AMPK介导大鼠视皮质神经元兴奋依赖性PGC-1α和NRF-1表达及线粒体能量代谢调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     无论是发育过程中还是成年后的视皮质神经元,其结构、功能以及突触数量可随环境发生变化,具有经验依赖的可塑性(Experience- dependent Plasticity)。新近研究发现,神经元兴奋依赖性(Activity-dependent)调节和功能的可塑性与神经元能量代谢紧密偶联(Energy metabolic coupling),这被认为是神经元可塑性的核心环节。神经元兴奋性(Neuronal activity)高度依赖于线粒体氧化磷酸化(Oxdatve phosphorylation system, OXPHOS)产生的三磷酸腺苷(Adenosine triphosphate, ATP)。线粒体功能障碍(Mitochodrial dysfunction)可能是视觉剥夺导致视皮质神经元功能抑制的关键因素。但是,迄今对视皮质神经元兴奋能量偶联的信号机制尚不明确。
     核呼吸因子(Nuclear respiratory factors, NRFs)是调节线粒体氧化磷酸化和线粒体再生的重要转录因子,通过直接转录调控细胞核DNA(nDNA)编码的呼吸酶链亚单位基因,并通过线粒体转录因子A和B(mtTFA, mtTFB)间接调控线粒体DNA(mtDNA)编码的呼吸酶链亚单位基因,行使其对线粒体呼吸转录调节。我们以往研究发现,核呼吸因子1 (NRF-1)和2 (NRF-2)参与了视皮质神经元线粒体能量代谢调控的偶联过程,其转录和蛋白表达水平与神经元兴奋性呈正相关,且与细胞色素氧化酶(Cytochrome c oxidase, COX)活性是一致的。另一方面,PGC-1α,即过氧化物酶体增生物激活受体γ(Peroxisome proliferators-activated receptor gamma,PPARγ)共激活因子1α(PPARγcoactivator-1-α, PGC-1α),作为重要的转录共激活因子,是线粒体生物合成过程的关键分子。有研究表明,PGC-1α对NRFs的基因表达具有强大的诱导作用,可通过NRFs调节OXPHOS成分的协同表达。因此,PGC-1α能促进NRFs的基因转录,从而协调机体在不同能量供需状态时的线粒体呼吸链功能。然而,视皮质神经元兴奋能量偶联过程中PGC-1α和NRFs的信号调控机制亟待深入。
     来自动物试验以及临床观察的证据均表明,一磷酸腺苷激活的蛋白激酶(AMP-activated protein kinase, AMPK)被认为是神经系统中调节能量平衡微环境的关键感应及效应分子,但AMPK在视皮质神经元中的作用尚未报道。AMPK是调控线粒体功能,调节细胞能量代谢的关键分子,与PGC-1α关系密切;另有证据显示,AMPK可能是NRFs信号传导通路中重要的上游激活分子。因此,AMPK信号通路可能是视皮质神经元兴奋能量偶联的关键信号途径。
     本课题拟通过对视神经元兴奋依赖性体内和体外动物模型的研究,采用细胞及分子生物学方法,探讨AMPK,PGC-1α和NRFs信号在视皮质神经元兴奋能量偶联中的作用机制。旨在为阐明AMPK调控下游靶分子参与视觉系统可塑性的信号转导机制提供一些有意义的实验依据,以期通过AMPK-NRFs通路为靶点进行基因治疗从而调节视皮质神经元细胞功能,为弱视及其它神经发育功能不良(全)性疾病的防治提供思路。
     研究目的
     本研究的目标是通过在体和离体实验研究,明确内源性AMPK,PGC-1α和NRF-1在视皮质神经元兴奋依赖性转录调节与能量偶联中的作用机制。包括:
     1.观察视皮质神经元兴奋与线粒体功能之间的关系,明确视皮质神经元的兴奋能量偶联,分析AMPK, PGC-1α和NRF-1在偶联中的作用。
     2.证明视觉剥夺引起的视皮质神经元损害是由于内源性AMPK,PGC-1α和NRFs系统活性下降进而导致线粒体氧化磷酸化功能下降所致。
     3.通过在体实验研究,明确能否通过调节AMPK的活性保护视觉剥夺后线粒体的功能,改善视皮质神经元的能量代谢状态。
     实验结果
     1.体外培养大鼠视皮质神经元,采用KCl诱导神经元去极化兴奋,可兴奋依赖性上调神经元PGC-1α,NRF-1及mtTFA的mRNA和蛋白表达水平;并且,同时增强线粒体产生ATP的能力。
     2.视皮质神经元兴奋显著提高细胞内AMPK及其下游激酶ACC的磷酸化水平,提示神经元兴奋可以激活AMPK激酶活性。
     3.另一方面,AMPK抑制剂Compound C可以有效阻断视皮质神经元兴奋依赖性的PGC-1α,NRF-1,mtTFA的表达水平以及ATP含量。
     4.与之对应,AMPK的激动剂,白藜芦醇(Resveratrol)或AICAR,可显著增加视皮质神经元内ATP水平,并上调PGC-1α,NRF-1,mtTFA的表达水平。该作用可被Compound C所阻断。
     5.采用大鼠单眼视觉剥夺(Monocular deprivation, MD)在体模型研究发现,视觉剥夺显著损害对应的视皮质神经元:导致神经元线粒体肿胀,数量减少;神经元内ATP水平显著降低。
     6.定量检测发现,视觉剥夺显著抑制了对应的视皮质神经元AMPK的激酶活性和磷酸化水平;PGC-1α和NRF-1的表达水平也随之降低。
     7.更为重要的是,在体给予Resveratrol治疗显著增加神经元线粒体数量,改善线粒体形态;增加神经元内ATP水平;激活AMPK活性,上调PGC-1α和NRF-1的表达,从而可以有效抑制视觉剥夺导致的视皮质神经元损害。
     结论
     1.视皮质神经元兴奋与能量调节紧密偶联,而AMPK是兴奋能量偶联的关键分子。
     2.AMPK介导视皮质神经元PGC-1α,NRF-1及其下游的mtTFA的兴奋依赖性转录调节。
     3.AMPK对PGC-1α,NRF-1的调控在神经元能量平衡中发挥关键作用,该信号通路功能失调可能是视觉剥夺导致的视皮质兴奋能量偶联障碍的重要分子机制之一。
     4.本研究首次发现,保护AMPK信号途径可以有效抑制视觉剥夺导致的视皮质神经元线粒体损害,改善视皮质神经元的能量应答,为临床防治弱视及其它相关病提供新的治疗靶点。
Background
     In development and adult visual cortical neurons, the mitochondrial number, functional capacity, and gene expression are dynamically regulated in accordance with energy demands, namely experience-dependent energy metabolic plasticity. Recent studies show that neuronal activity and functional plasticity are tightly coupled with energy metabolism (energy metabolic coupling). Approximately 90% of adenosine triphosphate (ATP) generated in the brain is synthesized in mitochondria via oxidative phosphorylation (OXPHOS). Thus, brain critically depends upon mitochondrial function and oxygen supply to support its immense energetic demand. However, the signaling mechanisms that couple neuronal activity to energy metabolism are entirely unknown.
     Nuclear respiratory factors (NRFs), including NRF-1 and NRF-2, are found to act on a number of nuclear genes required for mitochondrial respiratory function. Our previously studies suggest that both NRF-1 and NRF-2 regulate a number of genes required for mitochondrial energy metabolic coupling. The transcription and protein expression of NRF-1 and NRF-2 in visual cortical neurons are positively correlated with neuronal excitability, and consistent with the cytochrome oxidase (COX) activity. Peroxisome proliferator-activated receptorγcoactivator-1-α(PGC-1α), on the other hand, as inducible coregulators of nuclear receptors in the control of cellular energy metabolic pathways, has been adequately represented as a master regulator of mitochondrial biogenesis. PGC-1αhas been shown to coactivate NRFs, which are associated with increased COX activity. Nevertheless, the functional significance of neuronal activity-dependent regulation of PGC-1αand NRFs expression in visual cortical neurons, the signaling pathways that couple neuronal activity to energy metabolism are entirely unknown.
     AMP-activated protein kinase (AMPK), a metabolic gauge regulating whole-body energy homeostasis, has been reported to regulate mitochondrial biogenesis by sensing the energy state in the cells. Several lines of evidences show that AMPK is a putative upstream activator of NRFs signal transduction pathway. However, the signaling pathway that couples neuronal activity to mitochondrial energy metabolism, particularly whether AMPK mediates activity-dependent regulation of PGC-1αand NRFs for mitochondrial biogenesis and function, has not been examined in visual cortical neurons.
     Aim
     The goal of this study was to test our hypothesis that AMPK might be an important mediator of neuronal activity to stimulate mitochondrial biogenesis and function by regulating PGC-1αand NRF-1 gene expression in visual cortical neurons; if so, to detection the functional consequences of these activity-dependent mitochondrial transcriptional regulation. Our study also aims to provide experimental evidences for the treatment of neuronal mitochondrial dysregulation and other related neurodevelopmental dysfunction disease by modulation of AMPK signaling.
     Results
     1. Membrane depolarization with 25 mmol/L KCl significantly increases PGC-1α, NRF-1 and mtTFA mRNA and protein level with increased ATP production in primary visual cortical neurons.
     2. KCl depolarization rapidly increases AMPK phosphorylation in cultured primary visual cortical neurons.
     3. AMPK inhibition by Compound C, an AMPK inhibitor, completely represses KCl depolarization-induced up-regulation of PGC-1α, NRF-1 and mtTFA mRNA and AMPK ?phosphorylation as well as cellular ATP content.
     4. AMPK activation by AICAR or resveratrol also markedly increases PGC-1αand NRF-1 mRNA levels as well as cellular ATP content in neuron cultures. All these effects can be completely blocked by an AMPK inhibitor, Compound C.
     5. Reduction of neuronal activity by one week of MD significantly decreases AMPK phosphorylation and activity, dramatically down-regulates PGC-1αand NRF-1 expression in deprived primary visual cortex.
     6. Administration of resveratrol in vivo significantly activates AMPK activity and attenuates the effects of MD on mitochondria by significant increase in PGC-1αand NRF-1 levels mitochondria amount, and coupled respiration.
     Conclusions
     1. Neuronal activity has a major impact on AMPK signaling, which mediates activity-dependent regulation of mitochondrial energy metabolism by regulating coactivator PGC-1αand its downstream transcription factor NRF-1 and mtTFA in visual cortical neurons.
     2. We demonstrated for the first time that pharmacologic interventions, such as resveratrol, that restore AMPK activity in the functional inactivation visual cortices may be a novel means to rescue mitochondrial dysfunction caused by visual deprivation.
     3. This study provides additional insight into AMPK pathophysiology in the brain, and highlights the importance of AMPK- PGC-1α- NRF-1 networks in activity-dependent regulation of mitochondrial energy metabolism in neurons, which could potentially lead to novel therapeutic targets for the amelioration of neuronal mitochondrial dysfunction and its related disease.
引文
[1] Martini L, Melcangi RC. The brain: a vulnerable target. Experimental gerontology 1997;32:355-362.
    [2] Amiel SA. Organ fuel selection: brain. Proc Nutr Soc 1995;54:151-155.
    [3] Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW. Effect of Ischemia on Known Substrates and Cofactors of the Glycolytic Pathway in Brain. J Biol Chem 1964;239:18-30.
    [4] Siesjo BK. Brain Energy Metabolism. Wiley, New York, 1978.
    [5] Magistretti PJ. Brain Energy Metabolism. In: John H. Byrne JLR, ed. From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. New York: Elsevier Science, 2004:67-90.
    [6] Silver I, Erecinska M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol 1998;454:7-16.
    [7] Erecinska M, Nelson D, Silver IA. Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). Biochim Biophys Acta 1996;1277:13-34.
    [8] Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 1999;286:1555-1558.
    [9] Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiological reviews 1997;77:731-758.
    [10] Dwyer DS, Vannucci SJ, Simpson IA. Expression, regulation, and functional role of glucose transporters (GLUTs) in brain. Int Rev Neurobiol 2002;51:159-188.
    [11] Cox D, Gonder-Frederick L, McCall A, Kovatchev B, Clarke W. The effects of glucose fluctuation on cognitive function and QOL: the functional costs of hypoglycaemia and hyperglycaemia among adults with type 1 or type 2 diabetes. International journal of clinical practice 2002:20-26.
    [12] Castro MA, Beltran FA, Brauchi S, Concha, II. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 2009;110:423-440.
    [13] Ames A, 3rd. CNS energy metabolism as related to function. Brain Res Brain Res Rev 2000;34:42-68.
    [14] Ames A, 3rd, Li YY. Energy requirements of glutamatergic pathways in rabbit retina. J Neurosci 1992;12:4234-4242.
    [15] Sokoloff L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1981;1:7-36.
    [16] Astrup J, Sorensen PM, Sorensen HR. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke; a journal of cerebral circulation 1981;12:726-730.
    [17] Ichinose T, Shields CR, Lukasiewicz PD. Sodium channels in transient retinal bipolar cellsenhance visual responses in ganglion cells. J Neurosci 2005;25:1856-1865.
    [18] Thompson I, Holt C. Effects of intraocular tetrodotoxin on the development of the retinocollicular pathway in the Syrian hamster. J Comp Neurol 1989;282:371-388.
    [19] Tropea D, Van Wart A, Sur M. Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 2009;364:341-355.
    [20] Karmarkar UR, Dan Y. Experience-dependent plasticity in adult visual cortex. Neuron 2006;52:577-585.
    [21] Berardi N, Pizzorusso T, Ratto GM, Maffei L. Molecular basis of plasticity in the visual cortex. Trends in neurosciences 2003;26:369-378.
    [22] Meyner EM. [Secondary cataract in aphakic children (author's transl)]. Klinische Monatsblatter fur Augenheilkunde 1980;176:922-932.
    [23] Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol 2000;10:138-145.
    [24] Wiesel TN, Hubel DH. Single-Cell Responses in Striate Cortex of Kittens Deprived of Vision in One Eye. J Neurophysiol 1963;26:1003-1017.
    [25] Kreczko A, Goel A, Song L, Lee HK. Visual deprivation decreases somatic GAD65 puncta number on layer 2/3 pyramidal neurons in mouse visual cortex. Neural plasticity 2009;2009:415135.
    [26] Vargas CD, Sousa AO, Santos CM, Pereira A, Jr., Bernardes RF, Rocha-Miranda CE, et al. Metabolic changes in the nucleus of the optic tract after monocular enucleation as revealed by cytochrome oxidase histochemistry. J Neurocytol 2001;30:219-230.
    [27] Wong-Riley MT. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 1989;12:94-101.
    [28] Majdan M, Shatz CJ. Effects of visual experience on activity-dependent gene regulation in cortex. Nat Neurosci 2006;9:650-659.
    [29] Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ, Blumenfeld H, et al. Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci U S A 2007;104:20546-20551.
    [30] Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci U S A 2002;99:10765-10770.
    [31] Asin-Cayuela J, Gustafsson CM. Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci 2007;32:111-117.
    [32] Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007;292:C641-657.
    [33] Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proceedings of the National Academy ofSciences of the United States of America 1994;91:1309-1313.
    [34] Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. Journal of cellular biochemistry 2006;97:673-683.
    [35] Scarpulla RC. Nuclear control of respiratory chain expression in mammalian cells. Journal of bioenergetics and biomembranes 1997;29:109-119.
    [36] Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002;286:81-89.
    [37] Huo L, Scarpulla RC. Multiple 5'-untranslated exons in the nuclear respiratory factor 1 gene span 47 kb and contribute to transcript heterogeneity and translational efficiency. Gene 1999;233:213-224.
    [38] Piantadosi CA, Suliman HB. Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1 (Santa Cruz, NRF-1 antibody) J Biol Chem 2006;281:324-333.
    [39] Ongwijitwat S, Wong-Riley MT. Functional analysis of the rat cytochrome c oxidase subunit 6A1 promoter in primary neurons. Gene 2004;337:163-171.
    [40] Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et biophysica acta 2002;1576:1-14.
    [41] Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001;281:E1340-1346.
    [42] Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature genetics 1998;18:231-236.
    [43] Kotake K, Nonami T, Kurokawa T, Nakao A, Murakami T, Shimomura Y. Effects of chronic liver diseases on mitochondrial DNA transcription and replication in human liver. Life sciences 1999;65:557-563.
    [44] Xia Y, Buja LM, McMillin JB. Activation of the cytochrome c gene by electrical stimulation in neonatal rat cardiac myocytes. Role of NRF-1 and c-Jun. The Journal of biological chemistry 1998;273:12593-12598.
    [45] Li B, Holloszy JO, Semenkovich CF. Respiratory uncoupling induces delta-aminolevulinate synthase expression through a nuclear respiratory factor-1-dependent mechanism in HeLa cells. The Journal of biological chemistry 1999;274:17534-17540.
    [46] Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological reviews 2008;88:611-638.
    [47] Joseph AM, Rungi AA, Robinson BH, Hood DA. Compensatory responses of protein import and transcription factor expression in mitochondrial DNA defects. Am J Physiol Cell Physiol 2004;286:C867-875.
    [48] Chinenov Y, Coombs C, Martin ME. Isolation of a bi-directional promoter directingexpression of the mouse GABPalpha and ATP synthase coupling factor 6 genes. Gene 2000;261:311-320.
    [49] Vallejo CG, Escriva H, Rodriguez-Pena A. Evidence of tissue-specific, post-transcriptional regulation of NRF-2 expression. Biochimie 2000;82:1129-1133.
    [50] McCulloch V, Seidel-Rogol BL, Shadel GS. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Molecular and cellular biology 2002;22:1116-1125.
    [51] Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 2006;374:39-49.
    [52] Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, et al. A common set of gene regulatory networks links metabolism and growth inhibition. Molecular cell 2004;16:399-411.
    [53] Morrish F, Giedt C, Hockenbery D. c-MYC apoptotic function is mediated by NRF-1 target genes. Genes & development 2003;17:240-255.
    [54] Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America 2006;103:11567-11572.
    [55] Yang ZF, Mott S, Rosmarin AG. The Ets transcription factor GABP is required for cell-cycle progression. Nature cell biology 2007;9:339-346.
    [56] Freyssenet D, DiCarlo M, Escobar P, Grey J, Schneider J, Hood DA. Zidovudine (AZT) induced alterations in mitochondrial biogenesis in rat striated muscles. Canadian journal of physiology and pharmacology 1999;77:29-35.
    [57] Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Molecular and cellular biology 2005;25:1354-1366.
    [58] Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes & development 1990;4:1023-1034.
    [59] Virbasius JV, Scarpulla RC. Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene. Molecular and cellular biology 1991;11:5631-5638.
    [60] Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. The Journal of clinical investigation 2006;116:615-622.
    [61] Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999;98:115-124.
    [62] Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem 2007;282:194-199.
    [63] Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 1998;17:3145-3156.
    [64] Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. The Biochemical journal 2000;346 Pt 3:659-669.
    [65] Woods A, Cheung PC, Smith FC, Davison MD, Scott J, Beri RK, et al. Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem 1996;271:10282-10290.
    [66] Fisslthaler B, Fleming I. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circulation research 2009;105:114-127.
    [67] You M, Rogers CQ. Adiponectin: a key adipokine in alcoholic fatty liver. Experimental biology and medicine (Maywood, NJ 2009;234:850-859.
    [68] Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 2009;297:E1247-1259.
    [69] Dzamko NL, Steinberg GR. AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta physiologica (Oxford, England) 2009;196:115-127.
    [70] Sanz P. AMP-activated protein kinase: structure and regulation. Current protein & peptide science 2008;9:478-492.
    [71] Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 2006;574:33-39.
    [72] Culmsee C, Monnig J, Kemp BE, Mattson MP. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 2001;17:45-58.
    [73] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America 2007;104:7217-7222.
    [74] Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America 2004;101:3329-3335.
    [75] Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. The Journal of clinical investigation 2007;117:2325-2336.
    [76] Lee M, Hwang JT, Lee HJ, Jung SN, Kang I, Chi SG, et al. AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem 2003;278:39653-39661.
    [77] Dyck JR, Kudo N, Barr AJ, Davies SP, Hardie DG, Lopaschuk GD. Phosphorylationcontrol of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5'-AMP activated protein kinase. Eur J Biochem 1999;262:184-190.
    [78] Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 2004;63:275-278.
    [79] Hoppeler H, Fluck M. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 2003;35:95-104.
    [80] Brooks DE, Kallberg ME, Cannon RL, Komaromy AM, Ollivier FJ, Malakhova OE, et al. Functional and structural analysis of the visual system in the rhesus monkey model of optic nerve head ischemia. Invest Ophthalmol Vis Sci 2004;45:1830-1840.
    [81] Feher J, Kovacs B, Kovacs I, Schvoller M, Corrado Balacco G. [Metabolic therapy for early treatment of age-related macular degeneration.]. Orv Hetil 2007;148:2259-2268.
    [82] Wong AM, Burkhalter A, Tychsen L. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys. J Aapos 2005;9:37-47.
    [83] Barron MJ, Griffiths P, Turnbull DM, Bates D, Nichols P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol 2004;88:286-290.
    [84] Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 2007;21:770-783.
    [85] Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998;92:829-839.
    [86] Liang HL, Wong-Riley MT. Activity-dependent regulation of nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferator-activated receptor gamma coactivator-1 in neurons. Neuroreport 2006;17:401-405.
    [87] Yang SJ, Liang HL, Wong-Riley MT. Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience 2006;141:1181-1192.
    [88] Yang SJ, Liang HL, Ning G, Wong-Riley MT. Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. The European journal of neuroscience 2004;19:1153-1162.
    [89] Lage R, Dieguez C, Vidal-Puig A, Lopez M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in molecular medicine 2008;14:539-549.
    [90] Wang W, Yang X, Kawai T, Lopez de Silanes I, Mazan-Mamczarz K, Chen P, et al. AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1: involvement in the nuclear import of RNA-binding protein HuR. The Journal of biological chemistry 2004;279:48376-48388.
    [91] Ma H, Li J, Gao F, Ren J. Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity ofethanol: role of protein phosphatase and forkhead transcription factor. Journal of the American College of Cardiology 2009;54:2187-2196.
    [92] Vaarmann A, Fortin D, Veksler V, Momken I, Ventura-Clapier R, Garnier A. Mitochondrial biogenesis in fast skeletal muscle of CK deficient mice. Biochim Biophys Acta 2008;1777:39-47.
    [93] Heynen AJ, Yoon BJ, Liu CH, Chung HJ, Huganir RL, Bear MF. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 2003;6:854-862.
    [94] Davies SP, Carling D, Hardie DG. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem 1989;186:123-128.
    [95] Cools G, Houtman AC, Spileers W, Van Kerschaver E, Casteels I. Literature review on preschool vision screening. Bulletin de la Societe belge d'ophtalmologie 2009:49-63.
    [96] Li T, Shotton K. Conventional occlusion versus pharmacologic penalization for amblyopia. Cochrane database of systematic reviews (Online) 2009:CD006460.
    [97] Mower AF, Liao DS, Nestler EJ, Neve RL, Ramoa AS. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity. J Neurosci 2002;22:2237-2245.
    [98] Lopez-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Experimental gerontology 2008;43:813-819.
    [99] Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 2009;159:993-1002.
    [100] Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, et al. Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 2009;1250:242-253.
    [101] Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006;127:1109-1122.
    [102] Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20:98-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700