单核细胞增生李斯特菌菌膜状态下的抗氧胁迫分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增生李斯特菌(Listeria monocytogenes)是一种能引起人畜共患病的食源性致病菌。它在自然界中普遍存在,能通过各种途径进入食品及其加工环境,由它引起的李氏杆菌病致死率高达20~30%。在食品生产环境中,该菌能形成菌膜来阻止外界胁迫环境对自身产生伤害,从而增加食品在加工过程中受到污染的几率,为食品安全埋下隐患。
     单核细胞增生李斯特菌菌膜的现有研究多集中于一些生理反应上,而在分子水平上,旨在揭示菌膜形成及其在胁迫环境中反应机理的研究还处于起步阶段。2004年,本实验室利用转座子Tn917随机插入一株单核细胞增生李斯特菌4b G(Listeria monocytogenes4b G)的基因组中,成功筛选到了一批菌膜形成能力发生变化的突变株。本论文在此基础上,首先对转座子Tn917在部分突变株基因组中的插入位点及其失活靶基因进行鉴定和分析,发现一株转座子插入失活突变株GB5表现出菌膜形成能力和抗氧胁迫能力同时减弱的表型;通过对该突变株失活靶基因gltB及其旁侧序列的功能分析,初步探索了影响单核细胞增生李斯特菌4b G中菌膜形成和抗氧胁迫的分子调控途径;同时通过观测多种单核细胞增生李斯特菌血清型菌株的菌膜形成能力及抗氧胁迫生理表型,并测定相关抗氧胁迫基因的表达水平,进一步研究该菌在菌膜状态下的抗氧胁迫机制。本论文的主要研究内容和结果如下:
     1、转座子Tn917在菌膜形成能力变化突变株基因组中的插入位点及失活靶基因的鉴定。根据Tn917序列设计4对特异性引物进行反向PCR,对多株转座子插入突变株的反向PCR产物进行测序及BLASTN比对分析,发现其中3株的Tn917插入位点。3株突变株的基因序列与已测序菌株L. monocytogenes str.4b F2365对应基因高度同源,根据同源基因进行命名和注释,GB1中插入基因为lm.G_2324(1600bp),编码一个保守的假定蛋白(532aa);GB5中插入基因为lm.G_1758,又称gltB(4.59kb),编码谷氨酸合成酶大片段(1530aa);GB8中插入位点为基因lm.G_1497(438bp)的启动子区域,该基因编码一个MerR家族转录调控子(145aa)。经Southern杂交和回复突变实验验证,lm.G_2324、gltB和lm.G_1497基因的失活是引起GB1、GB5、GB8菌膜形成能力减弱的唯一原因。
     2、菌膜形成能力减弱突变株GB1、GB5、GB8与野生亲本抗胁迫能力的比较分析。暴露于100mM的H2O2下,GB5的抑菌圈(直径约为2.18cm)显著大于野生亲本(直径约为1.48cm),即GB5中基因gltB的失活造成菌膜形成能力和抗氧胁迫能力的同时减弱。此外,3株菌膜形成突变株GB1、GB5、GB8与野生亲本在生长能力、细胞运动性、抗酸胁迫能力、耐高渗透压能力方面没有表现出显著性差异。
     3、突变株GB5中相关基因缺失突变株的构建及其菌膜和抗氧胁迫表型的评价。利用温敏性质粒pAUL-A构建gltB及其上游调控基因gltC的缺失突变株△gltB和△gltC,用96孔平板法评价两者的菌膜表型,基因缺失突变株△gltB和转座子插入突变株GB5具有相同的菌膜形成表型,进一步证明了gltB基因同菌膜形成能力的相关性,而基因缺失突变株△gltC表现出同△gltB类似的菌膜表型,说明gltC同样能影响菌膜形成。收集对数生长期的细胞,用3种不同的氧化剂(过氧化氢、氢过氧化枯烯和过乙酸)处理△gltB和△gltC,与野生亲本相比,两者的抗氧胁迫能力都显著减弱,揭示了基因gltB和gltC两者都能正调控菌株的抗氧胁迫能力。
     4、基因gltB和gltC对菌膜形成及抗氧胁迫能力的调控途径分析。初步粘附实验结果显示,与野生型相比,△gltB和△gltC在玻璃表面的粘附能力显著降低,暗示了gltB或gltC基因的缺失可能是改变细胞表面粘附性的重要原因,这可能是引起菌膜形成能力减弱的原因。荧光定量PCR结果显示,氧胁迫环境导致野生亲本中的gltB基因表达量上调了8倍左右,gltC基因表达量上调了14倍左右,进一步证明了gltB和gltC都参与了细菌的抗氧胁迫反应。在氧胁迫环境下,基因缺失突变株△gltC中的gltB基因比野生亲本中的表达量下调了5倍左右,而△gltB中的gltC基因比野生亲本中的表达量下调了3倍左右,说明gltB和gltC基因在氧胁迫环境下能进行正向互调控,解释了△gltB和△gltC具有相同抗氧胁迫能力表型的原因。基因gltC能编码一个LysR家族转录调控子,参照同一家族成员的功能并结合上述实验结果,推测gltC基因编码的调控子能影响一些氧胁迫相关基因和细胞表面物质合成基因的表达,进而改变菌株抗性和菌膜形成,而gltB则是通过与gltC的互调控来实现影响菌株抗性和菌膜形成。
     5、单核细胞增生李斯特菌中与菌膜形成及抗氧胁迫相关基因的进一步筛选。除了野生亲本4b G菌株,选取血清型为4b和1/2a的单核细胞增生李斯特菌各6株,进一步评价其菌膜形成和抗氧胁迫能力。发现在所测条件下,1/2a血清型菌株的平均菌膜形成能力(OD590约为1.17)显著高于4b血清型的(OD590约为0.66),而在对数生长期和长期存活期(20天)内,4b血清型菌株的平均抗氧胁迫能力成倍(>2倍)高于1/2a血清型。利用Pearson相关性分析,发现在长期存活状态下(20天)的4b血清型,其菌膜形成能力和抗氧胁迫能力呈现正相关性,而1/2a血清型的两种能力间则没有明显关联。荧光定量PCR结果显示,氧胁迫相关基因sod,fri和perR在4b血清型菌株中的转录水平显著高于血清型1/2a,暗示这3个基因可能与4b血清型的强抗氧胁迫能力相关,而DNA损伤修复基因recA在菌膜状态下能够高表达,说明它在菌膜形成中可能具有重要地位。
     综上所述,在单核细胞增生李斯特菌4b G中,鉴定出3个与菌膜相关的新基因lm.G_2324、gltB和lm.G_1497,其中gltB能协同其上游调控基因gltC共同影响抗氧胁迫能力和菌膜形成能力,推测其调控途径是通过gltC所编码的调控子对一些细胞表面蛋白合成基因和抗氧胁迫基因的调控来实现的;除了gltB和gltC外,在常见血清型4b和1/2a血清型菌株中,发现另外4个氧胁迫基因sod,fri,perR和recA,可能在菌膜形成及抗氧胁迫过程中具有重要作用;此外,发现只有在长期存活状态下(20天)的4b血清型菌株中,能观察到菌膜形成能力与抗氧胁迫能力的正相关性。
The foodborne pathogen Listeria monocytogenes has capability topersist on surfaces in food-processing environments, which makes it moreresistant to environmental stresses. Once L. monocytogenes persists on foodcontact surfaces and forms biofilm, it is difficult to remove by conventionalcleaning methods or inactivate by disinfection. Subsequently, food productsmay become contaminated during processing, which may introduce newchallenges to food safety in the food industry.
     The increased attention has been paid to biofilm formation by L.monocytogenes since the high mortality rate associated with listeriosis(20-30%). Most researches focused on physiological responses of L.monocytogenes in biofilm, while the molecular mechanism of biofilmformation is still unclear. Recently, some mutants with the decreasedcapability of forming biofilm have been identified by screening a libraryconstructed via transposon Tn917mutagenesis of L. monocytogenes4b G(serotype4b) in our lab. In order to better understand the mechanismunderlying biofilm formation and stress-responses in L. monocytogenes, theinactivated genes of the mutants were identified first in the present study.GB5showing reduced biofilm formation and sensitivity to oxidative stress was further characterized. In addition, six serotype4b strains and six serotype1/2a strains were selected to observe biofilm formation and oxidative stresstolerance from physiological and genetic response. The main results are asfollows:
     Firstly, the inactivated genes caused by transposon Tn917insertion wereidentified by inverse PCR (IPCR), and the revertants were constructed toverify their functions on biofilm formation. Four pair sets of specific primerswere designed according to the sequence of Tn917for inverse PCR, and thesuspected PCR products were sequenced. BLASTN analyses indicated thatthe inactivated gene in mutant GB1was identical to gene LMOf2365_2324(encoding a conserved hypothetical protein), that in GB5was identical toLMOf2365_1758(gltB, encoding the large subunit of glutamate synthase)and that in mutant GB8was identical to LMOf2365_1497(encoding a MerRfamily transcriptional regulator). Thus these genes were named as lm.G_2324,lm.G_1758(gltB) and lm.G_1497. The results of southern blot assay andbiofilm recovery of revertants showed that lm.G_2324, gltB and lm.G_1497were solely responsible for the positive regulation of biofilm formation intheir corresponding mutants.
     Secondly, stress tolerance of biofilm formation mutants GB1, GB5, GB8and the wild-type was compared. Only mutant GB5yielded reducedoxidative stress tolerance compared with the wild-type strain, demonstratingthe involvement of the inactivated gene in GB5(gltB) in both biofilmformation and oxidative stress tolerance. Other environmental stress factorssuch as osmotic pressure (1%-10%NaCl), low and high pH (2.5-7.5),different growth temperature (4C,10C,37C,42C), and induction ofautolysis (induced by0.05%Triton X-100) did not result in significant differences between the wild-type and mutant strains.
     Thirdly, mutants with deletions in gltB and its upstream gene gltC wereconstructed, and their phenotypes were observed. The temperature-sensitiveplasmid pAUL-A was usded to construct the deletion mutants△gltB and△gltC. Both△gltB and△gltC showed reduced biofilm formation andincreased sensitivity to three oxidant agents (H2O2, CHP, PAA) relative to thewild-type, implying their role in the regulation of biofilm formation as wellas oxidative stress tolerance.
     Fourthly, functional analysis was carried out on△gltB and△gltC withqRT-PCR and initial adhesion assay. In the wild-type strain, gltB and gltCexpression was induced approximately8-fold and14-fold, respectively, withexposure to H2O2, providing further evidence that their gene products may beinvolved in the response to oxidative stress. The results of qRT-PCR revealedthat the gltB or gltC was most likely affected through mutual regulation underoxidative stress. Initial adhesion under liquid flow was tested in an adhesionassay, and the mutants△gltB and△gltC exhibited decreased adherence toglass surface, indicating that cell surface characteristics may be altered in themutants. It is hypothesized that a LysR-type transcriptional regulator encodedby gltC plays a critical role in controlling expression of genes involved inoxidative stress tolerance, surface attachment and biofilm formation.
     Fifthly, the genes except for gltB and gltC related with biofilm formationas well as oxidative stress tolerance in L. monocytogenes were analyzed, andthe molecular mechanism was explored. Twelve strains from two commonserotypes (1/2a and4b) of L. monocytogenes were selected for furthercharacterization on biofilm formation and oxidative stress tolerance. Most1/2a strains exhibited a relatively hyper-biofilm than the4b strains in test conditions, while the later demonstrated a stronger tolerance than the former.Interestingly, in L. monocytogenes4b strains, it seems that there was apositive correlation between biofilm-formation and oxidative-stress-response,while no connection in1/2a strains. In a qRT-PCR assay, threeoxidative-stress-related genes (sod, fri and perR) displayed their importanceof serotype variation in stress resistance and the recA gene appeared to becritical for survival of L. monocytogenes in biofilm.
     Overall, three novel genes were identified to be involved in positiveregulation of the biofilm formation by L. monocytogenes in this study, whichare named lm.G_2324, gltB and lm.G_1497. Among them, the gltB gene(encoding the large glutamate synthase), mutually regulating its upstreamgene gltC,(encoding a LysR-family transcriptional regulator of the gltBDoperon), was responsible for oxidation resistance and biofilm formation in L.monocytogenes4b G. The gltC gene might play a critical role in controllingexpression of genes involved in oxidative stress tolerance, surface attachmentand biofilm formation. Except for gltB and gltC, other four genes sod, fri,perR, recA showed the importance for the oxidative stress tolerance andbiofilm formation in L. monocytogenes serotypes4b and1/2a strains. Inaddition, there was a positive correlation between biofilm formation andoxidative stress response in L. monocytogenes4b strains.
引文
[1] Schlech, W.F., Lavigne, P.M., Bortolussi, R.A., et. al.. Epidemic listeriosis-evidence fortransmission by food[J]. N Engl J Med.1983,308(4):203-206.
    [2] Farber, J.M., Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen[J]. Microbiol Rev.1991,55(3):476-511.
    [3] Autio, T., Hielm, S., Miettinen, M., et. al.. Sources of Listeria monocytogenes contamination in acold-smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing[J].Appl Environ Microbiol.1999,65(1):150-155.
    [4] Norton, D.M., McCamey, M.A., Gall, K.L., et. al.. Molecular studies on the ecology of Listeriamonocytogenes in the smoked fish processing industry[J]. Appl Environ Microbiol.2001,67(1):198-205.
    [5] Holah, J. T., Bird, J., Hall, K. E. The microbial ecology of high-risk, chilled food factories;evidence for persistent Listeria spp. and Escherichia coli strains[J]. J Appl Microbiol.2004,97(1):68-77.
    [6] Fisher, C.W., Martin, S.E. Effects of iron and selenium on the production of catalase, superoxidedismutase, and listeriolysin O in Listeria monocytogenes[J]. J Food Prot.1999,62(10):1206-1209.
    [7] Seeliger, H.P. Listeriosis--history and actual developments[J]. Infection.1988,16(2):80-84.
    [8] Vazquez-Boland, J.A., Kuhn, M., Berche, P., et. al.. Listeria pathogenesis and molecular virulencedeterminants[J]. Clin Microbiol Rev.2001,14(3):584-640.
    [9] Stephen C., Paul F., Jane A., et al.. The Economics of Food Safety and International Trade inFood Products. Economic Research Service USDA.2000.
    [10]陈太基,封幼玲,戴建华.南京地区6类食品中李斯特菌污染状况研究[J].中国公共卫生.2000,16(1):45-46.
    [11]胡桂华,安静,栾颖,等等.沈阳地区食源性李斯特菌带染研究[J].职业与健康.2003,19(2):61-62.
    [12]黄愈玲,何晖,李秀珍,等等.食品中李斯特菌污染状况调查[J].疾病监测.2005,20(7):359-361.
    [13]骆玲飞,王小光,刘继倩,等等.部分市售农副产品李斯特菌污染情况调查及耐药性分析[J].现代预防医学.2010,37(22):4302-4303.
    [14] Murray, E.G.D., Webb, R.A., Swann, M.B.R. A disease of rabbits characterized by a largemononuclear leucocytosis caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.)[J]. J Pathol Bacteriol.1926,29:407-439.
    [15] Sallen, B., Rajoharison, A., Desvarenne, S., et. al.. Comparative analysis of16S and23S rRNAsequences of Listeria species[J]. Int J Syst Bacteriol.1996,46(3):669-674.
    [16] Piffaretti, J. C., Kressebuch, H., Aeschbacher, M., et. al.. Genetic characterization of clones of thebacterium Listeria monocytogenes causing epidemic disease[J]. Proc Natl Acad Sci U S A.1989,86(10):3818-3822.
    [17] Graves, L.M., Helsel, L.O., Steigerwalt, A.G., et. al.. Listeria marthii sp. nov., isolated from thenatural environment, Finger Lakes National Forest[J]. Int J Syst Evol Microbiol.2010,60(6):1280-1288.
    [18] Leclercq, A., Clermont, D., Bizet, C., et. al.. Listeria rocourtiae sp. nov[J]. Int J Syst EvolMicrobiol.2010,60(9):2210-2214.
    [19] Doumith, M., Buchrieser, C., Glaser, P., et. al.. Differentiation of the major Listeriamonocytogenes serovars by multiplex PCR[J]. J Clin Microbiol.2004,42(8):3819-3822.
    [20] Swaminathan, B., Gerner-Smidt, P. The epidemiology of human listeriosis[J]. Microbes Infect.2007,9(10):1236-1243.
    [21] Brosch, R., Chen, J., Luchansky, J.B. Pulsed-field fingerprinting of listeriae: identification ofgenomic divisions for Listeria monocytogenes and their correlation with serovar[J]. Appl EnvironMicrobiol.1994,60(7):2584-2592.
    [22] Graves, L.M., Swaminathan, B., Reeves, M. W., et. al.. Comparison of ribotyping and multilocusenzyme electrophoresis for subtyping of Listeria monocytogenes isolates[J]. J Clin Microbiol.1994,32(12):2936-2943.
    [23] Rasmussen, O.F., Skouboe, P., Dons, L., et. al.. Listeria monocytogenes exists in at least threeevolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes[J].Microbiology.1995,141(9):2053-2061.
    [24] Wiedmann, M., Bruce, J.L., Keating, C., et. al.. Ribotypes and virulence gene polymorphismssuggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential[J].Infect Immun.1997,65(7):2707-2716.
    [25] Nadon, C.A., Woodward, D.L., Young, C., et. al.. Correlations between molecular subtyping andserotyping of Listeria monocytogenes[J]. J Clin Microbiol.2001,39(7):2704-2707.
    [26] Weis, J., Seeliger, H.P. Incidence of Listeria monocytogenes in nature[J]. Appl Microbiol.1975,30(1):29-32.
    [27] Hansen, C.H., Vogel, B.F., Gram, L. Prevalence and survival of Listeria monocytogenes in Danishaquatic and fish-processing environments[J]. J Food Prot.2006,69(9):2113-2122.
    [28] MacGowan, A.P., Bowker, K., McLauchlin, J., et. al.. The occurrence and seasonal changes in theisolation of Listeria spp. in shop bought food stuffs, human faeces, sewage and soil from urbansources[J]. Int J Food Microbiol.1994,21(4):325-334.
    [29] De Valk, H., Jacquet, C., Goulet, V., et. al.. Surveillance of listeria infections in Europe[J]. EuroSurveill.2005,10(10):251-255.
    [30] Gombas, D.E., Chen, Y., Clavero, R.S., et. al.. Survey of Listeria monocytogenes in ready-to-eatfoods[J]. J Food Prot.2003,66(4):559-569.
    [31] EFSA. The community summary report on the trends and sources of zoonoses and zoonotic agentsin the European Union in2007[J]. The EFSA journal.2009,223:1-141.
    [32] FAO/WHO. Risk assessment of Listeria monocytogenes in ready-to-eat foods. Interpretativesummary.2004.
    [33] Crutchfield S.R., Roberts T. Food safety efforts accelerate in the1990s[J]. FoodReview.2000,23(3):44-49.
    [34] Anonymous. Listeria monocytogenes outbreak.2009a.
    [35] Kornacki, J., Gozdziewicz, T., Kwinecka, B., et. al.. Complications rate and pregnancy outcome inwomen who underwent early and mid trimester amniocentesis[J]. Ginekol Pol.2007,78(6):443-448.
    [36] Leverentz, B., Conway, W.S., Camp, M.J., et. al.. Biocontrol of Listeria monocytogenes onfresh-cut produce by treatment with lytic bacteriophages and a bacteriocin[J]. Appl Environ Microbiol.2003,69(8):4519-4526.
    [37] Glass, K.A., Granberg, D.A., Smith, A.L., et. al.. Inhibition of Listeria monocytogenes by sodiumdiacetate and sodium lactate on wieners and cooked bratwurst[J]. J Food Prot.2002,65(1):116-123.
    [38] Apostolidis, E., Kwon, Y.I., Shetty, K. Inhibition of Listeria monocytogenes by oregano,cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode ofaction through proline metabolism[J]. Int J Food Microbiol.2008,128(2):317-324.
    [39] Sy, K.V., Murray, M.B., Harrison, M.D., et. al.. Evaluation of gaseous chlorine dioxide as asanitizer for killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and yeasts andmolds on fresh and fresh-cut produce[J]. J Food Prot.2005,68(6):1176-1187.
    [40] Dhokane, V.S., Hajare, S., Shashidhar, R., et. al.. Radiation processing to ensure safety ofminimally processed carrot(Daucus carota) and cucumber(Cucumis sativus): optimization of dose forthe elimination of Salmonella Typhimurium and Listeria monocytogenes[J]. J Food Prot.2006,69(2):444-448.
    [41] Seman, D.L., Quickert, S.C., Borger, A.C., et. al.. Inhibition of Listeria monocytogenes growth incured ready-to-eat meat products by use of sodium benzoate and sodium diacetate[J]. J Food Prot.2008,71(7):1386-1392.
    [42] Rorvik, L.M., Caugant, D.A., Yndestad, M. Contamination pattern of Listeria monocytogenes andother Listeria spp. in a salmon slaughterhouse and smoked salmon processing plant[J]. Int J FoodMicrobiol.1995,25(1):19-27.
    [43] Vogel, B.F., Jorgensen, L.V., Ojeniyi, B., et. al.. Diversity of Listeria monocytogenes isolatesfrom cold-smoked salmon produced in different smokehouses as assessed by Random AmplifiedPolymorphic DNA analyses[J]. Int J Food Microbiol.2001,65(1-2):83-92.
    [44] Keto-Timonen, R., Tolvanen, R., Lunden, J., et. al.. An8-year surveillance of the diversity andpersistence of Listeria monocytogenes in a chilled food processing plant analyzed by amplifiedfragment length polymorphism[J]. J Food Prot.2007,70(8):1866-1873.
    [45] Chicurel, M. Bacterial biofilms and infections-Slime-busters[J]. Nature.2000,408(6810):284-286.
    [46] Lewis, K. Riddle of biofilm resistance[J]. Antimicrob Agents Chemother.2001,45(4):999-1007.
    [47] Costerton, J.W., Geesey, G.G., Cheng, K.J. How bacteria stick[J]. Sci Am.1978,238(1):86-95.
    [48] Branda, S.S., Vik, S., Friedman, L., et. al.. Biofilms: the matrix revisited[J]. Trends Microbiol.2005,13(1):20-26.
    [49] Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., et. al.. Extracellular DNA required forbacterial biofilm formation[J]. Science.2002,295(5559):1487.
    [50] Tolker-Nielsen, T., Molin, S. Spatial Organization of Microbial Biofilm Communities[J]. MicrobEcol.2000,40(2):75-84.
    [51] Stoodley, P., Sauer, K., Davies, D.G., et. al.. Biofilms as complex differentiated communities[J].Annu Rev Microbiol.2002,56:187-209.
    [52] Costerton, J.W., Stewart, P.S., Greenberg, E.P. Bacterial biofilms: a common cause of persistentinfections[J]. Science.1999,284(5418):1318-1322.
    [53] Espeland, E.M., Wetzel, R.G. Complexation, stabilization, and UV photolysis of extracellular andsurface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota[J]. MicrobEcol.2001,42(4):572-585.
    [54] Teitzel, G.M., Parsek, M.R. Heavy metal resistance of biofilm and planktonic Pseudomonasaeruginosa[J]. Appl Environ Microbiol.2003,69(4):2313-2320.
    [55] McNeill, K., Hamilton, I.R. Acid tolerance response of biofilm cells of Streptococcus mutans[J].FEMS Microbiol Lett, Apr11,2003,221(1):25-30.
    [56] Le Magrex-Debar, E., Lemoine, J., Gelle, M.P., et. al.. Evaluation of biohazards in dehydratedbiofilms on foodstuff packaging[J]. Int J Food Microbiol.2000,55(1-3):239-243.
    [57] Leid, J.G., Shirtliff, M.E., Costerton, J.W., et. al.. Human leukocytes adhere to, penetrate, andrespond to Staphylococcus aureus biofilms[J]. Infect Immun.2002,70(11):6339-6345.
    [58] Mah, T.F., O'Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents[J]. TrendsMicrobiol.2001,9(1):34-39.
    [59] Jefferson, K.K. What drives bacteria to produce a biofilm?[J]. FEMS Microbiol Lett.2004,236:163-173.
    [60] Hall-Stoodley, L., Costerton, J.W., Stoodley, P. Bacterial biofilms: from the natural environmentto infectious diseases[J]. Nat Rev Microbiol.2004,2(2):95-108.
    [61] Kreft, J.U. Biofilms promote altruism[J]. Microbiology.2004,150(8):2751-2760.
    [62] Arciola, C.R., Alvi, F.I., An, Y.H., et. al.. Implant infection and infection resistant materials: amini review[J]. Int J Artif Organs.2005,28(11):1119-1125.
    [63] Kuehn, M., Hausner, M., Bungartz, H.J., et. al.. Automated confocal laser scanning microscopyand semiautomated image processing for analysis of biofilms[J]. Appl Environ Microbiol.1998,64(11):4115-4127.
    [64] Lee, L.Y., Ong, S.L., Ng, W.J. Biofilm morphology and nitrification activities: recovery ofnitrifying biofilm particles covered with heterotrophic outgrowth[J]. Bioresour Technol.2004,95(2):209-214.
    [65] Klausen, M., Aaes-Jorgensen, A., Molin, S., et. al.. Involvement of bacterial migration in thedevelopment of complex multicellular structures in Pseudomonas aeruginosa biofilms[J]. MolMicrobiol.2003,50(1):61-68.
    [66] Donlan, R.M. Biofilms: microbial life on surfaces[J]. Emerg Infect Dis.2002,8(9):881-890.
    [67] Davies, D.G., Parsek, M.R., Pearson, J.P., et. al.. The involvement of cell-to-cell signals in thedevelopment of a bacterial biofilm[J]. Science.1998,280(5361):295-298.
    [68] Haffajee, A.D., Socransky, S.S. Introduction to microbial aspects of periodontal biofilmcommunities, development and treatment[J]. Periodontol2000.2006,42:7-12.
    [69] Costerton, J.W. Introduction to biofilm[J]. Int J Antimicrob Agents.1999,11(3-4):217-221;discussion237-239.
    [70] Sutherland, I.W. The biofilm matrix-an immobilized but dynamic microbial environment[J].Trends Microbiol.2001,9(5):222-227.
    [71] Klausen, M., Gjermansen, M., Kreft, J.U., et. al.. Dynamics of development and dispersal insessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putidamodel biofilms[J]. FEMS Microbiol Lett.2006,261(1):1-11.
    [72] Tolker-Nielsen, T., Brinch, U.C., Ragas, P.C., et. al.. Development and dynamics of Pseudomonassp. biofilms[J]. J Bacteriol.2000,182(22):6482-6489.
    [73] Wimpenny, J., Manz, W., Szewzyk, U. Heterogeneity in biofilms[J]. FEMS Microbiol Rev.2000,24(5):661-671.
    [74] Molin, S., Tolker-Nielsen, T. Gene transfer occurs with enhanced efficiency in biofilms andinduces enhanced stabilisation of the biofilm structure[J]. Curr Opin Biotechnol.2003,14(3):255-261.
    [75] Li, Y.H., Lau, P.C., Lee, J.H., et. al.. Natural genetic transformation of Streptococcus mutansgrowing in biofilms[J]. J Bacteriol.2001,183(3):897-908.
    [76] Burton, E., Yakandawala, N., LoVetri, K., et. al.. A microplate spectrofluorometric assay forbacterial biofilms[J]. J Ind Microbiol Biotechnol.2007,34(1):1-4.
    [77] Head, N.E., Yu, H. Cross-sectional analysis of clinical and environmental isolates ofPseudomonas aeruginosa: biofilm formation, virulence, and genome diversity[J]. Infect Immun.2004,72(1):133-144.
    [78] Ceri, H., Olson, M.E., Stremick, C., et. al.. The Calgary Biofilm Device: new technology for rapiddetermination of antibiotic susceptibilities of bacterial biofilms[J]. J Clin Microbiol.1999,37(6):1771-1776.
    [79] Santopolo, L., Marchi, E., Frediani, L., et. al.. A novel approach combining the Calgary BiofilmDevice and Phenotype MicroArray for the characterization of the chemical sensitivity of bacterialbiofilms[J]. Biofouling.2012,28(9):1023-1032.
    [80] O'Toole, G., Kaplan, H.B., Kolter, R. Biofilm formation as microbial development[J]. Annu RevMicrobiol.2000,54:49-79.
    [81] Ghigo, J.M. Natural conjugative plasmids induce bacterial biofilm development[J]. Nature.2001,412(6845):442-445.
    [82] Kadurugamuwa, J.L., Sin, L.V., Yu, J., et. al.. Rapid direct method for monitoring antibiotics in amouse model of bacterial biofilm infection[J]. Antimicrob Agents Chemother.2003,47(10):3130-3137.
    [83] Hatch, R.A., Schiller, N.L. Alginate lyase promotes diffusion of aminoglycosides through theextracellular polysaccharide of mucoid Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother.1998,42(4):974-977.
    [84] Tsai, Y.P., Pai, T.Y., Qiu, J.M. The impacts of the AOC concentration on biofilm formation underhigher shear force condition[J]. J Biotechnol.2004,111(2):155-167.
    [85] Bagge, N., Schuster, M., Hentzer, M., et. al.. Pseudomonas aeruginosa biofilms exposed toimipenem exhibit changes in global gene expression and beta-lactamase and alginate production[J].Antimicrob Agents Chemother.2004,48(4):1175-1187.
    [86] Stoodley, P., Debeer, D., Lewandowski, Z. Liquid flow in biofilm systems[J]. Appl EnvironMicrobiol.1994,60(8):2711-2716.
    [87] Banin, E., Brady, K.M., Greenberg, E.P. Chelator-induced dispersal and killing of Pseudomonasaeruginosa cells in a biofilm[J]. Appl Environ Microbiol.2006,72(3):2064-2069.
    [88] Kaplan, J.B., Ragunath, C., Velliyagounder, K., et. al.. Enzymatic detachment of Staphylococcusepidermidis biofilms[J]. Antimicrob Agents Chemother.2004,48(7):2633-2636.
    [89] Kaplan, J.B., Velliyagounder, K., Ragunath, C., et. al.. Genes involved in the synthesis anddegradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacilluspleuropneumoniae biofilms[J]. J Bacteriol.2004,186(24):8213-8220.
    [90] Kaplan, J.B., Meyenhofer, M.F., Fine, D.H. Biofilm growth and detachment of Actinobacillusactinomycetemcomitans[J]. J Bacteriol.2003,185(4):1399-1404.
    [91] Rice, K.C., Mann, E.E., Endres, J.L., et. al.. The cidA murein hydrolase regulator contributes toDNA release and biofilm development in Staphylococcus aureus[J]. Proc Natl Acad Sci U S A.2007,104(19):8113-8118.
    [92] Webb, J.S., Thompson, L.S., James, S., et. al.. Cell death in Pseudomonas aeruginosa biofilmdevelopment[J]. J Bacteriol.2003,185(15):4585-4592.
    [93] Thurnheer, T., Gmur, R., Guggenheim, B. Multiplex FISH analysis of a six-species bacterialbiofilm[J]. J Microbiol Methods.2004,56(1):37-47.
    [94] Neu, T.R., Woelfl, S., Lawrence, J.R. Three-dimensional differentiation of photo-autotrophicbiofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photonexcitation)[J]. J Microbiol Methods.2004,56(2):161-172.
    [95] Daims, H., Lucker, S., Wagner, M. Daime, a novel image analysis program for microbial ecologyand biofilm research[J]. Environ Microbiol.2006,8(2):200-213.
    [96] Heydorn, A., Nielsen, A.T., Hentzer, M., et. al.. Quantification of biofilm structures by the novelcomputer program COMSTAT[J]. Microbiology.2000,146(10)2395-2407.
    [97] Stickler, D., Morris, N., Moreno, M.C., et. al.. Studies on the formation of crystalline bacterialbiofilms on urethral catheters[J]. Eur J Clin Microbiol Infect Dis.1998,17(9):649-652.
    [98] Dufrene, Y.F. Recent progress in the application of atomic force microscopy imaging and forcespectroscopy to microbiology[J]. Curr Opin Microbiol.2003,6(3):317-323.
    [99] Steinberger, R.E., Allen, A.R., Hansa, H.G., et. al.. Elongation correlates with nutrient deprivationin Pseudomonas aeruginosa-unsaturates biofilms[J]. Microb Ecol.2002,43(4):416-423.
    [100] Landry, R.M., An, D., Hupp, J.T., et. al.. Mucin-Pseudomonas aeruginosa interactionspromote biofilm formation and antibiotic resistance[J]. Mol Microbiol.2006,59(1):142-151.
    [101] Xu, K.D., McFeters, G.A., Stewart, P.S. Biofilm resistance to antimicrobial agents[J].Microbiology.2000,146(3)547-549.
    [102] Anwar, H., Strap, J.L., Costerton, J.W. Establishment of aging biofilms: possible mechanismof bacterial resistance to antimicrobial therapy[J]. Antimicrob Agents Chemother.1992,36(7):1347-1351.
    [103] Stewart, P.S., Costerton, J.W. Antibiotic resistance of bacteria in biofilms[J]. Lancet.2001,358(9276):135-138.
    [104] Anderl, J.N., Franklin, M.J., Stewart, P.S. Role of antibiotic penetration limitation inKlebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin[J]. Antimicrob AgentsChemother.2000,44(7):1818-1824.
    [105] Anderl, J.N., Zahller, J., Roe, F., et. al.. Role of nutrient limitation and stationary-phaseexistence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin[J]. AntimicrobAgents Chemother.2003,47(4):1251-1256.
    [106] Gilbert, P., Maira-Litran, T., McBain, A.J., et. al.. The physiology and collectiverecalcitrance of microbial biofilm communities[J]. Adv Microb Physiol.2002,46:202-256.
    [107] Brooun, A., Liu, S., Lewis, K. A dose-response study of antibiotic resistance in Pseudomonasaeruginosa biofilms[J]. Antimicrob Agents Chemother.2000,44(3):640-646.
    [108] Stephens, C. Microbiology: breaking down biofilms[J]. Curr Biol.2002,12(4):132-134.
    [109] Prigent-Combaret, C., Vidal, O., Dorel, C., et. al.. Abiotic surface sensing andbiofilm-dependent regulation of gene expression in Escherichia coli[J]. J Bacteriol.1999,181(19):5993-6002.
    [110] Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms[J]. MicrobesInfect.2003,5(13):1213-1219.
    [111] Mack, D., Rohde, H., Dobinsky, S., et. al.. Identification of three essential regulatory geneloci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin andbiofilm formation[J]. Infect Immun.2000,68(7):3799-3807.
    [112]陈永辉,史贤明.利用转座子Tn917构建单核细胞增生李斯特菌菌膜形成突变株[J].微生物学报.2005,45(6),952-954.
    [113] Schembri, M.A., Kjaergaard, K., Klemm, P. Global gene expression in Escherichia colibiofilms[J]. Mol Microbiol.2003,48(1):253-267.
    [114] Kies, S., Otto, M., Vuong, C., et. al.. Identification of the sigB operon in Staphylococcusepidermidis: construction and characterization of a sigB deletion mutant[J]. Infect Immun.2001,69(12):7933-7936.
    [115] Rachid, S., Cho, S., Ohlsen, K., et. al.. Induction of Staphylococcus epidermidis biofilmformation by environmental factors: the possible involvement of the alternative transcription factorsigB[J]. Adv Exp Med Biol.2000,485159-166.
    [116] Rachid, S., Ohlsen, K., Wallner, U., et. al.. Alternative transcription factor sigma(B) isinvolved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate[J]. J Bacteriol.2000,182(23):6824-6826.
    [117] Conlon, K.M., Humphreys, H., O'Gara, J.P. icaR encodes a transcriptional repressor involvedin environmental regulation of ica operon expression and biofilm formation in Staphylococcusepidermidis[J]. J Bacteriol.2002,184(16):4400-4408.
    [118] Cucarella, C., Solano, C., Valle, J., et. al.. Bap, a Staphylococcus aureus surface proteininvolved in biofilm formation[J]. J Bacteriol.2001,183(9):2888-2896.
    [119] Balaban, N., Goldkorn, T., Gov, Y., et. al.. Regulation of Staphylococcus aureuspathogenesis via target of RNAIII-activating Protein(TRAP)[J]. J Biol Chem.2001,276(4):2658-2667.
    [120] Yang, G., Gao, Y., Dong, J., et. al.. A novel peptide screened by phage display can mimicTRAP antigen epitope against Staphylococcus aureus infections[J]. J Biol Chem.2005,280(29):27431-27435.
    [121] Mack, D., Siemssen, N., Laufs, R. Parallel induction by glucose of adherence and apolysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence forfunctional relation to intercellular adhesion[J]. Infect Immun.1992,60(5):2048-2057.
    [122] Heilmann, C., Hussain, M., Peters, G., et. al.. Evidence for autolysin-mediated primaryattachment of Staphylococcus epidermidis to a polystyrene surface[J]. Mol Microbiol.1997,24(5):1013-1024.
    [123] Allesen-Holm, M., Barken, K.B., Yang, L., et. al.. A characterization of DNA release inPseudomonas aeruginosa cultures and biofilms[J]. Mol Microbiol.2006,59(4):1114-1128.
    [124] Li, Y.H., Tang, N., Aspiras, M.B., et. al.. A quorum-sensing signaling system essential forgenetic competence in Streptococcus mutans is involved in biofilm formation[J]. J Bacteriol.2002,184(10):2699-2708.
    [125] Merritt, J., Qi, F., Goodman, S.D., et. al.. Mutation of luxS affects biofilm formation inStreptococcus mutans[J]. Infect Immun.2003,71(4):1972-1979.
    [126] Fernandez, L.A., Berenguer, J. Secretion and assembly of regular surface structures inGram-negative bacteria[J]. FEMS Microbiol Rev.2000,24(1):21-44.
    [127] Soutourina, O.A., Bertin, P.N. Regulation cascade of flagellar expression in Gram-negativebacteria[J]. FEMS Microbiol Rev.2003,27(4):505-523.
    [128] Prigent-Combaret, C., Prensier, G., Le Thi, T.T., et. al.. Developmental pathway for biofilmformation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid[J]. EnvironMicrobiol.2000,2(4):450-464.
    [129] Gavin, R., Rabaan, A.A., Merino, S., et. al.. Lateral flagella of Aeromonas species areessential for epithelial cell adherence and biofilm formation[J]. Mol Microbiol.2002,43(2):383-397.
    [130] Sauer, K., Camper, A.K. Characterization of phenotypic changes in Pseudomonas putida inresponse to surface-associated growth[J]. J Bacteriol.2001,183(22):6579-6589.
    [131] Davis, S.C., Ricotti, C., Cazzaniga, A., et. al.. Microscopic and physiologic evidence forbiofilm-associated wound colonization in vivo[J]. Wound Repair Regen.2008,16(1):23-29.
    [132] Requena, J. R., Chao, C.C., Levine, R.L., et. al.. Glutamic and aminoadipic semialdehydesare the main carbonyl products of metal-catalyzed oxidation of proteins[J]. Proc Natl Acad Sci U S A.2001,98(1):69-74.
    [133] Lee, P.C., Bochner, B.R., Ames, B. N. AppppA, heat-shock stress, and cell oxidation[J]. ProcNatl Acad Sci U S A.1983,80(24):7496-7500.
    [134] Aldsworth, T.G., Sharman, R.L., Dodd, C.E. Bacterial suicide through stress[J]. Cell MolLife Sci.1999,56(5-6):378-383.
    [135] Asselt, A.J., Giffel, M.C. Pathogen resistance to sanitisers. In Handbook of hygiene controlin the food industry.2005, Cambridge: Woodhead69-92.
    [136] Briandet, R., Meylheuc, T., Maher, C., et. al.. Listeria monocytogenes Scott A: cell surfacecharge, hydrophobicity, and electron donor and acceptor characteristics under different environmentalgrowth conditions[J]. Appl Environ Microbiol.1999,65(12):5328-5333.
    [137] Duffy, G., Sheridan, J.J. The effect of temperature, pH and medium in a surface adhesionimmunofluorescent technique for detection of Listeria monocytogenes[J]. J Appl Microbiol.1997,83(1):95-101.
    [138] Smoot, L.M., Pierson, M.D. Influence of environmental stress on the kinetics and strength ofattachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel[J]. J Food Prot.1998,61(10):1286-1292.
    [139] Mafu, A.A., Roy, D., Goulet, J., et. al.. Characterization of physicochemical forces involvedin adhesion of Listeria monocytogenes to surfaces[J]. Appl Environ Microbiol.1991,57(7):1969-1973.
    [140] Mai, T.L., Sofyan, N.I., Fergus, J.W., et. al.. Attachment of Listeria monocytogenes to anaustenitic stainless steel after welding and accelerated corrosion treatments[J]. J Food Prot.2006,69(7):1527-1532.
    [141] Smoot, L.M., Pierson, M.D. Effect of environmental stress on the ability of Listeriamonocytogenes Scott A to attach to food contact surfaces[J]. J Food Prot.1998,61(10):1293-1298.
    [142] Briandet, R., Leriche, V., Carpentier, B., et. al.. Effects of the growth procedure on thesurface hydrophobicity of Listeria monocytogenes cells and their adhesion to stainless steel[J]. J FoodProt.1999,62(9):994-998.
    [143] Wong, A.C. Biofilms in food processing environments[J]. J Dairy Sci.1998,81(10):2765-2770.
    [144] Hood, S.K., Zottola, E.A. Adherence to stainless steel by foodborne microorganisms duringgrowth in model food systems[J]. Int J Food Microbiol.1997,37(2-3):145-153.
    [145] Kim K.Y., F.J.F. Effect of growth nutrients on attachment of Listeria monocytogenes tostainless steel[J]. J Food Prot.1994,57(8):720-724.
    [146] Kumar, C.G.,Anand, S.K. Significance of microbial biofilms in food industry: a review[J].Int J Food Microbiol.1998,42(1-2):9-27.
    [147] Bagge-Ravn, D., Ng, Y., Hjelm, M., et. al.. The microbial ecology of processing equipmentin different fish industries-analysis of the microflora during processing and following cleaning anddisinfection[J]. Int J Food Microbiol.2003,87(3):239-250.
    [148] Norwood, D.E., Gilmour, A. The growth and resistance to sodium hypochlorite of Listeriamonocytogenes in a steady-state multispecies biofilm[J]. J Appl Microbiol.2000,88(3):512-520.
    [149] Leriche, V., Carpentier, B. Limitation of adhesion and growth of Listeria monocytogenes onstainless steel surfaces by Staphylococcus sciuri biofilms[J]. J Appl Microbiol.2000,88(4):594-605.
    [150] Meylheuc, T., Van Oss, C.J., Bellon-Fontaine, M.N. Adsorption of biosurfactant on solidsurfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28[J]. J ApplMicrobiol.2001,91(5):822-832.
    [151]马瑜丹,朱欣娜,史贤明.单核细胞增生李斯特菌菌膜形成突变株的筛选[J].中国食品科学报.2009,9(2):11-17.
    [152] Sambrook J., Fritsch E. F., Manistis T. Molecular Cloning: a Laboratory Manual[M].3rd ed.Cold Spring Harbor Laboratory Press: New York,2001.
    [153]龙飞.基于活菌内标的单核细胞增生李斯特菌荧光定量PCR方法的建立[D].武汉:华中农业大学,2008.
    [154] Hartl, D.L., Ochman, H. Inverse polymerase chain reaction[J]. Methods Mol Biol.1996,58:293-301.
    [155] Ochman, H., Ajioka, J.W., Garza, D., et. al.. Inverse polymerase chain reaction[J].Biotechnology(NY).1990,8(8):759-760.
    [156] Babb, B.L., Collett, H.J., Reid, S.J., et. al.. Transposon mutagenesis of Clostridiumacetobutylicum P262: isolation and characterization of solvent deficient and metronidazole resistantmutants[J]. FEMS Microbiol Lett.1993,114(3):343-348.
    [157] Bohall, N.A., Jr., Vary, P.S. Transposition of Tn917in Bacillus megaterium[J]. J Bacteriol.1986,167(2):716-718.
    [158] Camilli, A., Portnoy, A., Youngman, P. Insertional mutagenesis of Listeria monocytogeneswith a novel Tn917derivative that allows direct cloning of DNA flanking transposon insertions[J]. JBacteriol.1990,172(7):3738-3744.
    [159] Handwerger, S. Alterations in peptidoglycan precursors and vancomycin susceptibility inTn917insertion mutants of Enterococcus faecalis221[J]. Antimicrob Agents Chemother.1994,38(3):473-475.
    [160] Ochman, H., Gerber, A.S., Hartl, D.L. Genetic applications of an inverse polymerase chainreaction[J]. Genetics.1988,120(3):621-623.
    [161] Zhu, X., Long, F., Chen, Y., et. al.. A putative ABC transporter is involved in negativeregulation of biofilm formation by Listeria monocytogenes[J]. Appl Environ Microbiol.2008,74(24):7675-7683.
    [162] Van Der Veen, S., Abee, T. Importance of SigB for Listeria monocytogenes static andcontinuous-flow biofilm formation and disinfectant resistance[J]. Appl Environ Microbiol.2010,76(23):7854-7860.
    [163] Van Der Veen, S., Abee, T. HrcA and DnaK are important for static and continuous-flowbiofilm formation and disinfectant resistance in Listeria monocytogenes[J]. Microbiology.2010,156(12):3782-3790.
    [164] Rea, R., Hill, C., Gahan, C.G. Listeria monocytogenes PerR mutants display a small-colonyphenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence[J].Appl Environ Microbiol.2005,71(12):8314-8322.
    [165] Picossi, S., Belitsky, B.R., Sonenshein, A.L. Molecular mechanism of the regulation ofBacillus subtilis gltAB expression by GltC[J]. J Mol Biol.2007,365(5):1298-1313.
    [166] Diaz, P.I., Slakeski, N., Reynolds, E.C., et. al.. Role of oxyR in the oral anaerobePorphyromonas gingivalis[J]. J Bacteriol.2006,188(7):2454-2462.
    [167] Honma, K., Mishima, E., Inagaki, S., et. al.. The OxyR homologue in Tannerella forsythiaregulates expression of oxidative stress responses and biofilm formation[J]. Microbiology.2009,155(Pt6):1912-1922.
    [168] Liu, Y., Bauer, S.C., Imlay, J.A. The YaaA protein of the Escherichia coli OxyR regulonlessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron[J]. JBacteriol.2011,193(9):2186-2196.
    [169] Storz, G., Altuvia, S. OxyR regulon[J]. Methods Enzymol.1994,234:217-223.
    [170] Tao, K. In vivo oxidation-reduction kinetics of OxyR, the transcriptional activator for anoxidative stress-inducible regulon in Escherichia coli[J]. FEBS Lett.1999,457(1):90-92.
    [171] Beloin, C., Michaelis, K., Lindner, K., et. al.. The transcriptional antiterminator RfaHrepresses biofilm formation in Escherichia coli[J]. J Bacteriol.2006,188(4):1316-1331.
    [172] Shanks, R.M., Stella, N.A., Kalivoda, E.J., et. al.. A Serratia marcescens OxyR homologmediates surface attachment and biofilm formation[J]. J Bacteriol.2007,189(20):7262-7272.
    [173] Szlavik, J., Paiva, D.S., Mork, N., et. al.. Initial adhesion of Listeria monocytogenes to solidsurfaces under liquid flow[J]. Int J Food Microbiol.2012,152(3):181-188.
    [174] Gorski, L., Flaherty, D., Duhe, J.M. Comparison of the stress response of Listeriamonocytogenes strains with sprout colonization[J]. J Food Prot.2008,71(8):1556-1562.
    [175] Borucki, M.K., Peppin, J.D., White, D., et. al.. Variation in biofilm formation among strainsof Listeria monocytogenes[J]. Appl Environ Microbiol.2003,69(12):7336-7342.
    [176] Marsh, E.J., Luo, H., Wang, H. A three-tiered approach to differentiate Listeriamonocytogenes biofilm-forming abilities[J]. FEMS Microbiol Lett.2003,228(2):203-210.
    [177] Pan, Y., Breidt, F., Jr., Kathariou, S. Competition of Listeria monocytogenes serotype1/2aand4b strains in mixed-culture biofilms[J]. Appl Environ Microbiol.2009,75(18):5846-5852.
    [178] Pan, Y., Breidt, F., Jr., Gorski, L. Synergistic effects of sodium chloride, glucose, andtemperature on biofilm formation by Listeria monocytogenes serotype1/2a and4b strains[J]. ApplEnviron Microbiol.2010,76(5):1433-1441.
    [179] Romanova, N.A., Gawande, P.V., Brovko, L.Y., et. al.. Rapid methods to assess sanitizingefficacy of benzalkonium chloride to Listeria monocytogenes biofilms[J]. J Microbiol Methods.2007,71(3):231-237.
    [180] Chae, M.S., Schraft, H. Comparative evaluation of adhesion and biofilm formation ofdifferent Listeria monocytogenes strains[J]. Int J Food Microbiol.2000,62(1-2):103-111.
    [181] Fisher, C.W., Lee, D., Dodge, B.A., et. al.. Influence of catalase and superoxide dismutase onozone inactivation of Listeria monocytogenes[J]. Appl Environ Microb.2000,66(4):1405-1409.
    [182] Van Der Veen, S., Abee, T. Generation of variants in Listeria monocytogenescontinuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair[J].PLoS One.2011,6(12): e28590.
    [183] Hassett, D.J., Cohen, M.S. Bacterial adaptation to oxidative stress: implications forpathogenesis and interaction with phagocytic cells[J]. FASEB J.1989,3(14):2574-2582.
    [184] Moorhead, S.M., Dykes, G.A. The role of the sigB gene in the general stress response ofListeria monocytogenes varies between a strain of serotype1/2a and a strain of serotype4c[J]. CurrMicrobiol.2003,46(6):461-466.
    [185] Donaldson, J.R., Nanduri, B., Burgess, S.C., et. al.. Comparative proteomic analysis ofListeria monocytogenes strains F2365and EGD[J]. Appl Environ Microbiol.2009,75(2):366-373.
    [186] Brehm, K., Haas, A., Goebel, W., et. al.. A gene encoding a superoxide dismutase of thefacultative intracellular bacterium Listeria monocytogenes[J]. Gene.1992,118(1):121-125.
    [187] Olsen, K.N., Larsen, M.H., Gahan, C.G., et. al.. The Dps-like protein Fri of Listeriamonocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells[J].Microbiology.2005,151(3):925-933.
    [188] Horsburgh, M.J., Clements, M.O., Crossley, H., et. al.. PerR controls oxidative stressresistance and iron storage proteins and is required for virulence in Staphylococcus aureus[J]. InfectImmun.2001,69(6):3744-3754.
    [189] Brenot, A., King, K.Y., Caparon, M.G. The PerR regulon in peroxide resistance andvirulence of Streptococcus pyogenes[J]. Mol Microbiol.2005,55(1):221-234.
    [190] Rea, R.B., Gahan, C.G., Hill, C. Disruption of putative regulatory loci in Listeriamonocytogenes demonstrates a significant role for Fur and PerR in virulence[J]. Infect Immun.2004,72(2):717-727.
    [191] Boles, B.R., Thoendel, M., Singh, P.K. Self-generated diversity produces "insurance effects"in biofilm communities[J]. Proc Natl Acad Sci U S A.2004,101(47):16630-16635.
    [192] Rieu, A., Briandet, R., Habimana, O., et. al.. Listeria monocytogenes EGD-e biofilms: nomushrooms but a network of knitted chains[J]. Appl Environ Microbiol.2008,74(14):4491-4497.
    [193] Inagaki, S., Matsumoto-Nakano, M., Fujita, K., et. al.. Effects of recombinase A deficiencyon biofilm formation by Streptococcus mutans[J]. Oral Microbiol Immunol.2009,24(2):104-108.
    [194] Wen, J., Anantheswaran, R.C., Knabel, S.J. Changes in barotolerance, thermotolerance, andcellular morphology throughout the life cycle of Listeria monocytogenes[J]. Appl Environ Microbiol.
    2009,75(6):1581-1588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700