典型钢铁制造流程二次能源利用和自发电模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代钢铁冶金过程是铁-煤化工过程,大量资源和能源使用同时,伴随着能源的排放,即二次能源。在国家节能减排的总方针之下,研究二次能源利用,是钢铁企业实现深层次节能的根本途径。
     在已有典型钢铁制造流程和工序二次能源产生量研究的基础上,构建了四种典型高炉-转炉流程,通过四种典型钢铁制造流程二次能源产生量计算分析,得出:钢比系数、能源投入量、生产工艺水平是影响二次能源产生量的主要因素;由焦化、烧结、高炉炼铁构成的炼铁系统二次能源产生量占吨钢二次能源总量的86.6%;而各种二次能源中,副产煤气占二次能源总量的49.9%。因此,中国钢铁工业未来的节能方向和途径应以炼铁工序节能为主,重点加强副产煤气、余热余能利用,构建合理的能量流网络,实现钢厂能源结构优化。
     基于烧结余热回收是未来钢铁工业节能和技术创新的突破口之一,探讨了烧结余热回收的关键技术,提出了工艺优化的初步方案。烧结机烟气余热回收应与除尘和烟气脱硫综合考虑:当除尘器入口烟气温度要求>80℃时,烧结机烟气余热回收和选择性脱硫可行和合理的;当除尘器入口烟气要求>120℃,无法进行烧结机烟气余热回收和选择性脱硫。烧结冷却机余热回收工艺的技术难点在于烧结工况对热源参数稳定性的影响和调节措施。提出了热风循环、双风罩热风混合等工艺,并研究了不同回收工艺引起冷却制度变化对烧结矿产量和质量的影响。
     副产煤气是钢铁流程二次能源的重要形式,分析了典型钢铁制造流程副产煤气发电模式和“只买煤,不买电”的可行性。研究表明:典型流程的发电模式由余热余压发电、富余煤气发电等方式构成。四种典型高炉-转炉流程可建设装机容量分别为200MW、350MW、400MW、300MW的发电机组,并通过外购一定比例的动力煤实现电力自给。
Modern steel metallurgy is ferro-coal chemical process. It releases energy called secondary energy by using of massive resources and energy. Under the policy of national energy saving and mitigation, the research of secondary energy utilization is the basic way to realize in-depth energy saving by steel works.
     Four kinds of typical steel manufacturing processes were established. The primary factors affect secondary energy amount are analysed. Secondary energy per ton steel prodcuted by ironmaking system account 86.6% for total quantity. By-product gas accounts 49.9% for each kind. Therefore, the direction and way of Chinese steel industry energy saving are ironmaking system in the future,and should enhance utllization of by-product gas and residual heat and energy. And the construction of reasonable energy network will promote the optimization of energy structure for steel plant.
     The key technologies of sinter residual heat recovery were discussed and preliminary optimization scheme was proposed. Residual heat recovery of exhaust gases should be considered with dedusting and desulphurization. When the fume temperature demand of precipitator inlet is higher than 80℃, it is reasonable and feasible with desulphurization. But when greater than 120℃, they can not carry on. The difficulty is the adjustment measure and the influence of stable sinter work condition on heat source parameter. The craft of heated air circulation, two windsail heated air mix and so on were proposed, and was researched the influence on output and quality of sinter ore.
     By-product gas is the important form of secondary energy. Power pattern and the reasonableness of“buying only coal and no electricity”were analysed. The research indicates that: power pattern includes residual heat and pressure, by-product gas and so on. The power set installed capacity of 200MW, 350MW, 400MW, and 300MW could be constructed in the four typical BF-BOF processes, and power self-sufficient will be promoted by puerchasing a certain proportion steam coal.
引文
[1]刘铁男.钢铁产业政策发展指南[M].北京:经济科学出版社,2005:22-23.
    [2]黄导.中国钢铁工业节能分析[J].中国能源,2004,26(5):13-15.
    [3]兰德年.中日钢铁业节能环保先进技术交流会议论文集[C].北京:[出版社不详],2004.
    [4]何金祥.2003年我国化石能源消费结构与世界其它国家的比较[J].国土资源情报,2004,11:16-21.
    [5]张华,周淑慧.新世纪我国石油的消费和经济发展[J].经营管理,2002,11(2):10-13.
    [6]韩景城.中国能源消费结构优化问题[J].研究与探讨,2002,6:10-13.
    [7] JX REN.Study of combustion stability of blast furnace gas for turbine:proceedings of the 1999 International Joint Power Generation Conference,1999[C].Japan:Tokyo,2000.
    [8]张春霞,齐渊洪,严定鎏,等.中国炼铁系统的节能与环境保护[J].钢铁,2006,41(11):1-5.
    [9] YIN R Y,ZHANG C X,QI Y H,et al.Greenization of steel industry:proceedings of International Symposium on Global Environment and Steel Industry Proceedings ,2002[C].China:Beijing,2003.
    [10] SCHMOLE P,LINDERBERG H U.Hot metal production in the blast furnace-potentials to reduce CO2 Emission : 1st Chinese-German Seminar on Fundamentals of Iron and Steelmaking,2004[C].China:Beijing,2005.
    [11]李利剑.我国钢铁企业二次能源回收技术创新[J].科学学与科学技术管理,2005,(1):63-69.
    [12]殷瑞钰.绿色制造与钢铁工业[J].钢铁,2000,35(6):60-65.
    [13] RYRSS R,KNEES A.Production,consumption and externalities[J].American Economic Reciew,1969,59(3):282-297.
    [14] AYRES R U.Metals recycling:Economic and environmental implication[J].Resources,Conservation and Recycling,1997,21:145-473.
    [15] AYRES R U.Resources,environment and economics:Application of materials/energy balance principle[M].New York:Wiley,1978.
    [16] AYRES R U.Industrial Metabolism:Theory and Policy[M].Washington,DC:National Academy Press,1994.
    [17]殷瑞钰.冶金流程工程学[M].北京:冶金工业出版社,2004:309-317.
    [18]陆钟武,蔡九菊,于庆波,等.钢铁生产流程的物流对能耗的影响[J].金属学报,2000,36(4):370-378.
    [19]于庆波,陆钟武,蔡九菊.钢铁生产流程中物流对能耗影响的计算方法[J].金属学报,2000,36(4):379-382.
    [20]戴铁军,陆钟武.钢铁生产流程铁资源效率的分析[J].钢铁,2006,41(6):77-82.
    [21]杜涛,蔡九菊.钢铁企业物质流、能量流和污染物流研究[J].钢铁,2006,41(4):82-87.
    [22]胡长庆.物质流、能量流分析与新一代钢铁制造流程[D].北京:钢铁研究总院,2006.
    [23]胡长庆,张玉柱,张春霞.烧结过程物质流和能量流分析[J].烧结球团,2007,32(1):16-21.
    [24]汪淑奇,黄素逸.物质流、能量流与信息流协同的探讨及应用[J].华中科技大学学报(自然科学版),2002,30(11):71-73.
    [25]陈丽云.钢铁生产流程二次能源及高炉能效分析[D].北京:钢铁研究总院,2006.
    [26]王建军.钢铁企业物质流、能量流及其相互关系研究与应用[D].沈阳:东北大学,2008.
    [27]杜涛.关于钢铁企业气体污染物减量化研究[D].沈阳:东北大学,2005.
    [28]李红星,宁述芹.济钢干熄焦运行节能效益分析[J].节能技术,2004,1:61-62.
    [29] BI O G,RU B G.Energy saving and some environment improvements in coke-oven plants[J].Energy Volume,2000,25(3):247-265.
    [30]周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2003.
    [31]刘振均,李海波.高炉提高TRT发电实绩[J].钢铁,2005,40(8):11-14.
    [32]徐矩良.我国炼铁系统能耗现状和今后节能的途径[J].冶金管理,2002,12:42-44.
    [33]《中国钢铁工业五十年》编辑委员会.中国钢铁工业五十年[M].北京:冶金工业出版社,1999.
    [34]吕佐周.冶金燃气[M].北京:冶金工业出版社,1985,25-26.
    [35]张春霞,齐渊洪,胡长庆,等.炼铁系统二次能源利用与生态环境保护——烧结与炼铁的二次能源分析与污染物的排放[J].全国能源与热工2004学术年会,2004:578-582.
    [36] ZHANG C X,QI Y H,YAN D L,et al.Energy-saving and environmental protection of ironmaking system in China : proceedings of Asia Steel International Conference ,2006[C].Japan:Fukuoka,2006.
    [37]李淑敏,袁青.强化管理降低高炉煤气放散率[J].冶金能源,2003,22(2):5-6,16.
    [38]中国金属学会.2000年重点大中型钢铁企业主要产品产量、技术经济指标[J].冶金工业信息中心,2001,223(2):8-10.
    [39]吕红军.冶金经济信息[J].冶金工业信息中心,2003,464(17):3.
    [40]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收和利用[J].钢铁,2007,42(6):1-7.
    [41]戴晓天,齐渊洪,张春霞.熔融钢铁渣干式粒化和显热回收技术的进展[J].钢铁研究学报,2008,20(7):1-6.
    [42]严定鎏,郭培民,齐渊洪.高炉渣干法粒化技术的分析[J].钢铁研究学报,2008,20(6):11-13.
    [43] MAREELO R E , LUIZ F M . Thermodynamic analysis ol a coke dry quenching unit[J].Energy Conversion and Management,2000,41:109.
    [44] YARIYAMA M,KAWAGUCHI Y,KOCHIHIRA G,et al.Advanced energy saving technology developed at sintering plants of Kashima steel works:subject of a lecture at the ATS Steelmaking conference,1994[C].Japan:Fukuoka,1995.
    [45] CAPUTO A C,CARDARELLI G,M.PELAGAGGE P.Analysis of heat recovery in gas-solid moving beds using a simulation approach[J].Applied Thermal Engineering,1996,16(1):89-99.
    [46] ANTONIO C,CAPUTO C,PACIFICO M,et al.Fuzzy control of heat recovery systems from solid bed cooling[J].Applied Thermal Engineering,2000,(20):49-67.
    [47] HU C Q,ZHANG C X,HAN X W,et al.Sulfur flow analysis for new generation steel manufacturing process[J].Journal of Iron and Steel Research,2008,15(4):12-15.
    [48] APUTO A C, PELAGAGGE P M.Heat recovery from moving cooling beds:transient modeling by dynamic simulation[J].Applied Thermal Engineering,1999,(19):21-35.
    [49] GERASIMOV L K,VIKULOV G S,KABANOV YU A,et al.Results of installing system for heat recovery from sinter cooling in sintering plant[J].Steel in Translation,1998,28(3):8-9.
    [50]潘鹤,金永龙,马洛文,等.冷却制度对烧结矿性能的影响.钢铁,2007,42(11):5-8.
    [51]潘鹤.烧结环冷机系统测试技术及优化研究[D].鞍山:辽宁科技大学,2008.
    [52]余志杰,李奇永,徐海军,等.三钢2号烧结机烟气干法选择性脱硫装置的设计与应用[J].烧结球团,2007,32(6):15-18.
    [53] PELAGAGGE P M,CAPUTO A C,CARDARELLI G.Optimization criteria of heat recovery from solid beds[J].Applied Thermal Engineering,1997,17(1):51-64.
    [54] BENKMANN C.Reports on Science and Technology[R].Berlin:IISI,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700