi(Lamb.) Carr. Plant Cell, Tissue and Organ Culture (PCTOC)113(1):131-136
    Li W-F, Zhang S-G, Han S-Y, Wu T, Zhang J-H&Qi L-W (2014) The post-transcriptional regulation ofLaSCL6by miR171during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr.Tree Genetics&Genomes10(1):223-229
    Li W-X, Oono Y, Zhu J, He X-J, Wu J-M, Iida K, Lu X-Y, Cui X, Jin H&Zhu J-K (2008) The ArabidopsisNFYA5transcription factor is regulated transcriptionally and posttranscriptionally to promote droughtresistance. Plant Cell20(8):2238-2251
    Li X-Y, Mantovani R, van Huijsduijnen RH, Andre I, Benoist C&Mathis D (1992) Evolutionary variationof the CCAAT-binding transcription factor NF-Y. Nucleic acids research20(5):1087-1091
    Li XY, Huang FH&Gbur Jr EE (1997) Polyethylene glycol-promoted development of somatic embryos inloblolly pine (Pinus taeda L.). In Vitro Cellular&Developmental Biology-Plant33(3):184-189
    Li Y, Fu Y, Ji L, Wu C&Zheng C (2010) Characterization and expression analysis of the ArabidopsismiR169family. Plant Science178(3):271-280
    Linossier L, Veisseire P, Cailloux F&Coudret A (1997) Effects of abscisic acid and high concentrations ofPEG on Hevea brasiliensis somatic embryos development. Plant Science124(2):183-191
    Liu F, Ma B, Zhao Y, Zhang Y, Wu YH, Liu X&Wang J (2008) Characterization of the gene encodingglycoprotein C of duck enteritis virus. Virus Genes37(3):328-332
    Liu H, Peng H-W, Cheng Y-S, Yuan HS&Yang-Yen H-F (2005) Stabilization and enhancement of theantiapoptotic activity of mcl-1by TCTP. Molecular and cellular biology25(8):3117-3126
    Liu Q, Zhang Y-C, Wang C-Y, Luo Y-C, Huang Q-J, Chen S-Y, Zhou H, Qu L-H&Chen Y-Q (2009)Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles inplant hormone signaling. FEBS letters583(4):723-728
    Liu Y-G&Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknownflanking sequences. Biotechniques43(5):649-656
    Liu Y-G, Mitsukawa N, Oosumi T&Whittier RF (1995) Efficient isolation and mapping of Arabidopsisthaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal8(3):457-463
    Liu Y-G&Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragments from P1and YAC clones for chromosome walking. Genomics25(3):674-681
    Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ&Chaudhury AM (1999) Genes controllingfertilization-independent seed development in Arabidopsis thaliana. Proceedings of the NationalAcademy of Sciences96(1):296-301
    Luo P, Su T, Hu C&Ren C (2011) A novel and simple PCR walking method for rapid acquisition of longDNA sequence flanking a known site in microbial genome. Molecular biotechnology47(3):220-228
    Maggon R&Deo Singh B (1995) Promotion of adventitious bud regeneration by ABA in combination withBAP in epicotyl and hypocotyl explants of sweet orange (Citrus sinensis L. Osbeck). ScientiaHorticulturae63(1):123-128
    Mu J, Tan H, Hong S, Liang Y&Zuo J (2013) Arabidopsis transcription factor genes NF-YA1,5,6, and9play redundant roles in male gametogenesis, embryogenesis, and seed development. Molecular plant6(1):188-201
    Nagano-Ito M, Banba A&Ichikawa S (2009) Functional cloning of genes that suppress oxidativestress-induced cell death: TCTP prevents hydrogen peroxide-induced cell death. FEBS letters583(8):1363-1367
    Nagano-Ito M&Ichikawa S (2012) Biological effects of Mammalian translationally controlled tumorprotein (TCTP) on cell death, proliferation, and tumorigenesis. Biochemistry research international2012
    Nagmani R, Diner A, Garton S&Zipf A (1995) Anatomical comparison of somatic and zygotic embryogenyin conifers. Somatic embryogenesis in woody plants
    Ni Z, Hu Z, Jiang Q&Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of planttolerance to drought stress. Plant molecular biology82(1-2):113-129
    Nishiwaki M, Fujino K, Koda Y, Masuda K&Kikuta Y (2000) Somatic embryogenesis induced by thesimple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta211(5):756-759
    Ohad N, Margossian L, Hsu Y-C, Williams C, Repetti P&Fischer RL (1996) A mutation that allowsendosperm development without fertilization. Proceedings of the National Academy of Sciences93(11):5319-5324
    Olesen JT, Fikes JD&Guarente L (1991) The Schizosaccharomyces pombe homolog of Saccharomycescerevisiae HAP2reveals selective and stringent conservation of the small essential core protein domain.Molecular and cellular biology11(2):611-619
    Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I&Pekker I(2007) Regulation of LANCEOLATE by miR319is required for compound-leaf development in tomato.Nature genetics39(6):787-791
    Owens JN&Molder M (1984) The reproductive cycle of lodgepole pine. Information Services Branch,Ministry of Forests Victoria, BC Canada
    Pospó ilová J, Tichá I, Kadle ek P, Haisel D&Plzáková (1999) Acclimatization of micropropagated plantsto ex vitro conditions. Biologia Plantarum42(4):481-497
    Qin X, Gao F, Zhang J, Gao J, Lin S, Wang Y, Jiang L, Liao Y, Wang L, Jia Y, Tang L, Xu Y&Chen F (2011)Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumorprotein (TCTP) from Jatropha curcas L. Mol Biol Rep38(5):3107-3112
    Rai MK, Akhtar N&Jaiswal V (2007) Somatic embryogenesis and plant regeneration in Psidium guajava L.cv. Banarasi local. Scientia Horticulturae113(2):129-133
    Rai MK, Asthana P, Jaiswal V&Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.):recent developments and prospects for further research. Trees24(1):1-12
    Rai MK, Asthana P, Singh SK, Jaiswal V&Jaiswal U (2009a) The encapsulation technology in fruit plants-areview. Biotechnology advances27(6):671-679
    Rai MK, Jaiswal V&Jaiswal U (2008) Effect of ABA and sucrose on germination of encapsulated somaticembryos of guava (Psidium guajava L.). Scientia Horticulturae117(3):302-305
    Rai MK, Jaiswal V&Jaiswal U (2009b) Effect of selected amino acids and polyethylene glycol onmaturation and germination of somatic embryos of guava (Psidium guajava L.). Scientia Horticulturae121(2):233-236
    Raventos D, Meier C&Mundy J (2000) Fusion genetic analysis of gibberellin signaling mutants. The PlantJournal22(5):427-438
    Reddy PS, Mahanty S, Kaul T, Nair S, Sopory SK&Reddy MK (2008) A high-throughput genome-walkingmethod and its use for cloning unknown flanking sequences. Analytical biochemistry381(2):248-253
    Reyes JL&Chua NH (2007) ABA induction of miR159controls transcript levels of two MYB factorsduring Arabidopsis seed germination. The Plant Journal49(4):592-606
    Ribeiro DT, Farias LP, de Almeida JD, Kashiwabara PM, Ribeiro AF, Silva-Filho MC, Menck CFM&VanSluys M-A (2005) Functional characterization of the thi1promoter region from Arabidopsis thaliana.Journal of experimental botany56(417):1797-1804
    Robichaud RL, Lessard VC&Merkle SA (2004) Treatments affecting maturation and germination ofAmerican chestnut somatic embryos. Journal of plant physiology161(8):957-969
    Roy A, Kucukural A&Zhang Y (2010) I-TASSER: a unified platform for automated protein structure andfunction prediction. Nature protocols5(4):725-738
    Roy A, Yang J&Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-basedprotein function annotation. Nucleic acids research40(W1):W471-W477
    Ru P, Xu L, Ma H&Huang H (2006) Plant fertility defects induced by the enhanced expression ofmicroRNA167. Cell research16(5):457-465
    Sagare A, Lee Y, Lin T, Chen C&Tsay H (2000) Cytokinin-induced somatic embryogenesis and plantregeneration in Corydalis yanhusuo (Fumariaceae)-a medicinal plant. Plant Science160(1):139-147
    Satyanarayana K, Chandrashekar A&Ravishankar G (2006) Evaluation of PCR-based methods for isolatingflanking regions of genes. Molecular biotechnology32(2):111-116
    Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K&Bhakta A (2005) Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequencecompositions that occur frequently in gene promoter regions. Functional&integrative genomics5(4):240-253
    Schwartz SH, Qin X&Zeevaart JA (2003) Elucidation of the indirect pathway of abscisic acid biosynthesisby mutants, genes, and enzymes. Plant Physiology131(4):1591-1601
    Sen S, Newton R, Fong F&Neuman P (1989) Abscisic acid: a role in shoot enhancement from loblolly pine(Pinus taeda L.) cotyledon explants. Plant cell reports8(4):191-194
    Senaranta T, McKersie BD&Bowley SR (1989) Desiccation tolerance of alfalfa (Medicago sativa L.)somatic embroys. Influence of abscisic acid, stress pretreatments and drying rates. Plant Science65(2):253-259
    Sharma P, Pandey S, Bhattacharya A, Nagar P&Ahuja PS (2004) ABA associated biochemical changesduring somatic embryo development in Camellia sinensis (L.) O. Kuntze. Journal of plant physiology161(11):1269-1276
    Sharp RE, LeNoble ME, Else MA, Thorne ET&Gherardi F (2000) Endogenous ABA maintains shootgrowth in tomato independently of effects on plant water balance: evidence for an interaction withethylene. Journal of experimental botany51(350):1575-1584
    Shiota H&Kamada H (2000) Acquisition of desiccation tolerance by cultured carrot cells upon ectopicexpression of C-ABI3, a carrot homolog of ABI3. Journal of plant physiology156(4):510-515
    Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G&Holt BF (2009) Tissue-specific expressionpatterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorialcomplexity. Plant Physiology149(2):625-641
    Stasolla C, Kong L, Yeung EC&Thorpe TA (2002) Maturation of somatic embryos in conifers:morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cellular&DevelopmentalBiology-Plant38(2):93-105
    Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC&Suza W (2005)Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid.Plant Cell17(2):616-627
    Steward F, Mapes MO&Smith J (1958) Growth and organized development of cultured cells. I. Growth anddivision of freely suspended cells. American Journal of Botany45(9):693-703
    Sturzenbaum S, Kille P&Morgan A (1998) Identification of heavy metal induced changes in the expressionpatterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus.BBA-Gene Structure and Expression1398(3):294-304
    Sunkar R&Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell16(8):2001-2019
    Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson A, Busso D, Poussin P&Marine J-C (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death&Differentiation15(8):1211-1220
    Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K&Matsui M (2004) ydk1-D, an auxin-responsive GH3mutant that is involved in hypocotyl and rootelongation. The Plant Journal37(4):471-483
    Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, Yang Y, Fu W&Qiu D (2011) An efficient approach tofinding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expressionanalysis. BMC genomics12(1):343
    Tautorus T, Fowke L&Dunstan D (1991) Somatic embryogenesis in conifers. Canadian journal of botany69(9):1873-1899
    Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP&Craven CJ (2001) Structure of TCTP revealsunexpected relationship with guanine nucleotide-free chaperones. Nature Structural&MolecularBiology8(8):701-704
    Timmis R (1998) Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis.Biotechnology progress14(1):156-166
    Tonooka Y&Fujishima M (2009) Comparison and critical evaluation of PCR-mediated methods to walkalong the sequence of genomic DNA. Applied microbiology and biotechnology85(1):37-43
    Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav2(3):135-138
    Tuteja N&Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant signaling&behavior3(8):525-536
    Tuynder M, Fiucci G, Prieur S, Lespagnol A, Géant A, Beaucourt S, Duflaut D, Besse S, Susini L&Cavarelli J (2004) Translationally controlled tumor protein is a target of tumor reversion. Proceedingsof the National Academy of Sciences of the United States of America101(43):15364-15369
    Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M&Mirmasoumi M (2008) Effect of exogenous ABA onsomatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell, Tissue andOrgan Culture93(2):163-171
    Vahdati K, Jariteh M, Niknam V, Mirmasoumi M&Ebrahimzadeh H Somatic embryogenesis and embryomaturation in Persian walnut. In: V International Walnut Symposium705,2004. p199-205
    Vales T, Feng X, Ge L, Xu N, Cairney J, Pullman GS&Peter GF (2007) Improved somatic embryomaturation in loblolly pine by monitoring ABA-responsive gene expression. Plant cell reports26(2):133-143
    Vibha J, Choudhary K, Singh M, Rathore M&Shekhawat N (2009) An efficient somatic embryogenesissystem for velvet bean [Mucuna pruriens (L.) DC.]: a source of anti Parkinson’s drug. Plant Cell, Tissueand Organ Culture (PCTOC)99(3):319-325
    Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. cell136(4):669-687
    Von Arnold S&Hakman I (1988) Regulation of Somatic Embryo Development in Picea abies by AbscisicAcid (ABA). Journal of plant physiology132(2):164-169
    von Arnold S, Sabala I, Bozhkov P, Dyachok J&Filonova L (2002) Developmental pathways of somaticembryogenesis. Plant Cell, Tissue and Organ Culture69(3):233-249
    Walter C, Carson S, Menzies M, Richardson T&Carson M (1998) Application of biotechnology toforestry–Molecular biology of conifers. World Journal of Microbiology and Biotechnology14(3):321-330
    Wang S, Zhao X-F&Wang J-X (2009a) Molecular cloning and characterization of the translationallycontrolled tumor protein from Fenneropenaeus chinensis. Molecular biology reports36(7):1683-1693
    Wang Z, Gerstein M&Snyder M (2009b) RNA-Seq: a revolutionary tool for transcriptomics. NatureReviews Genetics10(1):57-63
    Wang Z, Ye S, Li J, Zheng B, Bao M&Ning G (2011) Fusion primer and nested integrated PCR(FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequencecloning. BMC biotechnology11(1):109
    West M&Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell5(10):1361
    Wu G&Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156and its target SPL3. Development133(18):3539-3547
    Wu M-F, Tian Q&Reed JW (2006) Arabidopsis microRNA167controls patterns of ARF6and ARF8expression, and regulates both female and male reproduction. Development133(21):4211-4218
    Xiong L&Zhu J-K (2003) Regulation of abscisic acid biosynthesis. Plant Physiology133(1):29-36
    Yang H, Saitou T, Komeda Y, Harada H&Kamada H (1996) Late embryogenesis abundant protein inArabidopsis thaliana homologous to carrot ECP31. Physiologia Plantarum98(3):661-666
    Yang H, Saitou T, Komeda Y, Harada H&Kamada H (1997) Arabidopsis thalianaECP63encoding a LEAprotein is located in chromosome4. Gene184(1):82-88
    Yang X, Li X, Li B&Zhang D (2013) Identification of Genes Differentially Expressed in Shoot ApicalMeristems and in Mature Xylem of Populus tomentosa. Plant Molecular Biology Reporterdoi:10.1007/s11105-013-0660-6
    Yenofsky R, Cereghini S, Krowczynska A&Brawerman G (1983) Regulation of mRNA utilization in mouseerythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Molecular and cellularbiology3(7):1197-1203
    Yuanxin Y, Chengcai A, Li L, Jiayu G, Guihong T&Zhangliang C (2003) T-linker-specific ligation PCR(T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNAends. Nucleic acids research31(12):e68-e68
    Zhang D, Li F, Weidner D, Mnjoyan ZH&Fujise K (2002) Physical and functional interaction betweenmyeloid cell leukemia1protein (MCL1) and Fortilin The potential role of MCL1as a fortilinchaperone. Journal of Biological Chemistry277(40):37430-37438
    Zhang J-H, Zhang S-G, Li S-G, Han S-Y, Li W-F, Li X-M&Qi L-W (2014) Regulation of synchronism byabscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larixleptolepis). Plant Cell, Tissue and Organ Culture (PCTOC)116(3):361-370
    Zhang J, Wu T, Li L, Han S, Li X, Zhang S&Qi L (2013a) Dynamic expression of small RNA populationsin larch (Larix leptolepis). Planta237(1):89-101
    Zhang J, Zhang S, Han S, Li X, Tong Z&Qi L (2013b) Deciphering Small Noncoding RNAs during theTransition from Dormant Embryo to Germinated Embryo in Larches (Larix leptolepis). PLoS One8(12):e81452
    Zhang J, Zhang S, Han S, Wu T, Li X, Li W&Qi L (2012a) Genome-wide identification of microRNAs inlarch and stage-specific modulation of11conserved microRNAs and their targets during somaticembryogenesis. Planta236(2):647-657
    Zhang J, Zhang S, Li S, Han S, Wu T, Li X&Qi L (2013c) A genome-wide survey of microRNA truncationand3′nucleotide addition events in larch (Larix leptolepis). Planta237(4):1047-1056
    Zhang S-g, Han S-y, Yang W-h, Wei H-l, Zhang M&Qi L-w (2010a) Changes in H2O2content andantioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell,Tissue and Organ Culture (PCTOC)100(1):21-29
    Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X&Qi L (2010b) Four abiotic stress-induced miRNAfamilies differentially regulated in the embryogenic and non-embryogenic callus tissues of Larixleptolepis. Biochemical and biophysical research communications398(3):355-360
    Zhang Y (2008) I-TASSER server for protein3D structure prediction. BMC bioinformatics9(1):40
    Zhang Y, Zhang S, Han S, Li X&Qi L (2012b) Transcriptome profiling and in silico analysis of somaticembryos in Japanese larch (Larix leptolepis). Plant cell reports31(9):1637-1657
    Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H&Jin Y (2009) Members of miR-169family are induced byhigh salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology10(1):29
    Zhao M, Ding H, Zhu JK, Zhang F&Li WX (2011) Involvement of miR169in the nitrogen-starvationresponses in Arabidopsis. New Phytologist190(4):906-915
    Zhu C, Kamada H, Harada H, He M&Hao S (1996) Isolation and characterization of a cDNA encoded anembryogenic cell protein63related to embryogenesis from carrot. Acta Botanica Sinica39(12):1091-1098
    Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. The PlantCell5(10):1411-1423
    齐力旺(2000)华北落叶松体细胞胚胎发生与遗传转化系统建立的研究.中国林业科学院林业研究所博士毕业论文
    齐力旺(2001)应用311-A最优回归设计研究ABA, PEG4000及AgNO3对落叶松体.生物工程学报17(1):84-89
    孙志强,孙占育&席梦利(2010)针叶树体细胞胚胎发生研究进展.林业科技开发24(4):1-5
    王战(1992)中国落叶松.北京,中国林业出版社:1-29
    张蕾,齐力旺&韩素英(2008)落叶松体细胞胚原胚团阶段差异表达基因文库的构建与分析.分子植物育种6(4):675-682
    张蕾,齐力旺&韩素英(2009)落叶松体细胞胚成熟阶段差异表达的基因及部分基因的表达谱分析.遗传31(5):540-545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700