CD147基因的转录调控机制及其表观遗传修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌(hepatocellular carcinoma, HCC)是世界常见恶性肿瘤,其每年发病600,000例,其中55%是在中国。因其恶性度高、病情进展快,治疗难度大、疗效差,五年生存率仅为8.9%。近二十年肝癌的治疗没有明显进展,所以急需一种新的预后评价指标,探索更为有效的治疗方法。
     CD147分子是一个高度糖基化的跨膜蛋白,它属于免疫球蛋白超家族,包含两个免疫球蛋白结构域(C2和I结构域)。CD147可以通过诱导MMPs分泌降解细胞外基质促进肿瘤侵袭转移,还可以通过VEGF、uPA、抑制失巢凋亡等途径促进肿瘤增殖转移。因此CD147是一个重要的癌生物标志物,对肝癌等恶性肿瘤诊断、预防及治疗都有着极其重要的意义。CD147的高表达常常和肿瘤的预后不良有关。虽然CD147在肿瘤的进展和预后中发挥重要的作用,但是其表达上调的分子机制还不清楚。
     转录水平的调控是真核生物基因表达调控中最重要的环节,而在转录起始阶段只有转录因子的特异结合才能有效起始转录。但是到目前为止能与CD147分子启动子区特异结合并能有效启动其转录的转录因子仍不清楚。CpG岛局部甲基化的异常变化往往早于细胞的恶性增生,全基因组的低甲基化伴随癌症的发生而出现,且随着肿瘤恶性程度的增加而更加明显,因此对DNA甲基化的检测可用于肿瘤诊断和预后评估,是癌症研究的热点之一。
     目前普遍认为的DNA甲基化参与基因表达调控的机制就是,甲基化直接的阻碍转录因子结合到含有CpG位点的结合区域。Sp1是序列特异的转录因子,通过结合到基因启动子区的GC富含区域来调节基因的表达。以前的研究表明Sp1结合位点的甲基化状态可影响Sp1的结合进而调控基因的转录。因此研究CD147启动子区CpG岛甲基化状态及其与肝癌的相关性,探讨甲基化对CD147的转录因子调控的影响,及甲基化程度与肝癌病人预后不良的相关性,对于理解肝癌的发生发展、早期诊断和靶向治疗有着重要的应用价值。
     本课题的研究目标有三点:首先确定CD147启动子核心区域及关键转录因子,分析转录因子对CD147的转录调控作用;其次分析CD147启动子区CpG岛是否存在甲基化现象,是否参与CD147的转录调控,了解各个甲基化位点在正常及肿瘤细胞系中的甲基化状态,及甲基化对转录因子结合是否存在影响;最后通过检测肝癌样本中甲基化状态来分析甲基化与肝癌患者预后的相关性,评价应用甲基化检测进行肝癌辅助诊断的可行性。
     第一部分:检测CD147分子在肝癌样本和肝癌细胞系的表达。我们运用免疫组化的方法检测了54例肝癌及其癌旁正常肝标本中CD147的表达和分布。结果显示CD147主要在表达在肝癌细胞中,而肝间质成纤维细胞不表达;在肝癌细胞内,染色主要定位于细胞膜和细胞浆上。CD147在肝癌组织中表达(42/54=77.78%)明显高于正常肝组织(4/54=7.4%,P<0.05)。然后我们运用实时定量PCR和蛋白免疫印迹的方法检测了正常肝组织,正常肝细胞和肝癌细胞中CD147的mRNA和蛋白表达水平。我们发现CD147分子的mRNA和蛋白水平在肝癌细胞中的表达均高于正常肝细胞,而且这种升高是发生在转录水平的。
     第二部分:确定CD147分子启动子转录核心区域。首先我们构建了含有CD147基因的启动子1.8kb长序列的荧光素酶报告载体,通过截短表达报告载体和瞬时转染检测萤火虫荧光素酶强度的方法确定CD147基因启动子核心区域。以CD147基因的转录起始位点为+1,确定了启动子的核心区域为-108到-42。同时利用转录因子预测软件预测,发现这个区域内含有一个转录因子Sp1的结合位点。
     第三部分:明确转录因子Sp1对CD147的转录调控作用。首先利用EMSA和ChIP的方法证明了转录因子Sp1在体外和体内均可结合到CD147基因的启动子区。同时我们也发现在CD147高表达的细胞HepG2细胞中Sp1结合到CD147启动子的量明显高于CD147低表达的细胞QZG。为进一步验证Sp1对CD147的转录激活作用,我们构建了Sp1结合位点突变的CD147基因启动子区的荧光素酶报告基因载体,发现CD147转录活性显著下降。过表达或者下调Sp1的表达可以改变CD147的转录活性。RNAi也证明了Sp1调节CD147的表达。因此我们认为转录因子Sp1可以结合到CD147启动子区并对其转录起着上调作用。
     第四部分:DNA甲基化修饰参与CD147基因表达调控。我们首先运用CpG岛搜索软件分析CD147启动子区域。我们发现在-340至+37(+1,CD147基因转录起始位点)是一个典型的CpG岛,同时这个区域亦包含了CD147的启动子核心区域。然后我们运用亚硫酸盐克隆测序的方法检测了正常肝组织,正常肝细胞系,肝癌细胞系中CD147启动子的甲基化情况。结果显示正常肝和正常肝细胞系CD147启动子区呈现较密集的甲基化状况,而肝癌细胞系中CD147启动子的甲基化程度就相对较低。进一步分析发现在Sp1的结合位点上在肝癌细胞系中甲基化程度明显低于正常对照。用去甲基化试剂5-Aza-dC处理细胞后,CD147表达水平随着5-Aza-dC作用浓度的不断升高而升高。而在此过程中Sp1的表达量没有发生明显的升高。同时ChIP检测发现5-Aza-dC处理提高了Sp1的结合量。反之过甲基化CD147启动子区会显著的下降CD147的转录活性。以上的结果提示,CD147启动子的低甲基化上调CD147基因在肝癌细胞的表达,这主要是由于去甲基化开放了转录因子的结合位点使CD147启动子结合更多的Sp1,进而上调CD147的表达。
     第五部分:CD147基因低甲基化与肝癌病人预后不良相关。我们运用亚硫酸盐克隆测序和甲基化特异PCR的方法分析了54例肝癌标本和其癌旁正常肝组织中CD147基因的甲基化情况。在肝癌标本中,CD147启动子甲基化程度与其蛋白表达呈负相关(r = -0.615),甲基化程度越高CD147表达越低。预后分析发现相对于发生CD147启动子甲基化的肝癌病人未发生CD147启动子甲基化的肝癌病人具有较高的复发率(88.1% vs. 58.3%;P<0.05)和死亡率(83.3% vs. 50.0%;P <0.05),提示肝癌病人CD147低甲基化与预后不良具有相关性,检测肝癌病人CD147甲基化情况可以作为肝癌病人预后评价的指标。
     根据上述结果,我们确定了CD147的转录核心区域及转录因子Sp1对其调控作用。CD147启动子区CpG岛存在甲基化调控的现象,甲基化调节参与CD147的转录调控,启动子低甲基化通过增加转录因子Sp1的结合上调CD147在肝癌细胞中的表达,这些结果有助于我们进一步理解肝癌发生发展的分子机制。这种低甲基化状况与肝癌病人预后不良存在相关性,提示检测CD147基因启动子甲基化状态,可用于肝癌的辅助诊断、监测肝癌患者的预后及治疗反应。干预CD147启动子甲基化,可作为肿瘤治疗的一种新策略。
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with an annual incidence rate of about 600,000 cases, among which 55% are in China. HCC is characterized by vascular invasion, rapid progression and poor prognosis. The 5-year overall survival rate of individuals with HCC is only 8.9%, and this has barely improved over the past two decades. New prognostic markers are needed to help identify patients who are likely to have a poor prognosis and benefit from more aggressive treatment approaches.
     CD147 is a transmembrane protein with highly glycosylated modifications. It contains two extracellular immunoglobulin domains (C2 and I set), exhibiting the characteristics of the immunoglobulin superfamily members. CD147 expression significantly contributes to tumor progression by inducing the expression of MMPs (mainly MMP-2 and MMP-9) and vascular endothelial growth factor, activating the urokinase -type plasminogen activator system, conferring the resistance of tumor cells to anoikis and thus promoting tumor invasion and metastasis. Additionally, CD147 overexpression in tumor cells was significantly associated with poor prognosis. Nonetheless, although CD147 plays a critical role in tumor progression and prognosis, the mechanisms underlying the up-regulation of this molecule in cancer cells remain largely unknown.
     The gene expression has been shown to be dynamically regulated by many factors at both the transcriptional and posttranscriptional level. Among these mechanisms, the transcription factors seem to play the most crucial roles in gene regulation. Up to date, the cis-acting elements and transcription factors involved in CD147 expression was not been descripted. Aberrant methylation of CpG islands within promoter region usually happened earlier than cell hyperplasia; the global hypomethylation occurs with the cancer genesis and becomes more obviously with cancer development. So changes in DNA methylation patterns can be detected for diagnosis and prognosis.
     The most well-defined mechanism involved in the regulation of methylation-mediated gene expression is the direct binding blocking of transcription factors to their CpG-containing binding sites. Sp1 is a well-characterized sequence-specific transcriptional factor that regulates a large number of house-keeping and tissue-specific genes by binding to GC-rich DNA sequences in the promoter region of many human genes. Numerous previous studies have shown that methylation status of the Sp1 consensus binding site influences the Sp1 binding and thus regulates the gene transcription. The research in the association of methylation in HCC and its role in transcription regulation has significance in theory and application which helps understanding HCC genesis, development, early diagnosis and cancer biotherapy.
     The first purpose of our study was to identify the minimal promoter region of CD147 and the critical transcriptional factors. The second purpose was to analyze CpG islands within CD147 promoter, identify its potential methylated CG dinucleotide and methylation states in every site in normal liver and HCC cell lines, and investigate the transcription factor binding status. The third purpose was to investigate the association of methylation and HCC through detecting methylation states in generous HCC specimen, evaluate the feasibility of detecting methylation states as a new HCC diagnosis method.
     There were five parts in our study: (1) We detected the expression of cancer-associated molecule CD147 in HCC tissues and cell lines by immunohistochemical staining, real time RT-PCR and western blot; (2) We identified the minimal promoter region of CD147 by luciferase reporter assay and nested deletions of the CD147 promoter region; (3) With the assistance of the TRANSFAC database, the Sp1 binding sites were found in the critical promoter of CD147. Whether Sp1 could bind to the CD147 promoter was confirmed by point mutation experiment, in vivo and in vitro binding assays. These results were proven by blocking Sp1 using RNAi or mithramycin A treatment and upregulating Sp1 using transfection with eukaryotic expression vector; (4) CD147 promoter methylation statuses and related expression levels in normal and HCC cell lines and 54 paired HCC and adjacent non-tumor (ANT) tissues were respectively examined by bisulfite genomic sequencing, methylation-specific PCR, real-time RT-PCR, western blot and immunohistochemistry. Whether the binding of Sp1 to CD147 promoter could be influenced by methylation status was also investigated; (5) We characterized CD147 methylated sites in paraffin block specimen using methylation-specific PCR and BGS. For all HCC patients, follow-up analysis was carried out and the correlations of promoter methylation statuses with CD147 expression level, the clinicopathologic features and prognosis of patients were statistically analyzed.
     In this study, we explored the regulation of CD147 in HCC. The expression of CD147 was significant higher in HCC tissues than adjacent normal liver tissues. Over 80% of the HCC tissues expressed differential high levels of CD147. Then, we cloned the 5 -flanking region of human CD147 gene and identified a critical promoter region at -108 to -42 which contained one binding site for Sp1 (+1 as relative to the translation start site), which was essential in upregulating CD147 promoter activity. EMSA and ChIP assays demonstrated that Sp1 could bind to the CD147 promoter. These results were proven by blocking Sp1 using RNAi or mithramycin A treatment and upregulating Sp1 using transfection with eukaryotic expression vector. Significantly higher expression of CD147 and significantly lower promoter methylation level were observed in HCC cell lines compared to normal cell lines. Demethylation with 5-Aza-2 -deoxycytidine led to increased CD147 expression through enhancing Sp1 binding affinity and in vitro methylation of CD147 promoter reduced its transcriptional activity. CD147 promoter methylation level in HCC tissues (22.22%) was lower than that in ANT tissues (46.30%; P<0.05). Within HCC tissues, a significant inverse correlation was observed between CD147 expression and methylation level (r = -0.615). Moreover, HCC patients with unmethylated CD147 promoter had a significantly higher recurrence rate (88.1% vs. 58.3%; P<0.05) and death rate (83.3% vs. 50.0%; P <0.05) than patients with methylated CD147 promoter.
     In conclusion, our results suggest that Sp1 is essential for regulating the CD147 gene expression. We demonstrated methylation indeed presented in CpG island of CD147 promoter and regulated transcription of CD147. Promoter hypomethylation upregulates CD147 expression primarily through increasing Sp1 binding and associates with poor prognosis in HCC patients. These conclusions could help us improve our understanding the molecule machanism of HCC. Detecting the methylation state of CD147 promoter could be used for diagnosis and prognosis. Furthermore, intervening the methylation state of CD147 may become a new strategy for cancer therapy.
引文
[1]孔令敏, CD147启动子CpG岛甲基化的初步研究.第四军医大学硕士学位论文, 2007.
    [2] Biswas, C., Y. Zhang, R. DeCastro, H. Guo, T. Nakamura, H. Kataoka, et al., The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res, 1995. 55(2): p. 434-9.
    [3] Tang, W., S.B. Chang, and M.E. Hemler, Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell, 2004. 15(9): p. 4043-50.
    [4] Tang, W. and M.E. Hemler, Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem, 2004. 279(12): p. 11112-8.
    [5] Jia, L., H. Zhou, S. Wang, J. Cao, W. Wei, and J. Zhang, Deglycosylation of CD147 down-regulates Matrix Metalloproteinase-11 expression and the adhesive capability of murine hepatocarcinoma cell HcaF in vitro. IUBMB Life, 2006. 58(4): p. 209-16.
    [6] Guo, H., G. Majmudar, T.C. Jensen, C. Biswas, B.P. Toole, and M.K. Gordon, Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene, 1998. 220(1-2): p. 99-108.
    [7] Liang, L., T. Major, and T. Bocan, Characterization of the promoter of human extracellular matrix metalloproteinase inducer (EMMPRIN). Gene, 2002. 282(1-2): p. 75-86.
    [8] Massova, I., L.P. Kotra, R. Fridman, and S. Mobashery, Matrix metalloproteinases: structures, evolution, and diversification. FASEB J,1998. 12(12): p. 1075-95.
    [9] Huet, E., E.E. Gabison, S. Mourah, and S. Menashi, Role of emmprin/CD147 in tissue remodeling. Connect Tissue Res, 2008. 49(3): p. 175-9.
    [10] Quemener, C., E.E. Gabison, B. Naimi, G. Lescaille, F. Bougatef, M.P. Podgorniak, et al., Extracellular matrix metalloproteinase inducer up-regulates the urokinase-type plasminogen activator system promoting tumor cell invasion. Cancer Res, 2007. 67(1): p. 9-15.
    [11] Huet, E., E. Gabison, S. Mourah, and S. Menashi, Role of Emmprin/CD147 in Tissue Remodeling. Connective tissue research, 2008. 49(3-4): p. 175-179.
    [12] Huet, E., B. Vallee, D. Szul, F. Verrecchia, S. Mourah, J. Jester, et al., Extracellular matrix metalloproteinase inducer/CD147 promotes myofibroblast differentiation by inducing {alpha}-smooth muscle actin expression and collagen gel contraction: implications in tissue remodeling. The FASEB Journal, 2008. 22(4): p. 1144.
    [13] Kuno, N., K. Kadomatsu, Q.W. Fan, M. Hagihara, T. Senda, S. Mizutani, et al., Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett, 1998. 425(2): p. 191-4.
    [14] Saxena, D.K., T. Oh-Oka, K. Kadomatsu, T. Muramatsu, and K. Toshimori, Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice. Reproduction, 2002. 123(3): p. 435-44.
    [15] Chen, L., M. Nakai, R.J. Belton, Jr., and R.A. Nowak, Expression ofextracellular matrix metalloproteinase inducer and matrix metalloproteinases during mouse embryonic development. Reproduction, 2007. 133(2): p. 405-14.
    [16] Igakura, T., K. Kadomatsu, T. Kaname, H. Muramatsu, Q.W. Fan, T. Miyauchi, et al., A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol, 1998. 194(2): p. 152-65.
    [17] Fan, Q.W., K. Kadomatsu, K. Uchimura, and T. Muramatsu, Embigin/basigin subgroup of the immunoglobulin superfamily: different modes of expression during mouse embryogenesis and correlated expression with carbohydrate antigenic markers. Dev Growth Differ, 1998. 40(3): p. 277-86.
    [18] Huang, R.P., M. Ozawa, K. Kadomatsu, and T. Muramatsu, Embigin, a member of the immunoglobulin superfamily expressed in embryonic cells, enhances cell-substratum adhesion. Dev Biol, 1993. 155(2): p. 307-14.
    [19] Kirk, P., M.C. Wilson, C. Heddle, M.H. Brown, A.N. Barclay, and A.P. Halestrap, CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J, 2000. 19(15): p. 3896-904.
    [20] Wilson, M.C., D. Meredith, and A.P. Halestrap, Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem, 2002. 277(5): p. 3666-72.
    [21] Guo, H., R. Li, S. Zucker, and B.P. Toole, EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase tothe tumor cell surface. Cancer Res, 2000. 60(4): p. 888-91.
    [22] Kanekura, T., X. Chen, and T. Kanzaki, Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer, 2002. 99(4): p. 520-8.
    [23] Reimers, N., K. Zafrakas, V. Assmann, C. Egen, L. Riethdorf, S. Riethdorf, et al., Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res, 2004. 10(10): p. 3422-8.
    [24] Ishibashi, Y., T. Matsumoto, M. Niwa, Y. Suzuki, N. Omura, N. Hanyu, et al., CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. Cancer, 2004. 101(9): p. 1994-2000.
    [25] Zheng, H.C., H. Takahashi, Y. Murai, Z.G. Cui, K. Nomoto, S. Miwa, et al., Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma: a good marker for local invasion and prognosis. Br J Cancer, 2006. 95(10): p. 1371-8.
    [26] Yang, J.M., Z. Xu, H. Wu, H. Zhu, X. Wu, and W.N. Hait, Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol Cancer Res, 2003. 1(6): p. 420-7.
    [27] Tang, Y., P. Kesavan, M.T. Nakada, and L. Yan, Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res, 2004. 2(2): p. 73-80.
    [28] Tang, Y., M.T. Nakada, P. Rafferty, J. Laraio, F.L. McCabe, H. Millar, et al.,Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res, 2006. 4(6): p. 371-7.
    [29] Yang, J.M., P. O'Neill, W. Jin, R. Foty, D.J. Medina, Z. Xu, et al., Extracellular matrix metalloproteinase inducer (CD147) confers resistance of breast cancer cells to Anoikis through inhibition of Bim. J Biol Chem, 2006. 281(14): p. 9719-27.
    [30] Li, Y., J. Xu, L. Chen, W.D. Zhong, Z. Zhang, L. Mi, et al., HAb18G (CD147), a cancer-associated biomarker and its role in cancer detection. Histopathology, 2009. 54(6): p. 677-87.
    [31] Muraoka, K., K. Nabeshima, T. Murayama, C. Biswas, and M. Koono, Enhanced expression of a tumor-cell-derived collagenase-stimulatory factor in urothelial carcinoma: its usefulness as a tumor marker for bladder cancers. Int J Cancer, 1993. 55(1): p. 19-26.
    [32] Xu, J., Z.Y. Shen, X.G. Chen, Q. Zhang, H.J. Bian, P. Zhu, et al., A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology, 2007. 45(2): p. 269-76.
    [33] Lewin., B., GenesⅧ. 2000.
    [34] Carmo-Fonseca, M., The contribution of nuclear compartmentalization to gene regulation. Cell, 2002. 108(4): p. 513-21.
    [35]章成,史冬燕,曾黎琼,程在全,真核生物转录调控的研究进展.云南农业大学学报, 2007. 22(164-176).
    [36]刘德培,查锡良,药立波,医学分子生物学. 2006.
    [37] Dever, T.E., Gene-specific regulation by general translation factors. Cell, 2002. 108(4): p. 545-56.
    [38] Emerson, B.M., Specificity of gene regulation. Cell, 2002. 109(3): p.267-70.
    [39] Briggs, M.R., J.T. Kadonaga, S.P. Bell, and R. Tjian, Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science, 1986. 234(4772): p. 47-52.
    [40] Caraglia, M., M. Marra, G. Pelaia, R. Maselli, M. Caputi, S.A. Marsico, et al., Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol, 2005. 202(2): p. 323-35.
    [41] Yu, B., P.K. Datta, and S. Bagchi, Stability of the Sp3-DNA complex is promoter-specific: Sp3 efficiently competes with Sp1 for binding to promoters containing multiple Sp-sites. Nucleic Acids Res, 2003. 31(18): p. 5368-76.
    [42] Safe, S. and M. Abdelrahim, Sp transcription factor family and its role in cancer. Eur J Cancer, 2005. 41(16): p. 2438-48.
    [43] Dynan, W.S. and R. Tjian, The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 1983. 35(1): p. 79-87.
    [44] Courey, A.J., D.A. Holtzman, S.P. Jackson, and R. Tjian, Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell, 1989. 59(5): p. 827-36.
    [45] Husmann, M., Y. Dragneva, E. Romahn, and P. Jehnichen, Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation. Biochem J, 2000. 352 Pt 3: p. 763-72.
    [46] Tang, S., B. Bhatia, J. Zhou, C.J. Maldonado, D. Chandra, E. Kim, et al., Evidence that Sp1 positively and Sp3 negatively regulate and androgen does not directly regulate functional tumor suppressor 15-lipoxygenase 2(15-LOX2) gene expression in normal human prostate epithelial cells. Oncogene, 2004. 23(41): p. 6942-53.
    [47] Safe, S. and K. Kim, Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol, 2004. 77: p. 1-36.
    [48]薛丽香,翁默,吴军峰,张宗玉,童坦君, Sp1和Sp3介导的转录调控.中国生物化学与分子生物学报, 2006. 22(2): p. 106-110.
    [49] Taatjes, D.J. and R. Tjian, Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex. Mol Cell, 2004. 14(5): p. 675-83.
    [50] Gill, G. and R. Tjian, Eukaryotic coactivators associated with the TATA box binding protein. Curr Opin Genet Dev, 1992. 2(2): p. 236-42.
    [51] Hernandez, N., TBP, a universal eukaryotic transcription factor? Genes Dev, 1993. 7(7B): p. 1291-308.
    [52] Ryu, S. and R. Tjian, Purification of transcription cofactor complex CRSP. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7137-42.
    [53] Taatjes, D.J., A.M. Naar, F. Andel, 3rd, E. Nogales, and R. Tjian, Structure, function, and activator-induced conformations of the CRSP coactivator. Science, 2002. 295(5557): p. 1058-62.
    [54] Ryu, S., S. Zhou, A.G. Ladurner, and R. Tjian, The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature, 1999. 397(6718): p. 446-50.
    [55] Pore, N., S. Liu, H.K. Shu, B. Li, D. Haas-Kogan, D. Stokoe, et al., Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell, 2004. 15(11): p. 4841-53.
    [56] Milanini-Mongiat, J., J. Pouyssegur, and G. Pages, Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem, 2002. 277(23): p. 20631-9.
    [57] Fojas de Borja, P., N.K. Collins, P. Du, J. Azizkhan-Clifford, and M. Mudryj, Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J, 2001. 20(20): p. 5737-47.
    [58] Banchio, C., L.M. Schang, and D.E. Vance, Phosphorylation of Sp1 by cyclin-dependent kinase 2 modulates the role of Sp1 in CTP:phosphocholine cytidylyltransferase alpha regulation during the S phase of the cell cycle. J Biol Chem, 2004. 279(38): p. 40220-6.
    [59] Rafty, L.A. and L.M. Khachigian, Sp1 phosphorylation regulates inducible expression of platelet-derived growth factor B-chain gene via atypical protein kinase C-zeta. Nucleic Acids Res, 2001. 29(5): p. 1027-33.
    [60] Lee, T.H., H.C. Chang, L.Y. Chuang, and W.C. Hung, Involvement of PKA and Sp1 in the induction of p27(Kip1) by tamoxifen. Biochem Pharmacol, 2003. 66(3): p. 371-7.
    [61] Braun, H., R. Koop, A. Ertmer, S. Nacht, and G. Suske, Transcription factor Sp3 is regulated by acetylation. Nucleic Acids Res, 2001. 29(24): p. 4994-5000.
    [62] Huang, W., S. Zhao, S. Ammanamanchi, M. Brattain, K. Venkatasubbarao, and J.W. Freeman, Trichostatin A induces transforming growth factor beta type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J Biol Chem, 2005. 280(11): p. 10047-54.
    [63] Ammanamanchi, S., J.W. Freeman, and M.G. Brattain, Acetylated sp3 is a transcriptional activator. J Biol Chem, 2003. 278(37): p. 35775-80.
    [64] Yang, X., K. Su, M.D. Roos, Q. Chang, A.J. Paterson, and J.E. Kudlow, O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6611-6.
    [65] Darnell, J.E., Jr., Transcription factors as targets for cancer therapy. Nat Rev Cancer, 2002. 2(10): p. 740-9.
    [66] A., W.A.P.M.M., Epigenetics:regulation through repression. Science, 1999.
    [67] Wu, C. and J.R. Morris, Genes, genetics, and epigenetics: a correspondence. Science, 2001. 293(5532): p. 1103-5.
    [68] Bradbury, J., Human epigenome project--up and running. PLoS Biol, 2003. 1(3): p. E82.
    [69] El-Osta, A., The rise and fall of genomic methylation in cancer. Leukemia, 2004. 18(2): p. 233-7.
    [70] Jones, P.A. and P.W. Laird, Cancer epigenetics comes of age. Nature Genetics, 1999. 21(2): p. 163-167.
    [71] Reik, W., W. Dean, and J. Walter, Epigenetic reprogramming in mammalian development. Science, 2001. 293(5532): p. 1089-93.
    [72] Costello, J.F., M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson, X. Gao, et al., Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet, 2000. 24(2): p. 132-8.
    [73] Gaudet, F., J.G. Hodgson, A. Eden, L. Jackson-Grusby, J. Dausman, J.W. Gray, et al., Induction of tumors in mice by genomic hypomethylation. Science, 2003. 300(5618): p. 489-92.
    [74] Wilson, A.S., B.E. Power, and P.L. Molloy, DNA hypomethylation and human diseases. Biochim Biophys Acta, 2007. 1775(1): p. 138-62.
    [75] Ehrlich, M., DNA methylation in cancer: too much, but also too little. Oncogene, 2002. 21(35): p. 5400-13.
    [76] Yoon, B.J., H. Herman, A. Sikora, L.T. Smith, C. Plass, and P.D. Soloway, Regulation of DNA methylation of Rasgrf1. Nat Genet, 2002. 30(1): p. 92-6.
    [77] Ma, Y., S.B. Jacobs, L. Jackson-Grusby, M.A. Mastrangelo, J.A. Torres-Betancourt, R. Jaenisch, et al., DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J Cell Sci, 2005. 118(Pt 8): p. 1607-16.
    [78] Matsuzaki, K., G. Deng, H. Tanaka, S. Kakar, S. Miura, and Y.S. Kim, The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res, 2005. 11(24 Pt 1): p. 8564-9.
    [79] Kubicek, S., G. Schotta, M. Lachner, R. Sengupta, A. Kohlmaier, L. Perez-Burgos, et al., The role of histone modifications in epigenetic transitions during normal and perturbed development. Ernst Schering Res Found Workshop, 2006(57): p. 1-27.
    [80] Deng, G., A. Nguyen, H. Tanaka, K. Matsuzaki, I. Bell, K.R. Mehta, et al., Regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation in colorectal cancer. Int J Cancer, 2006. 118(12): p. 2999-3005.
    [81] Tryndyak, V.P., O. Kovalchuk, and I.P. Pogribny, Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2histone methyltransferase and methyl-binding proteins. Cancer Biol Ther, 2006. 5(1): p. 65-70.
    [82] Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): p. 415-28.
    [83] Eden, A., F. Gaudet, A. Waghmare, and R. Jaenisch, Chromosomal instability and tumors promoted by DNA hypomethylation. Science, 2003. 300(5618): p. 455.
    [84] Hoffmann, M.J. and W.A. Schulz, Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol, 2005. 83(3): p. 296-321.
    [85] Ehrlich, M., The controversial denouement of vertebrate DNA methylation research. Biochemistry (Mosc), 2005. 70(5): p. 568-75.
    [86] Tyagi, S. and F.R. Kramer, Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 1996. 14(3): p. 303-8.
    [87] Feinberg, A.P. and B. Vogelstein, Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun, 1983. 111(1): p. 47-54.
    [88] Feinberg, A.P. and B. Vogelstein, Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 1983. 301(5895): p. 89-92.
    [89] Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nat Rev Cancer, 2004. 4(2): p. 143-53.
    [90] Toyota, M., M. Ohe-Toyota, N. Ahuja, and J.P. Issa, Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A, 2000. 97(2): p. 710-5.
    [91] Baylin, S.B., DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2005. 2 Suppl 1: p. S4-11.
    [92] Galm, O., J.G. Herman, and S.B. Baylin, The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev, 2006. 20(1): p. 1-13.
    [93] Rocco, J.W. and D. Sidransky, p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res, 2001. 264(1): p. 42-55.
    [94] Nuovo, G.J., T.W. Plaia, S.A. Belinsky, S.B. Baylin, and J.G. Herman, In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12754-9.
    [95] Paz, M.F., M.F. Fraga, S. Avila, M. Guo, M. Pollan, J.G. Herman, et al., A systematic profile of DNA methylation in human cancer cell lines. Cancer Res, 2003. 63(5): p. 1114-21.
    [96] Huang, T.H., M.R. Perry, and D.E. Laux, Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 1999. 8(3): p. 459-70.
    [97] Shi, H., S. Maier, I. Nimmrich, P.S. Yan, C.W. Caldwell, A. Olek, et al., Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem, 2003. 88(1): p. 138-43.
    [98] Yan, P.S., M.R. Perry, D.E. Laux, A.L. Asare, C.W. Caldwell, and T.H. Huang, CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin Cancer Res, 2000. 6(4): p. 1432-8.
    [99] Palmisano, W.A., K.K. Divine, G. Saccomanno, F.D. Gilliland, S.B. Baylin, J.G. Herman, et al., Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res, 2000. 60(21): p. 5954-8.
    [100] Herman, J.G., J.R. Graff, S. Myohanen, B.D. Nelkin, and S.B. Baylin,Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9821-6.
    [101] Yan, L., Y. Han, J. Wang, J. Liu, L. Hong, and D. Fan, Peripheral blood monocytes from patients with HBV related decompensated liver cirrhosis can differentiate into functional hepatocytes. Am J Hematol, 2007. 82(11): p. 949-54.
    [102] Huang, R., Z. Xing, Z. Luan, T. Wu, X. Wu, and G. Hu, A specific splicing variant of SVH, a novel human armadillo repeat protein, is up-regulated in hepatocellular carcinomas. Cancer Res, 2003. 63(13): p. 3775-82.
    [103] Lu, B., Y. Ma, G. Wu, X. Tong, H. Guo, A. Liang, et al., Methylation of Tip30 promoter is associated with poor prognosis in human hepatocellular carcinoma. Clin Cancer Res, 2008. 14(22): p. 7405-12.
    [104] Lou, C.Y., Y.M. Feng, A.R. Qian, Y. Li, H. Tang, P. Shang, et al., Establishment and characterization of human hepatocellular carcinoma cell line FHCC-98. World J Gastroenterol, 2004. 10(10): p. 1462-5.
    [105] Chang-Hong Shi, Y.S., Xin-You Shi, De-Sheng Zhu, Liu-Jin Li, Establishment of a human hepatocyte carcinoma cell line HCC-9724 and its biological properties. Journal of the Fourth Military Medical University, 2000. 21(6): p. 92-95.
    [106] Chen, Z.N., [Significance and application of anti-malignant hepatoma MAb HAb18 in radioimmunal diagnosis of human hepatocellular carcinoma]. Zhonghua Zhong Liu Za Zhi, 1992. 14(1): p. 9-12.
    [107]洪媛,题目一:GKLF与食管癌分化的关系及其对分化相关基因Keratin 13的调控研究题目二:P53和MDM2基因多态与食管癌遗传易感性.中国协和医科大学博士学位论文, 2007.
    [108] Tsai, W.C., Y.C. Chao, W.H. Lee, A. Chen, L.F. Sheu, and J.S. Jin, Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology, 2006. 49(4): p. 388-95.
    [109] Riethdorf, S., N. Reimers, V. Assmann, J.W. Kornfeld, L. Terracciano, G. Sauter, et al., High incidence of EMMPRIN expression in human tumors. Int J Cancer, 2006. 119(8): p. 1800-10.
    [110]张征, microRNA介导HAb18G/CD147分子转录后调控及其机制.第四军医大学博士学位论文, 2009.
    [111] Xu, H.Y., A.R. Qian, P. Shang, J. Xu, L.M. Kong, H.J. Bian, et al., siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett, 2007. 247(2): p. 336-44.
    [112] Xu, J., H.Y. Xu, Q. Zhang, F. Song, J.L. Jiang, X.M. Yang, et al., HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res, 2007. 5(6): p. 605-14.
    [113] Li, Y., P. Shang, A.R. Qian, L. Wang, Y. Yang, and Z.N. Chen, Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro. World J Gastroenterol, 2003. 9(10): p. 2174-7.
    [114] Jiang, J.L., Q. Zhou, M.K. Yu, L.S. Ho, Z.N. Chen, and H.C. Chan, The involvement of HAb18G/CD147 in regulation of store-operated calcium entry and metastasis of human hepatoma cells. J Biol Chem, 2001. 276(50): p. 46870-7.
    [115] Chung, C.T., S.L. Niemela, and R.H. Miller, One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells inthe same solution. Proc Natl Acad Sci U S A, 1989. 86(7): p. 2172-5.
    [116] Koga, T., M. Suico, H. Nakamura, M. Taura, Z. Lu, T. Shuto, et al., Sp1-dependent regulation of Myeloid Elf-1 like factor in human epithelial cells. FEBS letters, 2005. 579(13): p. 2811-2816.
    [117] Ema, M., S. Taya, N. Yokotani, K. Sogawa, Y. Matsuda, and Y. Fujii-Kuriyama, A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4273-8.
    [118] Price, S.J., D.R. Greaves, and H. Watkins, Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem, 2001. 276(10): p. 7549-58.
    [119] Ibanez-Tallon, I., C. Ferrai, E. Longobardi, I. Facetti, F. Blasi, and M.P. Crippa, Binding of Sp1 to the proximal promoter links constitutive expression of the human uPA gene and invasive potential of PC3 cells. Blood, 2002. 100(9): p. 3325-32.
    [120] Valouev, A., D. Johnson, A. Sundquist, C. Medina, E. Anton, S. Batzoglou, et al., Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature methods, 2008. 5(9): p. 829-834.
    [121] Chen, T., Y.L. Zhang, Y. Jiang, S.Z. Liu, H. Schatten, D.Y. Chen, et al., The DNA methylation events in normal and cloned rabbit embryos. FEBS Lett, 2004. 578(1-2): p. 69-72.
    [122] Ioshikhes, I.P. and M.Q. Zhang, Large-scale human promoter mapping using CpG islands. Nat Genet, 2000. 26(1): p. 61-3.
    [123] Esteller, M., Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol, 2005. 45: p. 629-56.
    [124] Luczak, M.W. and P.P. Jagodzinski, The role of DNA methylation in cancer development. Folia Histochem Cytobiol, 2006. 44(3): p. 143-54.
    [125] Baylin, S.B. and J.E. Ohm, Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer, 2006. 6(2): p. 107-16.
    [126] Li, D., L. Da, H. Tang, T. Li, and M. Zhao, CpG methylation plays a vital role in determining tissue- and cell-specific expression of the human cell-death-inducing DFF45-like effector A gene through the regulation of Sp1/Sp3 binding. Nucleic Acids Res, 2008. 36(1): p. 330-41.
    [127] Liedtke, C., N.H. Zschemisch, A. Cohrs, T. Roskams, J. Borlak, M.P. Manns, et al., Silencing of caspase-8 in murine hepatocellular carcinomas is mediated via methylation of an essential promoter element. Gastroenterology, 2005. 129(5): p. 1602-15.
    [128] Zhu, W.G., K. Srinivasan, Z. Dai, W. Duan, L.J. Druhan, H. Ding, et al., Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol, 2003. 23(12): p. 4056-65.
    [129] Wong, I.H., J. Zhang, P.B. Lai, W.Y. Lau, and Y.M. Lo, Quantitative analysis of tumor-derived methylated p16INK4a sequences in plasma, serum, and blood cells of hepatocellular carcinoma patients. Clin Cancer Res, 2003. 9(3): p. 1047-52.
    [130] Esteller, M., Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol, 2003. 109(1): p. 80-8.
    [131] Lin, C.H., S.Y. Hsieh, I.S. Sheen, W.C. Lee, T.C. Chen, W.C. Shyu, et al.,Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res, 2001. 61(10): p. 4238-43.
    [132] Fang, J.Y., S.S. Zhu, S.D. Xiao, S.J. Jiang, Y. Shi, X.Y. Chen, et al., Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol, 1996. 11(11): p. 1079-82.
    [133] Qiu, G., J. Fang, and Y. He, 5' CpG island methylation analysis identifies the MAGE-A1 and MAGE-A3 genes as potential markers of HCC. Clin Biochem, 2006. 39(3): p. 259-66.
    [134] Tang, S.H., D.H. Yang, W. Huang, H.K. Zhou, X.H. Lu, and G. Ye, Hypomethylated P4 promoter induces expression of the insulin-like growth factor-II gene in hepatocellular carcinoma in a Chinese population. Clin Cancer Res, 2006. 12(14 Pt 1): p. 4171-7.
    [135] Okada, H., M.T. Kimura, D. Tan, K. Fujiwara, J. Igarashi, M. Makuuchi, et al., Frequent trefoil factor 3 (TFF3) overexpression and promoter hypomethylation in mouse and human hepatocellular carcinomas. Int J Oncol, 2005. 26(2): p. 369-77.
    [136]张庆,肝癌靶向药物抗复发、转移治疗的实验及临床研究.第四军医大学博士学位论文, 2006.
    [137] Oka, H., A. Tamori, T. Kuroki, K. Kobayashi, and S. Yamamoto, Prospective study of alpha-fetoprotein in cirrhotic patients monitored for development of hepatocellular carcinoma. Hepatology, 1994. 19(1): p. 61-6.
    [138] Tilghman, S.M., The structure and regulation of the alpha-fetoprotein and albumin genes. Oxf Surv Eukaryot Genes, 1985. 2: p. 160-206.
    [139] Tilghman, S.M. and A. Belayew, Transcriptional control of the murinealbumin/alpha-fetoprotein locus during development. Proc Natl Acad Sci U S A, 1982. 79(17): p. 5254-7.
    [140] Yuan, P., L. Wang, D. Wei, J. Zhang, Z. Jia, Q. Li, et al., Therapeutic inhibition of Sp1 expression in growing tumors by mithramycin a correlates directly with potent antiangiogenic effects on human pancreatic cancer. Cancer, 2007. 110(12): p. 2682-90.
    [141] Laird, P.W., The power and the promise of DNA methylation markers. Nat Rev Cancer, 2003. 3(4): p. 253-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700