烧结机尾气氨法脱硫吸收过程实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国钢铁冶炼以“烧结(球团)和焦化—高炉—转炉”的流程为主。据统计,烧结工艺所产生的SO_2的排放量达到了钢铁行业总排放量的70%以上,并呈上升趋势。烧结机脱硫已经成为我国节能减排工作的重点。长期以来,焦化工序产生的废氨水的处理难度极大,将焦化废氨水用来处理烧结机产生的SO_2既节约了脱硫成本,又解决了废氨水的处理问题,产生的硫酸铵是一种资源,符合可持续发展的要求。
     本文以烧结机排放的烟气中SO_2为研究对象,以氨法脱硫为研究手段,首先建立了脱硫塔内SO_2的吸收模型和气液运动模型,运用FLUENT软件模拟了脱硫塔内的流场和SO_2浓度场等,发现:喷淋对脱硫塔浆液池液面以上的烟气流场影响很小;无喷淋时,烟气在脱硫塔喷淋段的流场分布较均匀,增加喷淋后,喷淋段流场分布不均。此外,分析了脱硫塔内SO_2浓度场,发现SO_2浓度变化明显的地方是喷嘴形成的液膜的地方,说明喷淋液膜没有破碎之前脱硫效果最好,SO_2的脱除是靠喷嘴附近的浆液吸收完成的,SO_2浓度场的模拟为脱硫塔的优化设计提供了有利手段。
     本文从实验的角度考察了各关键因素(pH、液气比、初始SO_2浓度、烟气温度、浆液浓度)对脱硫效率的影响,发现:pH在4.0~4.5时对脱硫率影响不大,在4.5~7.0时对脱硫率影响比较明显;液气比与脱硫率在一定范围内线性关联较好;初始SO_2浓度越高,脱硫率越低;一定范围内的温度变化对脱硫率影响不大;吸收浆液浓度越高,脱硫率越低。
     本文模拟了各关键因素(pH、液气比、初始SO_2浓度、烟气温度、浆液浓度)对脱硫率的影响,并将模拟值和实验值进行了比较,发现:低pH条件下,模拟值和实验值对脱硫效率的影响趋势不符,高pH在一定程度上相符,但存在较大的偏差;不同液气比脱硫效率的模拟值和实验值之间存在10%以上的偏差,液气比为10L/m~3时,模拟曲线出现转折点,实验曲线没有转折点;初始SO_2为3000 mg/m~3时,在液气比小于12L/m~3曲线段SO_2脱除率模拟值与实验值变化趋势相关性比较好,液气比大于12L/m~3时,变化趋势不相符。初始SO_2为1000 mg/m~3时,在液气比大于10L/m~3曲线段SO_2脱除率模拟值与实验值变化趋势相关性比较好,液气比小于10L/m~3时,变化趋势不相符。3000 mg/m~3和1000 mg/m~3初始SO_2浓度的脱硫率模拟值和实验值偏差较大;温度越高模拟的脱硫率越高,与实验结论不符;模拟的浓度为15%的浆液脱硫效率最高,实验结果6%和15%的浆液脱硫效率相当。在一定范围内,低浓度浆液的脱硫效率高,模拟结果和实验结果之间有一定的偏差。
The process of sintering and coking, to blast furnace, then to converter is the main technology practiced in iron and steel smelting in China. According to statistics, the sintering process results SO_2 emissions to total emissions of the steel industry for over 70% and rising. Desulphurization of sintering machine has become the focus of our energy reduction. For a long time, coking processes produce the waste ammonia can be difficulty deal with, which will greatly used to handle sintering machine coking produced SO_2 both saved the desulfurization cost, and solves the processing problem ammonia waste produced a resource and ammonium sulfate with the requirement of sustainable development.
     In this paper, an absorption model of SO_2 in the tower and a motion model of liquid and gas were established. The flow distribution and the concentration distribution of SO_2 were simulated using the FLUENT software and the results showed that spraying hardly influenced the gas flow distribution above the liquid surface, while when the spraying stopped the gas distribution was uniform in the spray section of the desulfurization tower. Besides, by the analysis of the SO_2 concentration distribution, we found that where the nozzle formed the liquid film was the point where the concentration of SO_2 had a sharp change, which indicated that, best desulfurization was achieved before the spray liquid film broke and. So, in a word, the removal of SO_2 was accomplished by the slurry around the nozzle and the model of SO_2 concentration distribution is a good method to optimize the desulfurization tower.
     In this paper, the discharged SO_2 from the sintering machine as a target was treated through ammonia desulfurization process, the key factors such as pH, the ratio of liquid to gas, the initial SO_2 concentration gas temperature, and slurry concentration, were all investigated in experiments. Moreover, the slurry after desulfurization was tested and we found that low pH value under 4.5 had no obvious effect on the desulfurization efficiency, yet high pH value showed the opposite. The ratio of liquid to gas correlated to the efficiency within certain limits. The higher was the initial SO_2 concentration, the poorer was the desulfurization performance. Within a certain range, temperature had no significant influence upon the performance. The higher concentrations of the slurry lead to the lower efficiencies.
     The simulation of the key factors affecting the desulfurization efficiency was compared to the experiment values. Results showed that, under low pH conditions, simulated and experimental values did not match, and under the high pH, two values corresponded to each other to a certain extent, but there was a large deviation. There was a more than 10% deviation between different the simulated and experimental values under different liquid-gas ratio. When the ratio was 10L/m~3, the simulation curve had a turning point while there was none in the experimental curve. Under the initial SO_2 of 3000 mg/m~3 and the liquid-gas ratio less than 12L/m~3, SO_2 removal efficiency curve segment simulated trends associated better with the experimental, but when the liquid-gas ratio was greater than 12L/m~3, trends did not match. With the initial SO_2 of 1000 mg/m~3, the liquid-gas ratio was greater than 10L/m~3 SO_2 removal efficiency curve segment between the simulated and experimental data showed better correlation between trends, yet with liquid gas ratio less than 10L/m~3, the trends did not match. 3000 mg/m~3 and 1000 mg/m~3 SO_2 concentration in the initial desulfurization rate of deviation of simulated and experimental values was relatively large; the higher the temperature the higher the desulfurization rate of the simulation, but experimental results did not match; simulated slurry concentration of 15% accorded to desulfurization efficiency maximum, while the experimental results showed that slurry concentration of 6% and 15% had same efficiency. Within a certain range, low concentration slurries had better desulfurization efficiency, but there was a big difference between simulation results and experimental results.
引文
[1]蔡九菊,吴复忠,李军旗等.高炉-转炉流程生产过程硫素流分析[J].钢铁, 2008, 43(7): 91~95
    [2]郜学.我国烧结脱硫现状、存在问题和建议.钢铁论坛[J], 2010, (3): 24~25
    [3]李庭寿.加快推进我国烧结烟气脱硫及综合治理发展[].世界金属导报, 2010-06-15(22)
    [4]刘涛,李春风. 2011年前我国钢铁行业须新增烧结脱硫能力20万吨[].中国冶金报, 2009 (A02)
    [5]曲余玲,毛艳丽,张东丽.烧结烟气脱硫技术应用现状及发展趋势[J].冶金能源, 2010, 29(6): 51~56
    [6]史少军,叶招莲.钢铁行业烧结烟气同时脱硫脱硝技术探讨[J].电力科技与环保, 2010, 26(3): 17~18
    [7]党玉华,齐渊洪,王海风.烧结烟气活性炭脱硫研究[J].环境工程, 2010, 28(3): 66~69
    [8]丁士能.烧结机脱硫工艺如何选?.中国环境报, 2010-7-14(6)
    [9]杨亚欣,马玉香,任爱玲等.烧结烟气脱硫技术及脱硫产物综合利用研究进展[J].环境科学导刊, 2009, 28(6): 67~70
    [10]薛永杰,李雄浩等.烟气脱硫副产物资源化利用现状与发展方向[J].电力环境保护, 2009, 25(4): 47~49
    [11]游学明,罗万钢,朱俊杰等.利用焦化剩余氨水制备烧结烟气脱硫中脱硫剂氨水的工艺:中国, CN200910273438.6. 2010-06-02
    [12]孙学君,崔绍宇.烧结机烟气脱硫和焦化废水处理两大难题有望攻克.河北经济日报, 2010-4-17 (8)
    [13]缪天成,我国治理SO2污染的历程和建议[J].硫酸工业, 2000, 1: 1~9
    [14] Shale C C, Simpson D G, Lewis P S. Removal of sulfur and nitrogen oxides from stack gasses by ammonia[J]. Chem Eng Prog Symp Ser, 1971, 67(115): 52~57
    [15] Shale C C. Ammonia injection:a route to clean stack,in Pollution control and energy needs,advances in chemistry series 127.American Chemical Society Washington D C,1973
    [16] Toek R W, Hoover K C, Faust G J. SO2 removal by transformation to solid crystals of ammonia complexes[J]. AIChE Symp Ser, 1979, 75(188): 62~82
    [17] Stromberger M J. The removal of sulfur dioxide from coal-fired boiler flue gas by ammonia injection[J]. M.S. Thesis, University of Cincinnati, Cincinnati, 1984
    [18]张敏华,吕惠生,刘宗章.新刑规整填料在填料塔中的应用研究[J].化学工业与工程, 1996, 13(4): 50~54
    [19] Bai H, Biswas P, Keener T C. SO2 removal by NH3 gas injection: effects of temperature and moisture content[J]. Ind Eng Chem Res, 1994, 33(5): 1231~1236
    [20]何伯述,郑显玉,常东武等.温度对氨法脱硫率影响的实验研究[J].环境科学学报, 2002, 22(3): 412~416
    [21] He B, Zheng X, Wen Y, et al. Temperature impact on SO2 removal efficiency by ammonia gas scrubbing[J]. Energy Conversion and Management, 2003, 44: 2175~2188
    [22]周建宏,宁平,汤允.燃煤锅炉氨法烟气脱硫[J].云南环境科学, 2004, 23(1): 145~146
    [23]徐长香,傅国光.氨一硫铵法在锅炉烟气脱硫中的应用[J].化肥设计, 2004, 42(6): 40~41
    [24]徐长香,傅国光.氨法烟气脱硫技术综述[J].电力环境保护, 2005, 21(2): 17~20
    [25]颜金培,杨林军等.氨法脱硫过程中细颗粒物的变化特性[J].中国电机工程学报, 2009, 29(5): 21~26
    [26]鲍静静,印华斌等.湿式氨法烟气脱硫气溶胶的形成特性研究[J].高校化学工程学报, 2010, 24(2): 325~330
    [27]刘恩科. NADS氨一肥法脱硫工艺模拟软件的开发[D].上海:华东理工大学, 2002
    [28]杨莉,刘恩科.氨法烟气脱硫吸收过程的模拟计算[J].河南化工, 2003, 5: 33~36
    [29]郑淑芳.氨肥法烟气脱硫一脱硝一除尘一体化技术的研究[D].北京:华北电力大学, 2005
    [30]李江.氨法深度氧化烟气净化技术研究[D].北京:清华大学, 2005
    [31]李江,徐光.氨法深度氧化烟气净化技术[J].华东电力, 2005, 33(4): 1~3
    [32]申林艳.氨吸收法脱硫技术物料平衡计算及除雾器性能优化[D].北京:华北电力大学, 2006
    [33] Luca Marocco, Fabio Inzoli. Multiphase Euler–Lagrange CFD simulation applied to Wet Flue Gas Desulphurisation technology[J]. International Journal of Multiphase Flow, 2008
    [34] Luca Marocco. Modeling of the ?uid dynamics and SO absorption in a gas–liquid reactor[J]. Chemical Engineering Journal, 2010
    [35] MET. Ammonium Sulfate WFGD Technology[C]. Overview for general industry, 2007, 1~6
    [36]杜冬冬.氨-硫酸铵法烟气脱硫工艺研究[D].南京:南京理工大学, 2009
    [37]郝吉明,王书肖,陆永琪编著.燃煤二氧化硫污染控制技术手册[M].北京:工业出版社. 2001
    [38]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社. 2002
    [39] Sherwood T. K.and Pigford R. L. Absorption and extraction[M]. McGraw-Hill, New York, 1963
    [40] [苏联]B.M.拉姆著,刘凤至译.气体吸收(第二版) [M].北京:化学工业出版社,1985
    [41]童志权,大气污染控制工程[M].北京:机械工业出版社. 2006
    [42] Hinze J.O. Turbulence. McGraw-Hill Publishing Corporation[C], New York, 1975
    [43] Launder B.E. and Spalding D.B. Lectures in mathematical models of turbulence[M], Academic press, London, England, 1972
    [44] Markatos N.C. The mathematical modeling of turbulence flows[J]. Applied Mathematical Modeling, 1986, 10: 190~220
    [45] Rodi W. Turbulence models and their application in hydraulics, 2nd ed[J]. Netherlands, IAHR, 1984: 9~46
    [46] Serg-Eldin M. A. and Spalding D. B. Computations of three-dimensional gas turbine combustion chamber[J]. ASME Journal of Engineering for Power, 1979, 101: 327~336
    [47] Chieng C.C. and Launder B. E. on the calculation of turbulent heat transport downstream from an abrupt pipe expansion[J]. Numerical Heat Transfer, 1980, 3: 189~207
    [48] Farouk B. and Guceri S.I. Laminar and turbulent natural convection in the annulus between Horizontal concentric cylinders[J]. ASME Journal of Heat Transfer, 1982, 104: 631~636
    [49] Farouk B. and Guceri S. I. Natural convection from a horizontal cylinder[J]. Turbulent regime ASME Journal of Heat Transfer, 1982, 104:228~235
    [50] Pourahmadi F. and Humphery J. A. C. Prediction of curved channel flow with an extended k-e model of turbulence[J]. AIAA Journal, 1983, 21: 1365~1373
    [51] Amano R.S. Development of a turbulence near-wall model and its application to separated And reattached flows[J]. Numerical Heat Transfer, 1984, 7: 59-75
    [52] Gupta A. K and Lilley D. G Flow field modeling and diagnostics[M]. New York: Abacus Press,1985:36-39
    [53] Ramadhyani S. Two-equation and second-moment turbulence models for convective heat transfer. In: Minkowycz W. J., Sparrow E. M. eds. Advances in numerical heat transfer. Washington DC: Taylor & Francis, 1997, l: 171-199
    [54] Launder B. E. and Spalding D. B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-289
    [55] Morsi S. A. and Alexander A. J. An investigation of Particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208
    [56] O’Rourke P. J. Collective drop effete on vaporizing liquid sprays[D]. New Jersey: Princeton University, 1981
    [57] O’Rourke P. J. and Amsden A. A. The TAB method for numerical calculation of spray droplet breakup[C]. SAE Technical Paper, 872089, SAE, 1987
    [58]龙天渝,苏亚欣等.计算流体力学[M].重庆:重庆大学出版社. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700