方位各向异性介质AVO及弹性波阻抗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方位各向异性AVO理论是进行裂隙储层预测的重要理论基础。HTI介质中方位纵波AVO反射系数的提出后,一系列纵波检测裂隙,估算裂隙密度方法大量涌现出来。相对而言,方位各向异性介质转换波AVO的研究方面却发展缓慢,其主要原因就是因为没有明确简洁的转换波反射系数公式,这一点不仅大大限制了方位各向异性介质中转换波AVO研究,同时也影响了联合PP波进行联合反演,以及弹性波阻抗反演等一系列问题的深入开展。
     针对这个问题,本文引入常用的等效Thomsen各向异性参数对公式进行了推导,得到了更为简单实用的反射系数近似公式,并对新公式的AVO属性进行了研究。在此基础上,推导了PP波和PS波弹性波阻抗方程,把入射角和方位角引入弹性波阻抗公式,拓宽了弹性波阻抗的应用范围。
     岩石物理学基础研究是AVO技术中关键一环。它是各种地震数据准确转换成为岩性、物性、含油气性等有用的地质信息的桥梁,本文建立了Gassmann孔隙流体-HTI模型,分析了孔隙度、含气饱和度和各向异性参数变化对地层AVO的影响。
Fractured reservoirs are becoming more and more important in petrol exploration and development .To find fracture is main task in fracture formation .Identify and prediction of fracture and its developmental zone is meaningful to reservoir exploration and development .According to solid mechanics ,fracture strata is anisotropic media .For this reason ,the theory of anisotropy is the foundation of the theory of fracture .VTI and HTI model are the ideal anisotropic model . Horizontally transverse isotropic with the horizontal axis of symmetry (HTI) media is the simplest azimuthal anisotropic model used to describe realistic fractured reservoirs, which is one of the most effective model for studying seismic characterization of fractures .
     Recent advances show that it is therefore important to obtain fracture developmental zones , fracture strike and crack density from PP wave and PS converted wave seismic data .However ,the development of PS wave AVO analysis in azimuthal anisotropic media is slow. The main problem is lack of the simple and brief PS wave reflection coefficient equation .Still ,the most inversion of combined the PP wave and PS wave , and inversion of elastic impendence in anisotropic media are limited for this reason.
     Cherepanov and Nefedkina (2004)have derived the approximate linearized solution for PS wave reflection coefficient for the first time using assumption that elastic parameters contrast at separating interface and anisotropy are weak. But the parameters in the equation are not easy to use. In order to resolve this problem, the new approximate PS wave reflection coefficient has been obtained by the Thomsen anisotropic parameters. The simple relationship between the reflection amplitudes and anisotropic coefficients given here can be regarded as helpful rules of thumb in quickly evaluating the importance of anisotropy in a particular application.
     Then we discuss the effect of new reflection coefficient to three kind of gas sand AVO model .It is visible tools to identify the AVOⅢgas sand .The effect of three Thomsen parameters to PS wave reflection show that the effect of shear-wave splitting parameterγ(V) is strongest and the effect of anisotropy coefficientε(V) weakest in three parameters. And the effect of three parameters vary with azimuthal angle .The less of azimuthal angle ,the stronger of the effect .Based on the new approximation reflection coefficient in HTI media by the Thomsen anisotropic parameters, the attributes of AVO and characteristics of AVO background trends crossplotting of density ,S-wave velocity contrast and shear modulus have been described . It will be helpful to AVO interpretation in complicate condition.
     Petrophysics theory is the key of AVO technology .It is the bridge of well ,geology and seismic .we can get the geological information from the seismic data,such as lithological character ,physical property and hydrocarbon showing. Wherefore ,we introduce the Gassmann theory , postulation condition and the method of fluid substitution .Furthermore ,we study the effect of the porosity ,saturation and Thomsen anisotropic parameters to PS wave reflection coefficients in HTI-Isotropic pore reservoir model. The results show that the effect of porosity and anisotropic parameters is much stronger than that of saturation.And effect of porosity is a little stronger than that of anisotropic parameters.These conclusion are of significance in PS wave AVO analysis and elastic AVO theoretical investigation.
     Acoustic impedance (AI) will produce the ambiguity as the hydrocarbon indictor in the complicated reservoir .Using a simple linear formalism, Connolly (1999) introduced the concept of elastic impedance(EI) to allow investigating AVO anomalies at wide-angle regions of incidence. Because the resulting formula explicitly depends on medium parameters, the advantage of EI is often regarded as a rock attribute analogous to AI but for varying incidence angle ranges. Then S impedance(SEI) and PS impedance are obtained .This integration strategy is great helpful to the effect of AVO.
     Then ,the PP and PS wave elastic impendence in anisotropic media is derived for the first time in this paper. The advantage of new elastic impedance is that introduced the concept of elastic impedance(EI) to allow investigating AVO anomalies at wide-angle regions of incidence and azimuthal angle with the effect of anisotropic parameters .Then ,we can analysis the difference of elastic impedance with azimuthal angle and anisotropic parameters .Especially , we can study the variation of elastic impedance in 3D space .
     Furthermore , the effect of Thomsen anisotropic parameters to elastic impendence and fluid factor are described .On the basis of these results,we have obtained PP wave elastic impedance is sensitive to the variation of anisotropic parameters.on the contrast , PS wave elastic impedance is immunity to the anisotropic parameters.It has been carried out that variation of PP and PS wave elastic impedance to three kind of typical AVO model.Our previous work provide that new PP wave elastic impedance is only sensitive to AVOⅢ。New PS wave elastic impedance is sensitive to all of three typical AVO model.
引文
[1]孙鹏远,多属性AVO分析及弹性参数反演方法研究:[D]吉林大学博士学位论文,2004.
    [2]殷八斤,曾灏等, AVO技术的理论与实践:[M]石油工业出版社,1995.
    [3]孙月成,多相介质多波AVO正演模拟对比研究:[D]中国地质大学(北京)硕士学位论文,2006.
    [4] Helbig, K., Die Ausbreitung elastic wave in anisotropic media[J]: Geophysical Prospecting, 1956,4, 70–104.
    [5] Helbig, K., elastic wave in anisotropic media[J]: Gerlands Beitr¨age zur Geophysics, 1958,67, 177–211, 256–288.
    [6] Helbig, K., Refraction seismics with an anisotropic overburden[J]: A graphical method of interpretation, Geophysical Prospecting, 1964,12, 383–396.
    [7] Helbig, K., Discussion on“The reflection, refraction and diffraction of waves in media with elliptical velocity dependence”by F. K. Levin[J]: Geophysics, 1979,44, 987–990.
    [8] Helbig, K., Elliptical anisotropy—Its significance and meaning[J]: Geophysics, 1983,48, 825–832.
    [9] Helbig, K., Foundations of anisotropy for exploration seismics[C]: Pergamon Press.Justice, M. G., M. D,1994.
    [10] Hudson,J.A.A higher order approximation to the wave propagation contants for a cracked solid[J].Geophys.J.R.astr.Soc.,1986,87,265-274.
    [11] Hudson,J.A.Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophys.J.R.astr.Soc.,1981,64,133-150.
    [12] Crampin, S., Seismic wave propagation through a cracked solid:Polarization as a possible dilatancy diagnostic[J]: Geophysical Journal of the Royal Astronomical Society, 1978,53, 467–496.
    [13] Crampin, S., A review of wave motion in a anisotropic and cracked elastic media[J]: Wave Motion, 1981,3, 343–391.
    [14] Crampin, S., Shear-wave polarizations: A plea for three-component recording[C]: 53rd Annual International Meeting, SEG, Expanded Abstracts, 1983,425–428.
    [15] Crampin,S. Evaluation of anisotropy by shear-wave splitting[J]. Geophysics, 1985, 50: 142-152;
    [16] Crampin, S., Shear-wave polarizations: A plea for three-component recording, in S. Danbom and S. Domenico, eds., Shear-wave exploration[J]:SEG, Geophysical Developments 1, 1987,227–251.
    [17] Crampin, S.,, Calculable fluid-rock interactions[J]: Journal of the Geological Society, 1999,156, 501–514.
    [18] Crampin S. The New Geophysics:shear-wave splitting provides a window into the crack-critical rock mass[J]:The Leading Edge, 2003, (22) :536-549 .
    [19] Crampin, S., and S. Peacock, A review of shear-wave splitting in the compliant crack-critical anisotropic earth[J]: Wave Motion, 2005,41,59–77.
    [20] Thomsen, L., Weak elastic anisotropy[J].Geophysics, 1986,51, 1954–1966.
    [21] Thomsen, L., Reflection seismology over azimuthally anisotropic media: Geophysics,1988, 53, 304–313.
    [22] Thomsen, L., Poisson was not a geophysicist: The Leading Edge,1990, 9, no.12, 27–29.
    [23] Thomsen, L., Weak anisotropic reflections, in J. P. Castagna and M. M. Backus,eds., Offset dependent reflectivity[C]: SEG,1993.
    [24] Thomsen, L., Elastic anisotropy due to aligned cracks in porous rock: Geophys. Prosp., 1995,43, 805–829.
    [25] Thomsen, L., Understanding seismic anisotropy in exploration and exploitation[C]: Distinguished Instructor Short Course (DISC) 5, SEG and EAGE,2002.
    [26] Bakulin, A. V., Grechka, V., and Tsvankin, I., Estimation of fracture parameters from reflection seismic data, part I: HTI model due to a single fracture set[J]: Geophysics, 2000a,65, 1788–1802.
    [27] Bakulin, A. V., Grechka, V., and Tsvankin, I., Estimation of fracture parametersfrom reflection seismic data, part II: Fractured models with orthorhombic symmetry[J]: Geophysics,2000b, 65, 1803–1817.
    [28] Bakulin, A. V., Troyan, V. N., and Bakulin, V. N., Acoustoelasticity of rocks[C]: St. Petersburg Univ. Press (in Russian),2000d.
    [29] Bakulin, A., Slater, C., Bunain, H., and Grechka, V., Estimation of azimuthal anisotropy and fracture parameters from multiazimuthal walkaway VSP in the presence of lateral heterogeneity[C]: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,2000c,1405–1408.
    [30] Grechka, V., I. Tsvankin, and J. K. Cohen, Generalized Dix equation and analytic treatment of normal-moveout velocity for anisotropic media:Geophysical Prospecting, 1999,47, 117–148.
    [31] Grechka, V., A. Pech, and I. Tsvankin, P-wave stacking-velocity tomography for VTI media[J]: Geophysical Prospecting,2002a, 50, 151–168.
    [32] Grechka, V., and I. Tsvankin, Inversion of azimuthally dependent NMO velocity in transversely isotropic media with a tilted axis of symmetry[J]: Geophysics, 2000,65, 232–246.
    [33] Grechka, V., and I. Tsvankin, Multicomponent stacking-velocity tomography for transversely isotropic media[J]: Geophysics,2002b, 67, 1564–1574.
    [34] Grechka, V., and I. Tsvankin, PP + PS = SS[J]: Geophysics,2002b, 67, 1961–1971.
    [35] Grechka, V., and I. Tsvankin,, NMO-velocity surfaces and Dix-type formulas in anisotropic heterogeneous media[J]: Geophysics,2002a, 67, 939–951.
    [36] Grechka, V., and P. Dewangan, Generation and processing of pseudo shear-wave data: Theory and case study[J]: Geophysics,2003, 68, 1807–1816.
    [37] Lynn, H. B., Bates, C. R., Simon, K. M., and van Dok, R., The effects of azimuthal anisotropy in P-wave 3-D seismic[C]: 65th Ann.Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1995,723–730.
    [38] Lynn, H. B., and Beckham, W., P-wave azimuthal variations in attenuation, amplitude, and velocity in 3-D field data: Implications for mapping horizontal permeability anisotropy[C]: 68th Ann. Internat. Mtg., Soc. Expl. Geophys.,Expanded Abstracts, 1998,193–196.
    [39] Ruger, A., and Tsvankin, I., Azimuthal variation of AVO response for fractured reservoirs[C]: 65th Ann. Internat. Mtg., Soc. Expl.Geophys., Expanded Abstracts, 1995,1103–1106.
    [40] Rüger, A., Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]: Ph.D. thesis, Colorado School of Mines,1996 .
    [41] Ruger, A., P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics, 1997, 62: 713-722;
    [42] Rüger, A., Using AVO for fracture detection: analytic basis and practical solutions[J]: The Leading Edge, 1997,Vol. 16, No. 10, 1429–1438.
    [43] Rüger, A., Analytic insight into shear-wave AVO for fractured reservoirs[C]: Proceedings of 7IWSA, special SEG volume on seismic anisotropy, Internat. Workshop on Seismic Anisotropy,1998.
    [44] Rüger, A., Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]: Geophysics,1998, 63, 935–947.
    [45] Rüger, A., Reflection coefficients and azimuthal AVO analysis in anisotropic media[C]: SEG,2001.
    [46] Tsvankin, I., and L. Thomsen, 1994, Nonhyperbolic reflection moveout in anisotropic media[J]: Geophysics, 59, 1290–1304.
    [47] Tsvankin, I., P-wave signatures and notation for transversely isotropic media[J]: An overview: Geophysics,1996, 61, 467–483.
    [48] Tsvankin,I. Anisotropic parameters and P-wave velocity for orthorhombic meida[J]. Geophysics, 1997c, 62: 1292-1309;
    [49] Tsvankin,I. Moveout analysis for transversly isotropic media with a tited symmetry axis[J]. Geophys. Prosp., 1997b, 45: 479-512;
    [50] Tsvankin,I. Reflection moveout and parameter estimation for horizontal transverse isotropy[J]. Geophysics, 1997a, 62: 614-629;
    [51] Tsvankin,I., and Grechka, V., Dip moveout of converted waves and parameter estimation in transversely isotropic media[J]. Geophys. Prosp., 2000, 48: 257-292;
    [52] Tsvankin,I.Seismic signatures and analysis of reflection data in anisotropic media[M]. Pergamon,2001.
    [53] Tsvankin, I., Seismic signatures and analysis of reflection data in anisotropic media, 2nd ed[C]: Elsevier Science Publishing Company, Inc,2005.
    [54] Vavry?uk,V., and I. P?en?ík, PP-wave reflection coefficients in weakly elastic media[J]: Geophysics,1998, 63, 2129–2141.
    [55] Vavry?uk, V.,Weak-contrast reflection/transmission coefficients in weakly anisotropic elastic media, P-wave incidence[J]: Geophysical Journal International, 1999,138, 553–562.
    [56] Perez, M., and Gibson, R., Detection of fracture orientation using azimuthal variation of P-wave AVO responses: Barinas field (Venezuela)[C]: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1996, 1353–1356.
    [57] Perez, M., Detection of fracture orientation using azimuthal variation of P-wave AVO response[C]: M.S. thesis, Massachusetts Inst. Of Technology,1997.
    [58] Perez, M., Grechka,V., and Michelena, R. J., Fracture detection in a carbonate reservoir using a variety of seismic methods[J]: Geophysics, 1999,64, 1266–1276.
    [59] Mallick, S., Craft, K. L., Meister, L. J., and Chambers, R. E., Determination of the principal directions of azimuthal anisotropy from P-wave seismic data: Geophysics,1998, 63, 692–706.
    [60] Ramos, A. C. B. and Davis, T. L., 3-D AVO analysis and modeling applied to fracture detection in coaled methane reservoirs[J]: Geophysics, Soc. of Expl. Geophys., 1997,62, 1683~1695.
    [61]杨慧珠,殷可,用切变模量近似P-SV波反射系数及在多波AVO反演中的意义[J]:石油地球物理勘探,1996,31(3),374-381.
    [62]孙鹏远,孙建国,卢秀丽,P-SV波AVO分析[J]:石油地球物理勘探,2003,38(2),131-135.
    [63] Alford, R. M., Shear data in the presence of azimuthal anisotropy[C]: 56th Annual International Meeting, SEG, Expanded Abstracts, 1986,476–479.
    [64] Garotta, R., and P. Y. Granger, 1988, Acquisition and processing of 3C×3D data using converted waves: 58th Annual International Meeting, SEG, Expanded Abstracts, S13.2.
    [65] Granger, P. -Y., A. Rollet, and J. -M. Bonnot, 2000, Preliminary evaluation of azimuthal anisotropy over the Valhall field using C-wave data, in L. Ikelle and A. Gangi, eds., Anisotropy 2000: SEG Open File Publication, 6, 49–67.
    [66] Musgrave, M. J. P., Crystal acoustics: Holden Day,1970 .
    [67] Henneke, E.,G., Reflection-refraction of a stress wave at a plane boundary between anisotropic media[J]: J. Acoust. Soc. of Am., 1972,51,210–217.
    [68] Keith, C. M., and Crampin, S., Seismic body waves in anisotropic media: Reflection and refraction at a plane interface[J]: Geophys. J.Roy. Astr. Soc., 1977, 49, 181–208.
    [69] Daley, P. F., and Hron, F., Reflection and transmission coefficients for transversely isotropic media[J]: Bull. Seis. Soc. Am., 1977,67, 661–675.
    [70] Kim, K. Y., Wrolstad, K. H., and Aminzadeh, F., Effects of transverse isotropy on P-wave AVO for gas sands[J]: Geophysics, 1993, 58, 883–888.
    [71] Maxim V.Cherepanov and Tatyana N. Nefedkina, Analytic description of PS wave reflection in weakly anisotropic media[J]: SEG Technical Program Expanded Abstracts 23(1): 2004,191~194.
    [72] Connolly, P., Elastic impedance[J]. The Leading Edge, 1999, 18, 438–452.
    [73] Mukerji, T., A. Jorstad, G. Mavko, and J. R. Granli, Near and far offset impedances: Seismic attributes for identifying lithofacies and pore fluids[J] Geophysical Research Letters, 1998, 25, 4557–4560.
    [74] Martins, J. L., A second-order approach for P-wave elastic impedance technology[J].Studia Geophysica et Geodaetica, 2003,47, 545–564.
    [75] Whitcombe, D. N., Elastic impedance normalization[J]. Geophysics, 2002,67, 60–62.
    [76] Wang, Y.,Seismic amplitude inversion in reflection tomography[M]. Pergamon Press, 2003.
    [77] Rowbotham, P., D. Marion, R. Eden, P. Williamson, P. Lamy, and P.Swaby, Theimplications of anisotropy for seismic impedance inversion[J].First Break, 2003, 21, 53–57.
    [78] Psencík, I.,and J. L. Martins, Properties of weak contrast PP reflection/ transmission coefficients for weakly anisotropic elastic media[J]. Studia Geophysica et Geodaetica, 2001, 45, 176–199.
    [79] Martins, J. L., An approach for elastic impedance in weakly anisotropic media[C]: 72nd Annual International Meeting, SEG, Expanded Abstracts, 2002,185–188.
    [80] Martins, J. L., and I. P?en?ík, Uncertainty analysis for inversion of qP-wave reflection amplitudes in weakly anisotropic elastic media[C]: 7th International Congress Brazilian Geophysics Society, Expanded Abstracts, 2001,696–699.
    [81]程冰洁,张玉芬,AVO简化方程的物理意义及其在油气识别中的应用[J]:物探化探计算技术,2003,25(1), 26~30.
    [82]侯伯刚,AVO处理解释技术研究及应用:[D],中国地质大学(北京),博士学位论文,2005.
    [83] Aki,K. and Richards,P.G. , Quantitative seismology-theory and methods, Vol.1 [M] , W.H. Freeman and Company, 1980.
    [84] Shuey R T. A simplification of the zoeppritz equations[J].Geophysics,1985, 50(4): 609~614.
    [85] Hilteman F. Seismic lithology[J]. SEG-continuing education,1983,115.
    [86]阴可,杨慧珠,董渊,各向异性介质中P波反射系数[J]:清华大学学报(自然科学版),1998,38(2),12-16.
    [87]张立勤,彭苏萍,李国发,王璞.方位AVO技术检测储层各向异性的方法和实践[J].天然气工业, 2005,(10),38-40.
    [88]胡天跃,王润秋,White R E.地震资料处理中的聚束滤波方法.地球物理学报,2000,43(1):105-115.
    [89] Klaus Helbig and Leon Thomsen,75-plus years of anisotropy in exploration and reservoir seismics[C]: A historical review of concepts and methods: Geophysics, VOL. 70, 2005,NO. 6 (November ~December 2005): 9-23ND.
    [90] Aki,K. and Richards,P.G. , Quantitative seismology-theory and methods, Vol.1 [M] , W.H. Freeman and Company, 1980.
    [91] Antonio, C. B. R. and P. C. John,Useful approximations for converted-wave AVO[J]: Geophysics, 2001,66(6): 1721~1734.
    [92]陆基孟.地震勘探原理[M]北京:石油工业出版社,1993,340~360;
    [93]王大兴,史松群,赵玉华。苏里格庙储层预测技术及效果[J]:中国石油勘探,2001,6(3):32~43;
    [94] Tad M S,Carl H S,Chandra S R.Gassmann fluid substitutions[J]: A tutorial .Geophysics,2003, 68(2): 430~440;
    [95]王炳章,岩石物理学基本准则[J]:.石油物探译丛,2001,4: 1-20;
    [96] Brown, R. J. S., and Korringa, J., On the dependence of the elastic properties of porous rock on the compressibility of the pore fluid[J]:. Geophysics, 1975,40: 608–616;
    [97] Biot, M. A., Generalized theory of acoustic propagation in porous dissipative media[J]:. J. Acoust. Soc. Am., 1962, 34: 1254-1264;
    [98] Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range[J]:. J. Acoust. Soc. Am., 1956a, 28: 168-178;
    [99] Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range[J]:. J. Acoust. Soc. Am., 1956b, 28: 179-191;
    [100] Geertsma, J., and Smit, D. C., Some aspects of elastic wave propagation in fluid saturated porous solids[J]:. Geophysics, 1961, 26: 169-181;J. Acoust. Soc. Am., 1990a, 87: 2384-2395;
    [101] Winkler, K. W., Dispersion analysis of velocity and attenuation in Berea sandstone[J]:. J. Geophys. Res., 1985, 90: 6793-6800;
    [102] Wang, Z., and Nur, A., Dispersion analysis of acoustic velocities in rocks[J]. Acoust. Soc. Am., 1990a, 87: 2384-2395;
    [103] Wang, Z., and Nur, A., Eds., Seismic and acoustic velocities in reservoir rocks, 2: Theoretical and model studies[J]:. Soc. Expl.Geophys. 1992;
    [104] Mavko, G., and Nolen-Hoeksema, R., Estimating seismic velocities atultrasonic frequencies in partially saturated rocks[J]:. Geophysics, 1994, 59, 252-258;
    [105]云美厚,管志宁.储层条件下砂岩纵波和横波速度的理论计算[J]:.石油物探,2002, 41(3): 289-298;
    [106] Pennington, W. D., Reservoir geophysics[J]. Geophysics, 2001, 66, 25–30.
    [107] Ross, C. P., Effective AVO crossplot modeling: A tutorial[J]. Geophysics, 2000,65, 700–711.
    [108] Russell, B. H., K. Hedlin, F. J. Hilterman, and L. R. Lines, Fluidproperty discrimination with AVO: A Biot-Gassmann perspective[J].Geophysics,2003,68, 29–39.
    [109] Connolly, P., Calibration and inversion of non-zero offset seismic[C].68th Annual International Meeting, SEG, Expanded Abstracts, 1998,182–184.
    [110] Rutherford, S. R., and R. H. Williams, Amplitude-versus-offset variations in gas sands[J].Geophysics, 1989, 54, 680–688.
    [111] Castagna, J. P., H. W. Swan, and D. J. Foster, Framework for AVO gradient and intercept interpretation[J] Geophysics, 1998,63, 948–956.
    [112] Liu Qiankun; Han Liguo; Wang Enli; and Shan Gangyi .Reflection coefficients of P-SV waves in weak anisotropic media [J];Applied Geophysics; 20085(1),18-23.
    [113]张奎,倪逸.三种弹性波阻抗公式比较[J]石油地球物理勘探,2006 ,41 (增刊) :7~11.
    [114] Bruce Verwest et al. Elastic impedance inversion. Expanded Abstracts of 70th S EG Mt g , 2000 , 1580-1582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700