烟气制酸生产流程的能耗及节能潜力分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冶炼烟气制酸广泛存在于有色行业,由于其本身属于冶炼烟气回收范畴,且耗能较低,所以多年来系统节能研究接近空白。然而近几年烟气作为制酸原料的比例大幅提高、产量也不断攀升,使得烟气制酸乃至硫酸行业的节能降耗工作显得越发重要。本文以某厂烟气制酸系统为研究对象,对其进行系统节能研究。
     在热力学第一定律的基础上,建立了该系统的热平衡模型,并进行了热平衡分析和讨论。结果表明:进出系统的冷却水热量损失为85816.66 MJ/h,占系统热支出的60.26%;除冷却水外,成品酸、污酸以及排空烟气带出热量共占系统总热损失的15.01%。
     采用e-p分析法计算得出,实际吨酸能耗为32.33kgce,基准吨酸能耗为14.85 kgce,节能潜力为17.48 kgce/t-H2SO4,其中因工序能耗上升引起的能耗增量为16.33 kgce,占能耗总增量的93%;因折合比不同使吨酸能耗升高1.15 kgce,占7%。
     采用基准物流图研究法分析各股物流对工序能耗和工序折合比的影响,进而得出对吨酸能耗的影响。结果表明:输出含S元素物流,增大该工序的工序能耗及上游折合比,从而增加吨酸能耗,主要表现为烟气损失项和污酸排出项;含S元素物流由吸收工序(下游)返回干燥工序(上游),增加吸收的工序能耗以及转化、干燥工序折合比,从而增加吨酸能耗;含S元素物流由干燥工序输入吸收工序,虽增大干燥工序能耗,但降低干燥、转化工序的折合比,综合可以降低吨酸能耗。
     利用Visio Basic 6.0开发设计了系统能耗分析的计算软件,主要理论基础是基准物流图研究法,可广泛应用于生产流程的能耗分析。
     本文最后建立了硫酸系统能耗BP神经网络预测模型,并应用此预测模型预测了制酸系统能耗,预测结果具有较高的可信度。
Metallurgical sulfuric acid production exists extensively in the non-ferrous industry. All the researches about this production are belong to the field of flue gas recycling, and none of them are related to the system energy saving. However, with the increasing of the industrial output and consuming of flue gas for the acid production, the research on energy saving for the metallurgical sulfuric acid production and the sulfuric acid industry has been increasing substantially in recent years. In this paper, the system energy saving of a sulfuric acid plant was investigated.
     Based on first law of thermodynamics, the thermal equilibrium model was established. The results showed that:The heat loss of system cooling water was 85816.66 MJ/h which accounts for 60.26% of the total. The total heat loss for finished products, waste acid and exhaust gas of evacuation was 13391.33 MJ/h which accounts for 15.01% of the total.
     The main reasons that the overall energy intensity of a sulfuric acid production plant were analyzed by e-p method. It was shown from the result that the actual energy intensity of final product was 32.33 kgce and the standard energy intensity of final product was 14.85 kgce, so the energy-saving potential for enterprise was 17.48 kgce. The increment due to the increment of unit process energy intensity and products ratio was 16.33 kgce and 1.15 kgce, which takes up 93 percent and 7 percent of the overall energy saving respectively.
     The practical material flow diagram and the standard materials flow diagram (SMFD) ware constructed accordingly. The influences of materials flow on energy intensity were analyzed quantitatively. The following results can be obtained from the analysis:1) Outputting sulfur-containing materials from an intermediate process to surroundings increases the energy intensity of this process and product ratios of upstream processes, hence increase the energy intensity of final product, the larger the ordinal number of the unit process, the greater will be the increase. The main materials flows are loss of flue gas project and waste acid project.2) Returning sulfur-containing from absorption section (precipitation process) to former process such as drying section increases not only precipitation process energy intensity but also the product ratios of processes between absorption and drying preparation, hence increase the energy intensity of final product, the longer the returning distance, the greater will be the increase.3) Inputting sulfur-containing materials from drying section to absorption section, although increases precipitation process energy intensity, reduces the product ratios of processes between absorption and drying preparation, hence increase the energy intensity of final product.
     A calculation software about energy consumption analysis was designed and developed according to the theoretical basis of SMFD methodology. The calculation software can be widely used in the energy consumption analysis of production processes.
     BP neural network prediction model was established, which was used to predict the energy consumption of sulfuric acid factory system. There was little error between predictive value and actual value.
引文
[1]刘少武,齐焉.硫酸生产技术.福建:东南大学出版社,1993:155-168
    [2]W.Wyld. Raw Materials for the Manufacture of Sulphuric Acid and theManufacture of Sulphur Dioxide. Gurney and Jackson, London,1923
    [3]F.D.Miles. The Manufacture of Sulphuric Acid (Contact Process). Gurney and Jackson, London,1925
    [4]A. M.Fairlie. Sulfuric Acid Manufacture, Reinhold Pub. Corp, New York,1936
    [5]堵盘兴.国外硫酸工业进展.硫酸工业,2010,(4):5-8
    [6]夏定豪.中国硫酸工业五十年.硫酸工业,1999,(5):1-5
    [7]2002-2005年世界硫酸产量和消耗量.硫磷设计与粉体工程,2006,(2):54-54
    [8]宁爱民.开辟我国硫酸生产的新原料路线—关于湖南湘福石膏矿制硫酸联产水泥的可行性探讨.硫磷设计与粉体工程,2005,(6):1-7
    [9]齐焉.2006年我国硫酸生产情况阴.硫酸工业,2007,(2):1-3
    [10]夏成浩,葛新建.我国硫酸工业的发展趋势.化工进展,2007,26(10):1363-1368
    [11]龙红卫.韶关冶炼厂低浓度烟气两转两吸制酸工艺的研究.硫酸工业,2009,(4):36-37
    [12]San Antonio,TX,USA. Design and construction of the Nonarda Converter at the Home Smelter. Minerals, Metals&Materials Soc (TMS), Proeeedings of the 1998 TMS Anliual Meeting, Feb 1998:15-19
    [13]徐飞.化工节能技术手册.化学工业出版社,2006
    [14]孙正东.硫酸工业低温位热能回收技术的发展(续).磷肥与复肥,2005,(3):44-46
    [15]Lisa Connock. Maximizing energy savings in sulphuric acid plants. Sulphur, 1999, (262):33-41
    [16]陆钟武,蔡九菊.系统节能基础,北京:科学出版社,1993
    [17]陆钟武.我国钢铁工业吨钢综合能耗的剖析.冶金能源,1992,(1):14-19
    [18]陆钟武,蔡九菊,于庆波,谢安国.钢铁生产流程的物流对能耗的影响.金属学报,2000,36(4):370-378
    [19]张红,沈祖志.集成情境知识递阶生产系统投入产出优化水.机械工程学报,2009,45(4):253-258
    [20]张红霞.对投入产出价格影响模型的发展和改进.系统工程理论与实践,2008,3(1):90-94
    [21]黄崇伟,谢素华,凌建明.基于数据包络分析的交通科技项目投入产出科技效率评价.东南大学学报(自然科学版),2008,4(11):1121-1125
    [22]夏炎,杨翠红,陈锡康.基于可比价投入产出表分解我国能源强度影响因素.系统工程理论与实践,2009,6(10):21-27
    [23]容美平,王斌会.我国各地区高技术产业投入产出效率综合评价.科技进步与对策,2010,9(7):25-28
    [24]席酉民,刘洪涛,郭菊娥.能源投入产出分式规划模型的构建与应用.科学学研究,2009,3(4):535-540
    [25]孔祥强,王如竹,李瑛.微型冷热电联供系统的优化运行.上海交通大学学报,2008,4(3):365-369
    [26]曾鸣,吕俊昌,沈又幸.电力市场下不同类型发电机组问的容量分配研究.华东电力,2007,6(12):13-16
    [27]蔡九菊.钢铁企业系统节能决策模型的研究及其应用.[硕士学位论文].沈阳:东北大学,1986
    [28]陆钟武,蔡九菊.系统节能基础,北京:科学出版社,1993
    [29]蔡九菊,陆钟武.冶金企业能源模型总体结构.钢铁,1984,19(6):71-74
    [30]李积彬,娄燕,肖跃发,郭任民,王长胜.轧机控制系统参数最优化解决方案研究与开发.机电工程技术,2010,6(11):98-101
    [31]张旭超,牛东晓,申炜.基于马尔可夫最优化模型的北京市终端能源结构预测.陕西电力,2008,36(9):6-9
    [32]李建中,谢威,武铁梅.基于主成分分析和BP神经网络的能源供需安全研究.水电能源科学,2010,8(5):169-172
    [33]周扬,吴文祥,胡莹,刘秀香.基于组合模型的能源需求预测.中国人口·资源与环境,2010,20(4):63-68
    [34]刘国璧,郑婷婷.基于神经网络组合模型的能源消费量预测研究.湖南工程学院学报(自然科学版),2009,19(4):59-71
    [35]陈希.基于神经网络的窑炉炉温控制的优化.自动化与仪表,2000,13(4):35-37
    [36]焦李成.神经网络的应用于实现.西安:西安电子科技大学出版社,1996
    [37]柴天佑,荣莉.智能控制在我国轧钢炉窑控制中的应用.冶金自动化,2000,8(1): 7-9
    [38]李亮,孙廷容,黄强.灰色GM(1,1)和神经网络组合的能源预测模型.能源研究与利用,2005,(1):10-13
    [39]吕程,王国栋.基础神经网络的热连轧精轧机组轧制力高精度预报.钢铁, 1998,33(1):33-35
    [40]王中杰,柴天佑等.基于RBF神经网络的加热炉钢温预报模型.系统仿真学报,1999,11(3):181-184
    [41]袁曾任.人工神经网络及其应用.北京:清华大学出版社,1999
    [42]谢安国,陆钟武.神经网络BP模型在炼铁工序能耗分析中的应用.钢铁(增刊),1997,(32):287-290
    [43]谢安国,陆钟武.人工神经网络及钢铁企业能耗分析中应用方法的研究.钢铁,1997,4(10):60-63
    [44]孙红霞,仪垂杰,周扬民.采油系统能耗分析研究.青岛理工大学学报,2008,29(10):90-93
    [45]金会心,吴复忠,李怡宏.高炉——转炉流程的节能分析.现代机械,2008,6(6):30-34
    [46]王丽远.高炉—转炉流程的节能分析.中国稀土学报,2008,(8):344-348
    [47]陆钟武,蔡九菊,于庆波,谢安国.钢铁生产流程的物流对能耗的影响.金属学报,2000,36(4):370-378
    [48]上海宝钢集团公司,东北大学.系统节能理论的应用研究及相关软件开发研究报告.1999,12
    [49]唐钢能耗现状与系统节能对策研究课题组,唐钢能耗现状与系统节能对策研究报告.1999,11
    [50]酒泉钢铁公司,东北大学.酒泉钢铁公司能源介质利用状况及节能对策的研究报告.2002,6
    [51]刘丽孺,陆钟武,于庆波.拜尔法生产氧化铝流程的物流对能耗的影响.中国有色金属学报,2003,13(1):265-269
    [52]刘丽孺,于庆波.陆钟武等.混联法生产氧化铝流程的物流对能耗的影响.东北大学学报(自然科学版),2002,23(10):944-947
    [53]刘丽孺,于庆波,陆钟武等.烧结法生产氧化铝流程的物流对能耗的影响.有色金属,2003,55(2):51-54
    [54]王洪才.基于SKS炼铅法能耗系统的分析研究.[硕士学位论文].长沙:中南大学,2009
    [55]Polenske K R, McMichael F C. A Chinese cokemaking process-flow model for energy and environmental analyses. Energy Policy,2002,30:865-883
    [56]Scasny M, Kovanda J, Hak T. Material flow accounts,balances and derived indicators for the Czech Republic during the 1990s results and recommendations for methodological improvements. Ecological Economics,2003,45:41-57
    [57]Ayres R U. Metals recycling:economic and environmental implications. Resources Conservation and Recycling,1997,21:145-173
    [58]Andersen J P, Hyman B. Energy and material flow models for the US steel industry. Energy,2001,26:137-159
    [59]Starbek M, Menart D. The optimization of material flow in production. International Journal of Machine Tools&Manufacture,2000,40:1299-1310
    [60]Hansen E, Lassen C. Experience with the use of substance flow analysis in Denmark. Journal of Industrial Ecology,2002,6(3-4):201-219
    [61]申屠华德,张志孝等.硫铁矿制酸干吸转化工序的节能和废热利用.硫酸工业,2008(5):26-31
    [62]叶树滋.低浓度冶炼烟气制酸转化热平衡问题探讨.硫酸工业,2000,5(5):23-27
    [63]杨昌伟等Visio Basic完全自学宝典.清华大学出版社,2008
    [64]王坤,于庆波等.管壳式换热器热力计算软件开发.冶金能源,2010,29(3):23-26
    [65]董长虹Matlab神经网络与应用.北京:国防工业出版社,2007
    [66]Campos M, Lopez D. Neural network approach to locate motifs in biosequences [J]. Progress in Pattern Recognition, Image Analysis and Applications,2005, Proceedings 3773,214-221
    [67]Coban R, Can B. Identification and control of ITU Triga Mark-Ⅱ Nuclear Research Reactor using neural networks and fuzzy logic. Ai 2005:Advances in Artificial Intelligence 3809,1057-1062
    [68]Kim K.J. Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Systems with Applications,2006,30(3):519-526
    [69]Enke D, Thawornwong S. The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications,2005, 29(4):927-940

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700