基于弯道行驶的车辆自适应巡航控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应巡航控制系统(ACC)能够有效的减轻驾驶员疲劳强度并提高车辆行驶安全性。但是在弯道中,已有ACC系统采用的雷达目标提取算法无法实现对目标车辆的准确识别与跟踪;同时在弯道高速跟车过程中,ACC车辆还可能发生横向失稳的危险,而在原车直接横摆力矩控制(DYC)系统介入的过程中,ACC与其在某些工况下可能存在相互制约。针对上述问题,本文提出了弯道自适应巡航控制系统分层式多目标协调控制系统结构,并研究了该系统涉及的主要关键技术。
     为了提高ACC系统在弯道工况下的环境感知能力,首先在不额外增加传感器的前提下对仅利用车载雷达的弯道目标车辆识别与跟踪算法进行研究,基于自车与前车相对速度及方位角的关系对前车换道和进出弯道的工况进行识别,同时基于前车相对自车的横向距离的估计值和实际值的一致性程度对弯道中本车道前车和邻车道前车进行区分。
     为在弯道中保证ACC车辆横向稳定的前提下最大化其纵向跟车能力,利用滚动时域预测控制理论,提出一种基于DYC的弯道ACC纵向跟踪性和横向稳定性的协调控制方法,重点研究该协调系统控制器设计过程中所涉及的关键技术,包括弯道ACC系统控制对象即车辆的纵向动力学和横向动力学以及广义纵向车间动力学的集成建模,体现纵向跟踪性和横向稳定性的性能指标设计,以及滚动时域预测控制算法对模型不确定性的弱鲁棒性和在线计算高复杂度这两类实车实用化问题的求解。
     然后,为实现上述协调控制器输出的期望加速度和期望附加横摆力矩这两个控制指令,对ACC系统与DYC系统的执行器结构共用技术进行研究,对弯道ACC系统的伺服控制器结构进行改进,以减少或消除ACC与DYC在结构共用过程中存在的矛盾。
     为了验证本文系统的有效性,在三类弯道前车特定工况及道路附着条件下进行了驾驶员在环测试。试验结果表明,本文设计的弯道ACC系统可有效对弯道中的目标车辆进行准确识别与跟踪,可提高车辆在弯道自动跟车过程中的横向稳定性,同时减小DYC施加的附加制动力对纵向跟车性能的影响,并提高车辆在极限工况下的弯道跟车能力。
Adaptive Cruise Control (ACC) system has been believed to reduce driver’sworkload and improve driving safety effectively. However, existing ACC targetdetermination methods by radar cannot detect preceding vehicles properly on a curvedroad. And when ACC vehicle is running at a high speed to keep car-following on acurved road, it will even lose its lateral stability. A Direct Yaw-moment Control (DYC)system is always adopted to improve vehicle lateral stability. However, ACC and DYCare reversely interactive with each other in some driving situations. To address thoseissues, this thesis proposes a Curving ACC system that is coordinated with DYC andinvestigates its key technologies.
     To improve the environment perception of ACC, a new algorithm for radar-basedtarget vehicle identification and tracking on curved roads for ACC applications isstudied firstly. The identification between target curve-entry/exit and lane-change isaehieved based on the different relationship between relative velocity and azimuth angle.And the distinction of the host-lane preceding vehicle from the adjacent-lane one whiledriving through a curve is realized based on the deviation of the measured lateraldistance from a theoretical value.
     Then, to maximize longitudinal car-following capability while ensuring the lateralstability on curved road, a DYC based Curving ACC coordination controller is designedunder the framework of Receding Horizon Control theory, focusing on the generictechnologies study including predictive model building based on integrated vehiclelongitudinal/lateral dynamics and generalized inter-vehicle dynamics, performanceindex design considering the contradictions between vehicle longitudinal car-followingand lateral stability, and the derivation of practical problems as poor robustness to themodel uncertainties and high on-line computing complexity for receding optimizationalgorithm application on vehicles.
     Moreover, to execute the control output of abovementioned coordination controlleras desired longitudinal acceleration and desired yaw moment, the technology for sharingthe same actuator structure between ACC and DYC is studied and the servo controllerof Curving ACC is modified so as to reduce or eliminate the unexpected behavior ofshared actuators.
     To verify the validity of the Curving ACC system,a series of driver-in-the-looptests are carried out under three specified speed profiles of preceding vehicle andadhesion conditions on curved road and the test results confirm the followings. Thetarget vehicle around a curve can be properly identified and tracked by the proposedradar-based curving target vehicle identification and tracking method. The CurvingACC system can not only improve the lateral stability and weaken the impact of DYCextra brake on ACC longitudinal car-following performance, but also enhance thecar-following capability in limit conditions on curved road.
引文
[1]公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度).江苏:公安部交通管理科学研究所,2010.
    [2]李升波.车辆多目标协调式自适应巡航控制[博士学位论文].北京:清华大学,2009.
    [3]王景武,金立生.车辆自适应巡航控制系统控制技术的发展.汽车技术,2004,7:1-4.
    [4]宗长富,郑宏宇,田承伟,等.基于直接横摆力矩控制的汽车稳定性控制策略.吉林大学学报(工学版),2008,38(5):1010-1014.
    [5] W. Cho, S. Moon, C. Lee, S. Lee, K. Yi. Intelligent vehicle safety control based on indexplane. AVEC’10proceedings,2010:127-134.
    [6] Choon-Young Lee, Ju-Jang Lee. Object Recognition Algorithm for Adaptive Cruise Controlof Vehicle Using Laser Scanning Sensor.2000IEEE Intelligent Transportation SystemsConference Proceedings, Dearborn, USA, Oct.1-3,2000.
    [7]屠大维.用于车辆防撞控制的行车环境传感研究.中国机械工程,1999,10(6):.701-704.
    [8]侯德藻,李克强,连小珉,刘锋.新型车载探测雷达系统技术研究.中国机械工程,2004,15(21):1891-1902.
    [9]刘志峰,王建强,李克强.具有鲁棒特性的车载雷达有效目标确定方法.清华大学学报(自然科学版),2008,48(5):875-878.
    [10]施维颖,赵敏华.信息融合在辅助驾驶系统中的应用.现代电子技术.2003,17:84-86.
    [11] Thomas Bücher, Cristobal Curio, Johann Edelbrunner, Christian Igel, David Kastrup, IrisLeefken, Gesa Lorenz, Axel Steinhage, and Werner von Seelen. Image Processing andBehavior Planning for Intelligent Vehicles. IEEE transactions on industrial electronics,2003,50(1).
    [12] Zehang Sun, George Bebis and Ronald Mille. Quantized Wavelet Features and SupportVector Machines for On-Road Vehicle Detection. Seventh International Conference onControl, Automation, Robotics and Vision (ICARCV’02), Dec2002, Singapore.
    [13] W. Kruger, W. Enkelmann, and S. Rossle. Real-time estimation and tracking of optical flowvectors for obstacle detection. Proc. IEEE IV,1995:304–309.
    [14] Larry Matthies, Alonzo Kelly, Todd Litwin, Greg Tharp. Obstacle Detection for UnmannedGround Vehicles: A Progress Report. Intelligent Vehicles '95Symposium, Proceedings of the,25-26Sept.1995:66–71.
    [15]陈莹,韩崇昭.运动车辆的多传感融合跟踪.西安交通大学学报,2004,38(10):1035-1039.
    [16] Noriko Shimomura, Kazumi Fujimoto, Takahiko Oki. An Algorithm for Distinguishing theTypes of Objects on the Road Using Laser Radar and Vision. IEEE Transactions ofIntelligent Transportation Systems,2002,3(3):189-195.
    [17] Shunji Miyahara. A method for radar-based target tracking in non-uniform road condition.2003SAE,2003-01-0013.
    [18] Shunji Miyahara, Jerry Sielagoski, Faroog Ibrahim. Radar-based target tracking method:application to real road.2005SAE,2005-01-1478.
    [19] Yutaka Fujii. Travel System of Automobile. Japanese Patent JP4236699.1992-8-25.
    [20] Yutaka Fujii. Vehicle Speed Control System. US Patent5315295.1994-5-24.
    [21] Automotive Collision Avoidance System Field Operation Test. Final Program Report.National Highway Traffic Safety Administration.2005.5
    [22]清水直茂.日产全球首创导航与刹车联动风雅“导航协调系统”的工作原理.2008-01-22
    [2010-12-15]. http://www.motorlink.cn/html/marketInfo/10000117857eea7720080122112911265.html.
    [23] Shinji Matsumoto, Satoshi Tange, et al. Adaptive Cruise Control System for AutomotiveVehicle. US Patent7337055.2008-2-26.
    [24] Bauer, O., Mayr, R. Extension of intelligent cruise control systems by velocity profileplanning components. Systems, Man, and Cybernetics,2001IEEE International Conference.2001, Oct,7-10.
    [25] Y. Shibahata, K. Shimada, et al. Improvement of vehicle maneuverability by direct yawmoment control. Vehicle system dynamics,1993,(22):465-481.
    [26] Anton T. VanZanten, Rainer Erhardt, et al. VDC systems development and perspective. SAE:980235.
    [27] Anton T. VanTanten. Bosch ESP systems:5years of experience. SAE:2000-01-1633.
    [28]李晔.汽车ESP控制策略及其硬件实现研究[硕士学位论文].南京:东南大学,2006.
    [29] Garcia C. Quadratic dynamic matrix control of nonlinear process. Proc. of AICHE AnnualMeeting, San Francisco, USA,1984.
    [30]舒迪前.预测控制系统及其应用.北京:机械工业出版社,1996.
    [31] Seoterboek R. Predictive Control: A Unified Approach. London: Prentice Hall International(UK) Limited,1992.
    [32]席裕庚.预测控制.北京:国防工业出版社,1993.
    [33]王景润.约束滚动时域预测控制鲁棒性问题研究[硕士学位论文].哈尔滨:哈尔滨理工大学,2004.
    [34] Saerens B, Vandersteen J, et al. Minimization of the fuel consumption of a gasoline engineusing dynamic optimization. Applied Energy,7.2009.
    [35] Garca-Nieto S, Martnez N, et al. Nonlinear predictive control based on local model networksfor air management in diesel engines. Control Engineering Practice,2008,16(12):1399-1413.
    [36] Ferreau H, Ortner P, et al. Predictive control of a real-world Diesel engine using an extendedonline active set strategy. Annual Reviews in Control,2007,31(2):293-301.
    [37] Anwar S. Generalized predictive control of yaw dynamics of a hybrid brake-by-wireequipped vehicle. Mechatronics,2005,15(9):1089-1108.
    [38] Yoon Y, Shin S, et al. Model-predictive active steering and obstacle avoidance forautonomous ground vehicles. Control Engineering Practice,15,2009.
    [39] Baskar L D, Schutter D B, Hellendoorn H. Model-based predictive traffic control forintelligent vehicles: dynamic speed limits and dynamic lane allocation. Proc. of2008IEEEIV Symp., Eindhoven, The Netherlands,2008.
    [40] Coen T, Anthonis J, et al. Cruise control using model predictive control with constraints.Computers and Electronics in Agriculture,2008,63(2):227-236.
    [41] Latteman F, Neiss K, et al. The predictive cruise control-A system to reduce fuelconsumption of heavy duty trucks. SAE Transactions,2004,113(2):139-146.
    [42] Nouveliere L, Menhour L, et al. Infrastructure based fuel consumption optimization of avehicle. Proc. of the9th Intl. Symp. on Advanced Vehicle Control, Kobe, Japan,2008:300-305.
    [43] Hellstrom E, Ivarsson M, et al. Look-ahead control for heavy trucks to minimize trip time andfuel consumption. Control Engineering Practice,17(2),2008:245-254.
    [44] Bageshwar L, Garrard L, Rajamani R. Model predictive control of transitional maneuvers foradaptive cruise control vehicles. IEEE Transactionson Vehicular Technology,2004,53(5):1573-1585.
    [45] Corona D, Lazar M, Schutter D, Heemels M. A hybrid MPC approach to the design of aSmart adaptive cruise controller. Proc. of the2006IEEE Intl. Conf. on Control Applications,Munich, Germany,2006:231-236.
    [46] Corona D, Schutter D. Adaptive cruise controller design: A comparative assessment for PWASystems. Preprints of the2nd IFAC Conf. on Analysis and Design of Hybrid Systems,Alghero, Italy,2006:253-257.
    [47] Corona D, Necoara I, et al. Robust hybrid MPC applied to the design of an adaptive cruisecontroller for a road vehicle. Proc. of the45th IEEE Conf. on Decision and Control, SanDiego, California,2006:1721-1726.
    [48] Corona D, Schutter D. Comparison of a linear and a hybrid adaptive cruise controller for aSMART. Proc. of the46th IEEE Conf. on Decision and Control, New Orleans, USA,2007:4779-4784.
    [49] Corona D, Schutter D. Adaptive cruise control for a SMART car: A comparison benchmarkfor MPC-PWA control methods. IEEE Transactions on Control Systems Technology,2008,16(2):365-372.
    [50] Naus G, Ploeg J, et al. Explicit MPC design and performance-based tuning of an adaptivecruise control Stop-&-Go. Proc. of2008IEEE IV Symp., Eindhoven, The Netherlands,2008:434-439.
    [51] Shengbo Li, Keqiang Li, Rajesh Rajamani, Jianqiang Wang. Model PredictiveMulti-Objective Vehicular Adaptive Cruise Control. The48th IEEE Conference on Decisionand Control, Shanghai, December16-18,2009.
    [52] Shengbo Li, Keqiang Li, Jianqiang Wang, Lei Zhang, Xiaomin Lian, Hiroshi Ukawa,Dongsheng Bai. MPC based Vehicular Following Control Considering both Fuel Economyand Tracking Capability. Proceedings of2008IEEE Vehicle Power and PropulsionConference, Harbin, China,2008.
    [53] LI Shengbo, BIN Yang, LI Keqiang, Hiroshi Ukawa, Dongsheng Bai, Masatoshi Handa. AControl Strategy of ACC System Considering Fuel Consumption. Proceedings of The8thInternational Symposium on Advanced Vehicle Control, Taipei, China,2006:851-855.
    [54] Sohel Anwar. Predictive Yaw Stability Control of a Brake-By-Wire Equipped Vehicle viaEddy Current Braking. Proceedings of the2007American Control Conference. New York,U.S.A:2007:2308-2313.
    [55] M. Mirzaci, G. Alizadeh, M Eslamian, S. Azadi. An optimal approach to non-linear control ofvehicle yaw dynamics. Proc. IMechE Part I: J. Systems and Control Engineering,2008,222:217-229.
    [56]刘力.基于AFS和DYC的车辆运动稳定性协调控制方法[博士学位论文].北京:清华大学,2009.
    [57]钱积新,赵均,徐祖华.预测控制.化学工业出版社,2007.
    [58] Kwon W H, Pearson A E. A modified quadratic cost problem and feedback stabilization of alinear system. IEEE Trans. Automat. Control,1977,22(5):838-842.
    [59] Kwon W H, Pearson A E. On feedback stabilization of time-varying discrete linear systems.IEEE Trans. Automat. Control,1978,23(3):479-481.
    [60] Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems.IEEE Trans. Automat. Control,1993,38:1623-1633.
    [61] Rawlings J B, Muske K R. The stability of constrained receding horizon control. IEEE Trans.Automat. Control,1993,38(10):1512-1516.
    [62] Zheng A, Morari M. Stability of model predictive control with mixed constrained. IEEETrans. Automat. Control,1995,40(10):1818-1824.
    [63] Kwon K H, Byun D G. Receding horizon tracking control as a predictive control and itsstability properties. Int J Control,1989,50:1807-1824.
    [64] Zheng A. A computationally efficient nonlinear MPC algorithm. Proceedings of theAmerican Control Conference, Albuquerque, USA, IEEE,1997:1623-1627.
    [65]杜晓宇,席裕庚.预测控制优化变量的集结策略.控制与决策,2002,17(5):563-566.
    [66] Li D W, Xi Y G. The general framework of aggregation strategy in model predictive controland stability analysis. Proceedings of the11th IFAC Symposium on Large Scale SystemsTheory and Applications, Gdansk, Poland,2007.
    [67]刘斌,席裕庚.一种基于集结的鲁棒MPC控制器.自动化学报,2003,29(6):801-808.
    [68] Bemporad A, Morari M, Dua V, et al. The explicit linear quadratic regulator for constrainedsystems. Automatica,2002,38(1):3-20.
    [69] Rossiter J A, Grieder P. Using interpolation to improve efficiency of multiparametricpredictive control. Automatica,2005,41(4):637-643.
    [70] Wan Z Y, Kothare M V. An efficient off-line formulation of robust model predictive controlusing linear matrix inequalities. Automatica,2003,39(5):837-846.
    [71]邓勃.分析测试数据的统计处理方法.北京:清华大学出版社,1995.
    [72] Andreas Eidehall, Jochen Pohl, Fredrik Gustafeeon. Joint road geometry estimation andvehicle tracking. Control Engineering Practice15,2007:1484-1494.
    [73] Jan K. Schiffmann, Glenn R. Widmann. Model-based Scene Tracking Using Radar Sensorsfor Intelligent Automotive Vehicle Systems. IEEE Conference on Intelligent TransportationSystem,1997:421-426.
    [74]李以农,卢少波,郑玲,等.车辆弯道变速行驶时的纵横向耦合控制研究.系统仿真学报,2007,19(23):5524-5528.
    [75] Pham H, Hedrick J K, Tomizuka M. Combined Lateral and Longitudinal Control of Vehiclesfor IVHS. Proceedings of the American Control Conference, Baltimore MD,1994:1205-1206.
    [76] Hedrick J K, Swaroop D. Dynamic Coupling in Vehicle Under Automatic Control. VehicleSystem Dynamics,1994,23(S):209-220.
    [77]夏小华,高为炳.非线性系统控制及解耦[M].北京:科学出版社,1997.
    [78]宾洋,李克强,李升波,等.重型车辆走-停巡航系统的干扰解耦控制.机械工程学报,2006,42(9):207-213.
    [79] Kirstin L.R. Talvala, J. Christian Gerdes. Lanekeeping at the limits of handing: stability viaLyapunov functions and a comparison with stability control.2008ASME Dynamics Systemsand Control Conference, Ann Arbor, Michigan, USA, Oct.20-22,2008:1-8.
    [80]吴麒.自动控制原理.北京:清华大学出版社,1992.
    [81]吴麟.现代控制理论.北京:高等教育出版社,1990.
    [82]李清泉.自适应控制系统理论设计与应用.北京:科学出版社,1990.
    [83] Apkarian P, Gahinet P and Becker G. Self-scheduled H∞control of linear parameter-varyingsystems: a design example. Automatica,1995,31(9):1251-1261.
    [84]杨秀建,王增才.基于线性变参数建模的汽车横摆力矩增益调度控制.机械工程学报,2008,44(2):230-238.
    [85] Bageshwar L, Garrard L, Rajamanin R. Model predictive control of transitional maneuversfor adaptive cruise control vehicles. IEEE Transactions on Vehicular Technology,2004,53(5):1573-1585.
    [86] PACEJKA B. Tyre and vehicle dynamics. Cornwall: MPG Books Ltd.,2002.
    [87] K. Donghyun, H. Sungho, K. Hyunsoo. Vehicle Stability Enhancement Control for a4WDHEV. The21st International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium&Exposition, Monaco,2005.
    [88] Makoto Kim, Kevin Walters. A Research of Direct Yaw Moment Control on Slippery Roadfor In-Wheel Motor Vehicle. The22nd International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium&Exposition, Yokohama, Japan,2006:2122-2133.
    [89]王庆年,王媛媛,靳立强.四轮独立驱动电动车转向驱动的转矩协调控制.吉林大学学报:工学版,2007,37(5):985-989.
    [90] Donghyun Kim, Sungho Hwang, Hyunsoo Kim. Vehicle stability enhancement offour-wheel-drive hybrid electric vehicle using rear motor control. Transactions on VehicularTechnology, IEEE, Press,2008,57:727-735.
    [91]王会义,宋健.汽车电子稳定程序的控制算法.清华大学学报(自然科学版),2007,47(2):224-227.
    [92]张磊.基于驾驶员行为特性的车辆前撞报警系统[硕士学位论文].北京:清华大学,2006.
    [93] Corona D, Lazar M, Schutter D, Heemels M. A hybrid MPC approach to the design of aSmart adaptive cruise controller. Proc. of the2006IEEE Intl. Conf. on Control Applications,Munich, Germany,2006:231-236.
    [94] Anton T.VAN Zantan, Rainer E.Georg P. etc. Control Aspects of the Bosch VDC: The3rdInternational Symposium on Advanced Vehicle Control, Aachen, Germany,1996:573-608.
    [95] M. Mirzaei. A new strategy for minimum usage of external yaw moment in vehicle dynamiccontrol system. Transportation Research Part C18,2010:213-224.
    [96] Rajesh Rajamani. Vehicle Dynamics and Control. Springer Science,2006.
    [97]张为.基于DYC的车辆ESC系统控制方法及其仿真试验平台研究[博士学位论文].北京:北京航空航天大学,2010.
    [98] M. Gen, G.R. Chen. Multiobjective optimization using genetic algorithms. EngineeringValuation and Cost Analysis,1999,2:303-310.
    [99]余元辉.基于均方差值调节的多目标权重系数GA算法.沈阳化工学院学报,2008,22(4):355-359.
    [100]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状.自动化学报,2008,34(10):1225-1234.
    [101] Kothare M V, Balakrishnan V, Morari M. Robust Constrained Model Predictive Controlusing Linear Matrix Inequalities. Automatica,1996,32(10):1361-1379.
    [102] Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems.IEEE Trans. Automat. Control,1993,38:1623-1633.
    [103] Rawlings J B, Muske K R. The stability of constrained receding horizon control. IEEE Trans.Automat. Control,1993,38(10):1512-1516.
    [104] Richalet J, Rault A, et al. Model predictive heuristic control: applications of industrialprocesses. Automatic,1978,14(5):413-428.
    [105] Kothare M, Nevistic V, Morari M. Robust constrained model predictive control for nonlinearsystems: A comparative study. Proc. of the34th Conf. on Decision&Control, New Orleans,USA,1995:2884-2885.
    [106]武俊峰,王振英.基于状态观测器的约束鲁棒模型预测控制.计算技术与自动化,2005,24(2):7-9.
    [107]李亚东,李少远.基于LMI的多模型鲁棒预测控制.控制理论与应用,2002,19(6):829-832.
    [108] Gahinet P, Nemirovski A, Laub A J, et al. LMI control toolbox: for use with MATLAB: TheMathworks, Inc. Matick, MA,1995.
    [109] Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming.Society for Industrial and Applied Mathematics, Philadephia: SIAM,1994.
    [110]俞立.鲁邦控制-线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [111]张为.基于DYC的车辆ESC系统控制方法及其仿真试验平台研究[博士学位论文].北京:北京航空航天大学,2010.
    [112]余志生.汽车理论:第五版.北京:机械工业出版社,2009.
    [113]张晨晨.汽车稳定性控制系统的研究和软件开发[硕士学位论文].北京:清华大学,2010.
    [114]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究.汽车工程,2006,28(9):844-848.
    [115] Dugoff H., Francher P. S., Segel L. An analysis of tire traction properties and their influenceon vehicle dynamic performance. SAE Paper700377,1970.
    [116] Carlson C. R. Estimation with application for automobile dead reckoning and control.Doctoral dissertation, Stanford, California, USA: Stanford University,2004.
    [117]李亮,宋健,于良耀,等.低附路面汽车动力学稳定性控制系统控制策略.机械工程学报,2008,44(11):229-235.
    [118]李亮.汽车动力学稳定性控制系统状态观测和控制方法研究[博士学位论文].北京:清华大学,2008.
    [119] Dennis A. Guenther, Tejas Kinjawadekar, et al. Vehicle Dynamics Modeling and Validationof the2003Ford Expedition with ESC using CarSim. SAE paper2009-01-0452,2009.
    [120] Tomoya Toyohira. The validity of EPS control system development using HILS. SAE paper2010-01-0008,2010.
    [121] Wilkinson J., Mousseau C. W., Klingler T. Brake response time measurement for a HILvehicle dynamics simulator. SAE paper2010-01-0079,2010.
    [122] Reymond G., Heidet A., Canry M., Kemeny A. Validation of Renault’s dynamic simulatorfor Adaptive Cruise Control experiments.
    [123] Pan W., Papelis Y. E. Real-time dynamics simulation of vehicles with electronic stabilitycontrol: modeling and validation. International Journal of Vehicles Systems Modelling andTesting,1(1-3),2005:143-167.
    [124] Yoon J., Chung T., Cho W., Yi K. Human-in-the-loop evaluation of unified chassis controlsystem using a driving simulator on a virtual test track. AVEC2010, Loughborough, UK,2010:906-911.
    [125] Yi K, Kwon Y D, Vehicle-to-vehicle distance and speed control using an electronic-vacuumbooster, JSAE Review,2001,22:403-412.
    [126] Yi. K, Han D. A vehicle cruise control design based on human drivers driving pattern. Proc.of9th world multi-conf. on systemics, cybernetics and informatics, Florida, USA,2005.
    [127] Dezhao Zhang, Qing Xiao, Meng Lu, Jianqiang Wang. Driver Specific ACC Speed Profilefor Curved Roads. FISITA2010, Budapest, Hungary, May30-June4,2010.
    [128] Osamu Nishihara, Hirmitsu Kumamoto. Minimax Optimizations of Tire Workload ExploitingComplementarities between Steering and Traction/Braking Force Distributions. The8thInternational Symposium on Advanced Vehicle Control. Taipei, China,2006:713-718.
    [129] Ossama Mokhiamar, Masato Abe. How The Four Wheels Should Share Forces in AnOptimum Cooperative Chassis Control. Engineering Practice.2006,14:295-304.
    [130] Ossama Mokhiamar, Masato Abe. Simultaneous Optimal Distribution of Lateral andLongitudinal Tire Forces for the Model Following Control. Journal of Dynamics Systems,Measurement, and Control.2004,126:753-763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700