高超音速边界层转捩的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超音速边界层流动转捩的预测是二十一世纪航空航天领域的研究热点之
     一,同时它也是空气动力学的一大难题。转捩流动的准确预测对于飞行器气动外型和热防护措施的设计有着至关重要的影响。现代计算流体力学的发展为转捩流动的数值模拟提供了广阔的研究平台,发展出诸如直接数值模拟、大涡模拟、求解抛物化稳定性方程或线性稳定性方程以及工程转捩模式等多种转捩预测方法。在实际工程计算中,转捩模式方法由于具有对计算机资源要求不高,计算周期短等优点而得到广泛的应用。
     本文选用转捩模式方法,利用一种基于经验相关式的转捩模型——? ? Re?转捩模型对超音速/高超音速边界层转捩流动进行了数值模拟。该转捩模型是一种是以SST湍流模型为基础,完全基于流场当地变量的转捩模型。
     本文应用该模型分别对高超音速平板边界层转捩流动、高超音速尖锥体边界层转捩流动以及两款高超音速进气道模型的内流进行了数值模拟。通过与实验数据的对比分析认为,该转捩模型基本具备模拟高超音速边界层转捩的能力,能够较准确地预测出转捩的起始位置和转捩的长度,并能正确模拟出来流湍流度与粘性比对转捩起始位置的影响。同时,该转捩模型还具备对激波与边界层干扰、激波与激波干扰、激波与膨胀波干扰以及流动分离等复杂流动现象的模拟能力。
     但该模型对边界层层流段的模拟不够准确,究其原因可能是由于该转捩模型只是利用间歇因子?来修正湍动能的输运方程中的生成项,因此在流动的层流段并未实现对湍流的完全抑制。此外,该模型模拟转捩过冲现象的能力也稍有不足。
     本文还利用该模型对三种进气道设计方案进行了数值模拟,这三种方案分别是方案一三波系外压缩进气道、方案二等熵外压缩进气道和方案三单波系外压缩进气道。根据数值计算的结果对比分析了三种方案的设计工况和变工况的气动性能。
     在设计工况的条件下,方案二进气道由于采用等熵的外压缩型面因此喉部总压恢复系数较高,但喉部之后的扩张通道导致气流加速,使其隔离段激波串前气流马赫数较大,相应的激波损失增大,因此出口总压系数下降。而方案三进气道由于隔离段激波串损失最小,因此具有最高的出口总压恢复系数。同时方案三进气道还具有最大的进气流量和最小的外罩阻力,但该方案的出口流场畸变度也是最大的。由于方案三进气道的外压缩激波系强度不大,入射到外罩内壁面上时对进气道内流场的影响较小,因此在变工况的条件下,其特性参数变化不大,不会偏离设计点太远。即方案三进气道的速度特性曲线最为平坦,该方案具有最优良的变工况性能。
The transition prediction of hypersonic boundary layer is one of the hottest issues in the field of aerospace in the 21st century as well as an unsolved problem of aerodynamics. The accurate prediction of transitional flow plays an important role in the design of the configuration and heat-protection measures of aerodynamic vehicles. The development of modern computational fluid dynamics has provide a broad research platform for the numerical simulation of transitional flows, and numerous approaches to the transition prediction have been developed,which include Direct Numerical Simulation, Large Eddy Simulation, the Solution of the Parabolized Stability Equation or the Linear Stability Equation as well as Engineering Modeling of Transition. For practical engineering computation, the approach of Engineering Modeling of Transition has been widely adopted due to its advantage with regard to the computational effort and cost.
     In this thesis, the approach of Engineering Modeling of Transition was choosen. A correlation-based trantion model known as ? ? Re? model,which is based on SST turbulence model and local variables, was used to simulate the transitional flow of supersonic/hypersonic boundary layer.
     In the first part of this thesis, the simulations of the hypersonic boundary layer transitional flow on flat plate and slender cone and the internal flow of two supersonic/hypersonic inlets model were performed. By comparision between the results of these simulations and experimental data, it has been proved that the trantion model used in this thesis has the ability to simulate the transitional flow in the hypersonic boundary layer, predicting correctly the onset location and the length of transition, and the ability to simulate the influence of turbulence intensity and viscosity ratio on the onset location of transition. Meanwhile the trantion model has the ability to simulate the complicated flow phenomena such as the shock-boundary layer interaction and the flow separation etc..
     However, the trantion model can not accurately simulate the laminar stage of the boundary layer flow possibly due to the use of intermittence factor to amend the production term in the transportation equation of turbulent kinetic energy, which does not completely restrain the turbulence in the laminar stage. Furthermore, the trantion model lacks the ability to simulate transitional overshoot.
     In the second part of this thesis, three supersonic inlet projects were proposed. The first inlet has a triple-oblique-shock external compression ramp, the second one has a isentropic external compression ramp and the third one has a single-oblique-shock external compression ramp. The numerical simulations of these three proposed inlets were performed with the use of the transition model mentioned above and sequentially the aerodynamic properties of these three inlets in both design condition and off-design condition are analyzed. In design condition
     In design condition,as the most intake flow rate and the smallest cowl drag. But, the third inlet also has the largest degree of distortion of the flow field at the outlet. In off-design condition, the velocity performance curve of the third inlet is the flattest. So when the working condition is changed, the performance of the third inlet will not vary dramaticlly, i.e. the third inlet has the best performance in off-design condition.
引文
1苏彩虹.高超音速圆锥边界层的转捩预测及e-N方法的改进[博士学位论文].天津大学机械学院,2008:3-6.
    2沈娟,阿雯.边界层转捩在高超声速飞行器外形设计中的应用[J].飞航导弹,2008,(6):6-8.
    3许丁,马晖扬.高超声速边界层工程转捩模式研究[J].中科院研究生院学报,2009,26(1):43-46.
    4 Haynes T.S.,Reed H.L.,Saric W.S..CFD Validation Issues in Transition Modeling[C].New Orleans, LA, AIAA, 27th Fluid Dynamics Conference, June 17-20, 1996:1-3.
    5 Lantry R.B.,Menter F.R.. Transition Modeling for General CFD Applications in Aeronautics[C]. Reno, Nevada, AIAA, 43rd Aerospace Sciences Meeting and Exhibit, January 10-13, 2005:1-6.
    6刘伟,杨小亮,赵海洋,陈景兵.高超声速圆锥边界层转捩数值研究[J].空气动力学学报,2008,26(4):538-540.
    7周恒.关于转捩和湍流的研究[C].空气动力学前沿研究论文集,2003:87-88.
    8符松,王亮.基于雷诺平均方法的高超音速边界层转捩模拟[J].中国科学G辑:物理学力学天文学,2009,39(4):617-619.
    9 Papp J.L.,Dash S.M.. A Rapid Engineering Approach to Modeling Hypersonic Laminar to Turbulent Transitional Flows For 2D and 3D Geometries[C].Dayton, Ohio, AIAA, 15th International Space Planes and Hypersonic Systems and Technologies Conference, April 28-May 1,2008:2-10.
    10 Papp J.L.,Kenzakowski D.C.,Dash S.M.. Extensions Of A Rapid Engineering Approach To Modeling Hypersonic Laminar To Turbulent Transitional Flows[C].Reno, Nevada, AIAA, 43rd Aerospace Sciences Meeting and Exhibit, January 10-13, 2005:2-15.
    11杨云军,沈清,詹慧玲,周伟江.高超声速小钝锥边界层非对称转捩研究[J].宇航学报,2008,29(1):34-36.
    12 Menter F.R.,Lantry R.B.,Likki S.R.,Suzen Y.B.,Huang P.G.. A Correlation-Based Transition Model Using Local Variables-Part I: Model Formulation[J]. Journal of Turbomachinery, 2006,128:413-421.
    13陈奕,高正红.平板边界层转捩的仿真[J].计算机仿真,2009,26(3):77-79.
    14张兆顺,崔桂香,徐春晓.湍流理论与模拟[M].北京,清华大学出版社,2005:55-62.
    15 Spalart P.,Allmaras S..A one-equation turbulence model for aerodynamicflows[J].AIAA paper, 1992:2-7.
    16 Menter F.R..Two-equation Eddy-viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994,32(8):1598-1604.
    17廉筱纯,吴虎.航空发动机原理[M].西安,西北工业大学出版社,2005:278-285.
    18钱翼稷.空气动力学[M].北京,北京航空航天大学出版社,2004:167-172.
    19居燕.弯曲激波压缩面设计及试验研究[硕士学位论文].南京航空航大学能源与动力学院,2005:6-15.
    20 Horvath T.J.,Berry S.A.,Hollis B.R.,Chang C.L.,Singer B.A..Boundary Layer Transition on Slender Cones in Conventional and Low Disturbance Mach 6 Wind Tunnels[C].St.Louis, Missouri, AIAA, 32nd Fluid Dynamics Conference and Exhibit, June 24-26, 2002:1-12.
    21 Mee D.J..Boundary Layer Transition Measurements in Hypervelocity Flows in a Shock Tunnel[C].Reno, Nevada, AIAA, 39th Aerospace Sciences Meeting, January 8-11, 2001:1-8.
    22 Minucci M.A.S.,Nagamatsu H.T..Experimental Study of a Two-Dimensional Scramjet Inlet Ma=10.1-25.1[J].AIAA, Journal of Propulsion and Power, 1992,8(3):680-685.
    23 Herrmann C.D.,Koschel W.W..Experimental Investigation of the Internal Compression of a Hypersonic Intake[C].Indianapolis, Indiana, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, July 7-10, 2002:1-10.
    24严红明.冲压发动机进气道气动设计研究[硕士学位论文].哈尔滨工业大学能源科学与工程学院,2006:28-38.
    25 Suzen Y.B.,Huang P.G..An Intermittency Transport Equation for Modeling Flow Transition[C]. Reno, Nevada, AIAA, 38th Aerospace Sciences Meeting and Exhibit, January 10-13, 2000:1-5.
    26 Menter F.R.,Lantry R.B.,Likki S.R.,Suzen Y.B.,Huang P.G.. A Correlation-Based Transition Model Using Local Variables-Part II: Test Cases and Industrial Applications[J]. Journal of Turbomachinery, 2006,128:423-432.
    27符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-414.
    28王亮,符松.一种适用于超音速边界层的湍流转捩模式[J].力学学报,2009,41(2):162-167.
    29 Papp J.L.,Dash S.M.. Hypersonic Transitional Modeling for Scramjet and Missile Applications[C]. Reno, Nevada, AIAA, 40th Aerospace Sciences Meeting and Exhibit, January 14-17, 2002:1-7.
    30杨云军,马汉东,周传江.高超声速流动转捩的数值研究[J].宇航学报,2006,27(1):85-87.
    31张晓嘉,梁德旺,李博,袁化成.典型二元高超声速进气道设计方法研究[J].航空动力学报,2007,22(8):1290-1295.
    32黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究[J].航空动力学报,2004,19(4):460-465.
    33张树道,韩肇元,司徒明.高超声速进气道分析与设计[J].战术导弹技术,1998,(1):47-52.
    34 Krouse M.,Behr M.,Ballmann J..Modeling of Transition Effects in Hypersonic Intake Flows Using a Correlation-Based Intermittency Model[C].Dayton, Ohio, AIAA, 15th International Space Planes and Hypersonic Systems and Technologies Conference, April 28-May 1,2008:2-11.
    35 Smart M.K..Optimization of Two-Dimensional Scramjet Inlets[J]. Journal of Aircraft, 1999,36(2):430-433.
    36 Reinartz B.U.,Herrmann C.D.,Ballmann J.,Koschel W.W..Aerodynamic Performance Analysis of a Hypersonic Inlet Isolator Using Computation and Experiment[J].Journal of Propulsion and Power,2003,19(5):868-874.
    37 Roy C.J.,Blottner F.G.. Assessment of One- and Two-Equation Turbulence Models for Hypersonic Transitional Flows[J]. Journal of Spacecraft and Rockets,2001,38(5):700-707.
    38是勋刚,周恒.湍流转捩的研究[J].中国科学基金,1989,(3):25-29.
    39罗纪生,王新军,周恒.层流-湍流转捩过程的关键因素[C].首届全国航空航天领域中的力学问题学术研讨会,2004:144-148.
    40 Stuart J.T..流动稳定性及转捩[J].力学进展,1984,14(2):147-157.
    41 Dolling D.S..Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?[J]. AIAA Journal,2001,39(8):1517-1529.
    42 Kimmel R.L.,Poggie J.,Schmisseur J.D.. Effect of Pressure Gradients on Axisymmetric Hypersonic Boundary Layer Stability[C]. Reno, Nevada, AIAA, 38th Aerospace Sciences Meeting and Exhibit, January 10-13, 2000:2-6.
    43 Fan X.Q.,Yi S.H.,Jia D.,Li H.. Forced Boundary-Layer Transition of Axisymmetric Inlet in Mach 8 Gun Wind Tunnel and Its Numerical Verification[C]. Tucson, Arizona, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 10-13, 2005:1-6.
    44卞荫贵.边界层研究进展[C].第二届全国流体力学学术会议,1979:7-15.
    45王革,蒋旭旭,唐强.超燃冲压发动机进气道内激波/边界层干扰研究[J].哈尔滨工程大学学报,2007,28(11):1207-1211.
    46章赛进,夏南.二维激波边界层干扰的数值分析[J].上海大学学报,2004,10(3):256-258.
    47李志强,李正强,闫文辉.激波/平板湍流边界层干扰的数值模拟[J].航空动力学报, 2008,23(6):1004-1007.
    48董志勇,吕阳泉.激波与边界层干扰研究综述[J].浙江工业大学学报,2001,29(3):296-299.
    49黄玲琍.激波与湍流边界层的相互作用机理[J].苏州大学学报,1986,2(1):54-57.
    50王革,蒋旭旭,薛若军.斜激波/平板层流边界层相互干扰的数值研究[J].弹箭与制导学报, 2008,28(3):207-209.
    51 Chang C.L.,Singer B.A..Transition Region Modeling for Compressible Flow[C].Orlando, Florida, AlAA, 4th International Aerospace Planes Conference, December 1-4,1992:2-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700