海底管道铺设焊接机器人系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管道铺设全位置焊接机器人是深水管道铺设系统中重要的专用铺管设备,其稳定的工作性能及较高的焊接效率是决定铺管效率即施工经济效益的第一因素。由于海底管道铺设焊接机器人一直由国外专业公司垄断,不仅设备购置费昂贵,后期的设备维护、焊接工艺购置费用也价值不菲,国内又不具备海底管道铺设焊接机器人设计制造能力,这严重制约着南海深水油气田的勘探开发进程。为满足我国深水油气田开发工程的需要,打破国外技术垄断,实现海底管道铺设焊接机器人的国产化,需要对海底管道铺设焊接机器人的机构设计、控制系统体系结构、关键技术及焊接工艺等问题进行深入研究。
     本文在充分调研国内外管道焊接机器人研究现状的基础上,根据海底管道铺设全位置焊接的工艺特征,分析了海底管道铺设焊接系统结构,提出了海底管道铺设焊接机器人系统总体设计方案,明确了需要研究的关键技术。主要的研究工作如下:
     1、研究了海底管道铺设焊接机器人控制系统的开放式体系结构。针对传统机器人控制系统无法解决多总线异构设备之间的实时数据交换问题。提出了基于EtherCAT的多总线异构网络横向互联的实时控制数据交换模型。采用基于Windows的软PLC过程数据映射技术实现异构系统的数据交换及各功能子系统间的协同控制。以开放式控制网络体系结构研究为理论基础,对海底管道铺设焊接机器人控制系统的总体结构及各功能子系统进行了设计,形成了基于CAN-open的数字化焊接电源控制、运动控制、角度传感、电气辅助、完整的数据管理和在线监控等功能单元与一体的综合控制系统。设计的控制系统开放性和可扩展性好,有利于电弧传感、接触传感、激光跟踪等智能化应用功能的扩展。
     2、对海底管道铺设焊接机器人运动控制系统进行了研究。采用正弦波驱动无刷直流电动机的id=0矢量控制策略,有效地抑制直流无刷电机的电磁转矩脉动,提高了驱动电机的控制精度;摆动机构在采用电流内环速度外环控制结构的基础上,加入低通滤波器和陷波滤波器。低通滤波器能抑制系统中的高频干扰,陷波器的使用剔除了摆动机构传动环节中存在弹性变形导致的机械共振点,提高了摆动机构控制精度。采用激光测距传感器测量齿间隙量,并对其进行补偿,保证了摆动机构摆宽的精度。
     3、针对行走机构双电机驱动的严格同步要求,采用“分时通信、同步执行”的协议模型实现同步组单轴速度指令的同步执行。由于刚性连接的两行走电机间的耦合关系导致的负载不均衡及两轴实际速度不协调问题,提出了主从速度跟随单轴变增益同步控制算法,测试结果表明该算法保证了两轴同步运动的精度,可保证整个焊接过程的平稳运行。
     4、分析了系统中关键设备CAN-open通信模块的接口特性,研究了CAN-open设备模型原理及主站单元与数字化焊接电源、伺服驱动器等从站单元的数据交换过程,利用SDO通信方式配置设备对象词典,通过PDO通信方式确保了多个功能子系统数据透明传输和一体化协同控制的顺利实现。
     5、研究了海底管道铺设优质高效的流水生产线式焊接作业模式,依据制定的流水线生产工艺,构建了海底管道铺设生产线多级控制网络平台。研究了焊接工作站双焊接机器人协同操作实现自动焊道覆盖功能的技术手段。采用自动化设备规范通信技术及实时以太网技术能实现双机器人控制系统间的数据交换,利用双机器人协同操作控制策略读取共享变量,按照协同操作控制逻辑能保证起弧与停弧位置一致性,能使焊接接头形成无缺陷对接。
     6、针对管道焊接工艺特点,分析了实现电弧传感在管道焊接应用中的技术难点,研制了适宜于管道焊接的高速扫描焊炬,用于较高摆动频率下的电弧传感研究。在搭建的焊接试验平台上进行了电弧传感的初步研究,提出了边界区域电流均值法提取焊缝横向偏差,取得了一定的跟踪效果,为更深入的研究基于电弧传感的管道焊接焊缝跟踪系统打下基础。
     7、海管铺设全位置焊接工艺研究。以海底管道铺设焊接机器人为对象,研究主要焊接工艺参数的匹配规律,形成了一套用于指导焊接工艺参数的调节规范。采用双炬焊接工艺及窄间隙坡口和背部铜衬垫内对口器等有效技术手段,进行管道焊接工艺试验,确立了一套海底管道铺设焊接机器人的焊接工艺参数。进行了铺管焊接机器人海上焊接试验,焊接效率高,焊缝成形良好。通过海上试验诸多环节的考验,焊接样机的技术性能完全满足海上应用需要。
     以上研究成果为海底管道铺设焊接机器人工程样机的制造提供依据,为深入开展智能化关键技术的研究奠定了基础,将会有效的推进海底管道铺设焊接机器人的实际工程化应用进程。
All-position welding robot which is used to submarine pipeline laying isthe important special equipment of deep-water pipeline laying system. Theproductivity and reliability are most essential features of thesubmarine pipeline laying robot. Because submarine pipeline laying weldingrobot has been monopolized by foreign professional companies, the equipmentis not only expensive, but also its maintenance and welding process cost isexpensive, above all, our country don’t have the ability to design andmanufacture the submarine pipeline laying welding robot, so these seriouslyhamper the exploration and development of South Sea oil and gas fields. Inorder to meet the needs of develop deep-water oil and gas fields, to break themonopoly of foreign technology and to achieve the localization of submarinepipeline laying welding robot, we must furtherly study the mechanical design,control system architecture, key technology and welding process of submarinepipeline laying welding robot.
     Based on the domestic and foreign research situation of pipelinewelding robot and the process characteristic of submarine pipeline layingall-position welding, the architecture of submarine pipeline laying welding system was analyzed, the whole design scheme and key technology ofsubmarine pipeline laying welding robot system were proposed. Themain research work follows:
     1. The open system structure of submarine pipeline welding robot controlsystem has been studied. The real-time control network data exchange modelbased on EtherCAT and real-time transverse interconnection fieldbus isestablished. Soft PLC process data mapping technology based on Windows isused to achieve data exchange of heterogeneous system and cooperationcontrol between functional subsystems. On the theoretical basis of opencontrol network architecture, the overall structure of the submarine pipelinelaying welding robot control system and functional subsystems are designed.Digital welding power based on CAN-open, motion control, angle sensing,electricity and gas auxiliary unit, a complete data management and on-linemonitoring functional unit is integrated in control system. Opening controlsystem is characterized by strong data processing and expandable ability,which can be extended to a number of intelligent applications, such as arcsensor, contact sensor, laser tracking.
     2. For the BLDCM which has a trapezoidal back-EMF,this dissertationproposes a novel id=0vector control method,it can effectively minimize thetorque ripple caused by distortion of the back-EMF and improve the precisionof motor control. Using double closed loops PID controller with velocity andcurrent, low-pass filters, and notch filters. The high frequency interferences in system were suppressed by low-pass filter, the machinery vibration atresonance point in pulling and rotating mechanism are attenuated by digitalnotch filter, so improving the control accuracy of the oscillation mechanism.The accuracy of oscillation width mainly depends on the gear gap measuredby laser displacement sensor and compensation.
     3. In allusion to the strict demand of synchronization of dual motordriving the running mechanism, the profile velocity operating mode using forvector group based on CAN-open protocol is presented, a novel protocolmodel named “communication by time-sharing and executing onsynchronization” was adopted for simultaneous executing velocity command.Due to a load imbalance problem and the discordance of two-axis actualvelocity caused by the coupling relationships between two drive motor byrigid joint, The master-slave speed follower arithmetic of dual-motor drivenwelding robot is proposed under the various loads. Experimentation resultindicates that the accuracy of two-axle synchronous movement and theoperation stability of welding robot are ensured by using the algorithm.
     4. Analysis of module's interface features of key equipment based onCAN-open communication, CAN-open device model principle and dataexchange process of the master-slave unit have been studied. By means ofSDO communication way to deploy equipmental Objects Dictionary, PDOcommunication is used to achieve process data fast exchange and cooperationcontrol between functional subsystems.
     5. The welding operation mode that submarine pipeline laying productionlines has high welding quality and efficiency has been studied. According toproduction technology of assembly line, a multi-level control networkplatform is constructed to realize effective distribution control and cooperativemanagement for the whole assembly line. The technical means that dual-robotare cooperatively controlled to achieve the automatic weld bead overlayfunction in a welding workstations has been studied. The thesis achieves thedata exchange between the dual-robot control system by means of automationequipment specification communications technology and real-time Ethernettechnology, it also reads the shared variability by the dual-robot collaborativecontrol strategy, guarantees the position consistence between arc and stoppingthe arc, and makes the welding joints no defects.
     6. In allusion to the characteristics of pipeline welding process, technicaldifficulties achieving arc sensor in pipe welding were analyzed, high speedoscillation torch which is suitable for pipe welding was developed and be usedto study arc sensor in a higher oscillating frequency. The welding test platformwas built to preliminarily evaluate the sensitivity of arc sensor system. Thecurrent average of the border algorithm has been proposed to extract thelateral deviation of welding bead. The result showed that the trackingalgorithm is feasible, it’s lay the foundation for furtherly study pipe weldingbased on arc sensor.
     7. The welding parameters matching rule of submarine pipeline laying welding robot was studied. A set of welding parameters adjustmentspecification has been obtained. These technological means which containsdual-torch welding procedure, narrow gap groove, an internal line-up clampwith copper was used in pipe welding test. With the welding proceduredeveloped in the welding laboratory, a series of sound welds have beenobtained efficiently in offshore pipeline laying welding site at Bohai Sea.
     These research results would provide the references for submarinepipeline laying welding robot design and manufacturing, and also lays thefoundation of further studies on intelligent key technologies. The content ofthis dissertation will effectively promote the process of practical engineeringapplications for submarine pipeline laying welding robot.
引文
[1]李晓兰.中海油加紧南海勘探[J].海洋石油,2010,24(1):8-12
    [2]孟其林.中海油宣布南海第三个深水发现[J].海洋石油,2010,25(1):27-30
    [3]林闻,金应.世界深水油气勘探新进展与南海北部深水油气勘探[J].石油物探,2009,48(6):601-605
    [4]李乐,汪保青.“海洋石油201”深水铺管起重船项目总线通讯问题研究[J].船舶工程,2010,32(S1):36-40
    [5]杨培举.亚洲首艘3000米深水铺管起重船“海洋石油201”顺利出坞[J].中国船检,2010,9(6):10-12
    [6]泠风.世界级深水钻井平台“海洋石油981”顺利出坞[J].中外能源,2010,2(3):3-5
    [7]深水半潜式钻井平台“海洋石油981”建成投用[J].科技传播,2011,10(11):15-18
    [8] Dick Wolbers, Rob Hovinga. Installation of Deepwater Pipelines With Sled AssembliesUsing The New J-Lay System of the DCV Balder [A]. Offshore TechnologyConference[C].Houston:Texas,2003
    [9]杨永升,熊平安,徐寿钦.国内外铺管船简介[J].船舶与设备,2010,6(6):25-28
    [10]叶玮.海底管道新型铺管方法--卷管法的施工技术研究[D].杭州:浙江大学.2006
    [11] Massimo Pulici, Marian Trifon, Andrei Dumitrescu. Deep water sealines installation byusing the J-lay method---the Blue Stream experience [A]. In: Proc.13th Int Conf [C]. USA,Honolulu: Offshore and Polar Engineering,2003,25–30
    [12] Dominique Perinet and Ian Frazer. J-Lay and Steep S-Lay: Complementary Tools forUltradeep Water [A]. In: Proc.15th Int Conf [C]. USA, Honolulu: Offshore and PolarEngineering,2007
    [13] D. Yapp, S.A. Blackman. Recent Developments in High Productivity Pipeline Welding [J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2004,16(1):89-97
    [14] Mauro Pontremoli. A New Generation of Ultra High Strength Xl00/X120pipelines [J].Offshore and polar Engineering,2005,18(29):485-497
    [15] Shuji okaguchi. Production and development of Linepipe Steel in Grade X l00andX120[J]. Report of Seminar Forum of X100/X120Grade High Performance Pipe Steel.China, Beijing,2005,18(5):355-358
    [16]王晓香.超高强度管线钢管研发新进展[J].焊管,2010,32(2):18-21
    [17]赵英利,时捷,包耀宗,谢刚.X120级超高强度管线钢生产工艺研究现状[J].特殊钢,2009,41(5):34-38
    [18] Gianetto J A, Bowker J T, Dorling D V, et al. St ructure and properties of X80and X100pipeline girth weld [J]. Minister of Natural Resources,2004,8(9):1485-1497
    [19] Fairchild D P, Macia M L. Girth welding development for X120pipeline [A].In:Proc.13th International Con[C]. USA, Honolulu: Offshore and Polar Engineering,2003,26-35
    [20] LIU X Y. Sub-sea pipeline and it s welding in china [J].Ship Building of China,2003,44(S1):65-69
    [21] Paton B E, Shelyagin V D,杜兵.乌克兰巴顿电焊研究所在焊接工艺及相关领域的新成果[J].焊接,2007,61(10):1-11
    [22] Hudson R S, Carnes R W, Nichols S P1Advances in homopolar welding of API line pipefor deepwater applications [J]. SPE Production&Facilities,1999,14(2):94-101
    [23] Bonigon C, Geertsen1Orbital laser welding: A major advance in offshore pipe laying [A].Proc. Conf[C]. Deep Offshore Technology, New Orleans:USA,1998
    [24] Yapp D, Blackman S A. Recent developments in high productivity pipeline welding [J].J.of the Braz. Soc. Of Mech.Sci.&Eng,2004,26(1):89-97
    [25] David S Howse,Robert Scudamore J,Geoff Booth The evolution of Yb fibre laserPMAG hybrid processing for welding of pipelines[A]. In: Proc15th Int Conf [C]. Offshoreand Polar Engineering,2005
    [26] Howse D S, Scudamore R J, Booth G S, et al. Development of the laser PMAG hybridwelding process for land pipeline construction [A]. Proc.Application and Evaluation ofHigh-Grade Pipelines in Hostile Environments[C]. Pacifico Yokohama,2002
    [27] Bruno de Sivry,Bernard Sudreau,et al. Electron beam welding of J curve pipelines [A]. In:Proc12th Int Conf [C]. Houston:Texas,1980
    [28]赵海鸿,尹长华,祁励. CRC管道全位置自动焊机的发展[J],电焊机,2005,35(8):26-28
    [29] Belloni A, Saipem Sp A. A proved method for J-Lay pipeline welding offshoretechnology conference [A]. Presented at the26th Annual OTC [C]. Houston, Texas,1994
    [30] Dick Wolbers and Rob Hovinga. Installation of deepwater pipelines with sled assembliesusing the new J-Lay system of the DCV Balder [A]. In: Presentation at the2003OffshoreTechnology Conference[C]. In Houston, OTC15336, Texas, USA,2003
    [31] Yong-Baek Kim, Hyeong-Soon Moon, Jong-Cheol Kim, Jong-Jun Kim and Jeong-BogChooAutomatic Pipeline Welding System with Self-Diagnostic Function and Laser VisionSensor [J]. Advanced Manufacturing Technology,2005,21(34):334-341
    [32] http://www.lonestarwelds.com.au/index.php
    [33] Kodama, S. et al.: New Technology of Container and Pipelines Welding [J]. Guide Booksof Welding Rules (Part4),1999,11(14):176-180
    [34] Ikuno, Y. et al. National Meeting of J.W.S [J], Hokkaido,2001,21(24):50-54
    [35] Ikuno, Y. et al. Automatic Welding System for Onshore Gas Pipelines [A]. In: Preprints ofthe International Pipe Dreamer’s Conference[C]. J.W.S., Tokyo,2000
    [36] Introduction for DASA Saturnax Welding System,2008
    [37] Jeff Hoch, Automatic Welding System, Berkeley Process Control Inc.2003
    [38] J. RAY MCDERMOTT Automatic Welding System, www.jraymcdermott.com.
    [39] Hyeong Soon Moon, Sung Hoon Ko, Jong Joon Kim and Jong Cheol Kim. AutomaticPipeline Welding System Equipped with Six Welding Carriages, Laser Vision Sensor andArc Sensor for Offshore Pipeline Laying [A]. In: Proceedings of the EighteenthInternational Offshore and Polar Engineering Conference [C].BC,Canada,2008
    [40] Moon, H.S., S.H. Ko, and J.C. Kim, Automatic seam tracking in pipeline welding withnarrow groove [J]. International Journal of Advanced Manufacturing Technology,2009.41(34):234-241
    [41] http://www.rmsweldingsystems.com
    [42] Janzen T S. The alliance pipeline-a design shift in long distance gas transmission [A].In:Proc. Int [C].Conf: ASME, Canada,1998
    [43]闫政,梁君直. PAW2000管道全位置自动焊机[J].电焊机,2005,35(6):47-53
    [44]唐德渝,冯标.管道全位置自动封底焊机及工艺研究[J].电焊机,2006,36(9):37-42
    [45]邹勇,蒋力培等.管道全位置焊接机器人人机交互系统[J].电焊机,2009,39(4):56-59
    [46]曾惠林.长输管道双焊炬全位置自动焊设备及工艺研究[D].天津:天津大学,2009
    [47]李桓,梁秀娟,李幸呈等.高效双丝MIG脉冲焊系统及工艺[J].焊接,2005,8(10):24-27
    [48]赵博,范成磊,杨春利.双丝共熔池窄间隙MAG焊的工艺研究[J].焊接,2008,1(6):34-38
    [49]欧元贤,刘旺玉.用PLC实现对焊接机器人的控制[J].机械与电子,2004,5(12):70-72
    [50]潘炼东.开放式机器人控制器及相关技术研究[D].武汉:华中科技大学,2007
    [51] Lopes G, Yapp D. Through the arc sensing in pulse GMAW for pipe welding applications
    [A]. In14th Int. Conf. Computer Technology in Welding and Manufacturing[C].2004
    [52] S.A. Blackman, P. Marmelo, G. Lopes, C. T. Reichert and T.E. Doyle, Design of anadaptive control system for pipeline girth welding [A].In14th Int.Conf.ComputerTechnology in Welding and Manufacturing[C],2003
    [53]张建.奥地利福尼斯全数字化焊机[J].现代焊接,2005,8(4):18-21
    [54] Maeda, T. et al. Making of Welding Process Highly Effective [J]. Guide Books of WeldingRules (Part5).2003,8(14):18-21
    [55]高汉荣,冯冬芹.工业无线网络的现状及发展趋势[J].中国仪器仪表,2008,55(S1):59-62
    [56]王维建.工业以太网EtherCAT技术的原理及其实现[J].微计算机信息,2010,26(5):51-52
    [57]谢香林.EtherCAT网络及其伺服运动控制系统研究[D].大连:大连理工大学,2008
    [58]倍福.实时以太网:I/O层超高速以太网[J].工业以太网与现场总线.2007,5(12):12-13
    [59]唐任远.现代永磁电机理沦与设计[M].北京:机械工业出版社,1997,15(12):33-51
    [60]刘军.永磁电动机控制系统若干问题的研究[D].武汉:华中科技大学,2010
    [61]王宝仁.网络化运动控制系统多轴协同关键技术研究[D].济南:山东大学,2008
    [62]蒋近,戴瑜兴,郜克存.多线切割机的无模型自适应交叉耦合控制[J].控制工程,2012,19(1):33-37
    [63]肖亮亮.基于虚拟法的多轴同步运动控制系统设计[D].杭州:浙江理工大学,2009
    [64]宋金虎.焊接机器人的研究现状与发展方向[J].现代焊接,2009,6(5):1-3
    [65] Tang F, Parker L E. Automated synthesis of multi-robot solutions through softwarereconfiguration [A]. In: Proc. Int Conf[C]. Brest: France,2005,1513-1520
    [66] Zlot R, Stentz A. Complex task allocation for multiple robots [A]. In: Proc Int Conf[C].Lisbon: Portugal,2005,1527-1534
    [67]廖家平,张晨曙,尹懿.焊接机器人焊缝跟踪技术的发展状况及趋势[J].现代焊接,2010,(4):47-50
    [68]宋金虎.焊接机器人现状及发展趋势[J].现代焊接,2011,54(3):12-15
    [69]焦向东,蒋力培.基于视觉跟踪的大型容器焊接机器人的研制[J].机械科学与技术,2003,22(1):24-26
    [70]熊震宇,张华,贾剑平等.旋转电弧传感器的研制[J].传感器技术.2003,7(13):1-3
    [71] Sugitani. Y, W. Mao, and M. Ushio. Adaptive Control of Weld Bead Shape Utilizing ArcSensor in One Side GMAW Process with Backing Plate [J]. In: Proc. Of IIWCommission[C]. New Orleans: USA,1994
    [72] Kodama, M., H. Goda, and H. Iwabuchi. Development of high-frequency oscillating arc.Report2: Arc sensor for simultaneous detection of torch aiming deviation and gap width[J]. Welding International,2001,15(12):952-964.
    [73] Maeda, T. et al. Making of Welding Process Highly Effective [J]. Guide Books of WeldingRules,2003,5(2):17-19
    [74] Laing, B. A digital revolution [J]. World Pipelines,2006,25(12):17-18
    [75] Hudson M. Welding of X100pipeline [D]. Cranfield: Cranfield University,2004
    [76] Richardson Ian M, Woodward Neil J, Billingham John. Deepwater welding for installationand repair-a viable technology [A]. In: Proc.12th Int Conf[C]. Kitakyushu: TheInternational Society of Offshore,2002,295-302
    [77]皮壮行.可编程序控制器的系统设计与实例[M].北京:机械工业出版社,2000.64-72
    [78]阳宪惠.现场总线技术及其应用[M].北京:清华大学出版社,1999.388-400
    [79] Nagesh, D.S., G.L. Datta. Prediction of weld bead geometry and penetration in shieldedmetal-arc welding using artificial neural networks [J]. Journal of Materials ProcessingTechnology,2002,123(2):303-306
    [80]曾庆波,孙华.监控组态软件及其应用技术[M].哈尔滨:哈尔滨工业大学出版社,2005.98-102
    [81] Hart P R, Richardson I M, Nixon J H. The effects of pressure on electrical performanceand weld bead geometry in high pressure GMA welding [J]. Welding in the World,2001,45(11):25-33
    [82]陈善本.智能化机器人焊接技术研究进展[J].机器人技术与应用,2007,22(3):58-62
    [83]房晓明,曹军,姬宜朋,焦向东,周灿丰,丁文斌.海底管道铺设用全位置自动焊机关键部件结构探讨[J].焊管,2010,33(11):37-43
    [84]李志刚,姬宜朋,陈家庆,焦向东等.海底管道铺设用全位置自动焊机械系统设计[J].电焊机,2011,41(4):13-19
    [85]孙文焕,程善美,王晓翔等.多电机协调控制的发展[J].电气传动,1999,6:1-6
    [86]夏锋,孙优贤.基于交换式以太网实现多现场总线集成[J].电力系统及其自动化学报.2003,15(4):58-61
    [87] Shige Wang, Kang G.Shin. Open Architecture Controller Software for Integration ofMachine Tool Monitoring [J]. Robotics and Automation,1999,23(5):1152-1157
    [88] Shige Wang. Kang G.Shin. Reconfigurable Software for Open Architecture Controller [A].In: Proc Int Conf[C].Robotics&Automation,2001,4090-4095
    [89] Shige.Wang, Kang G.Shin. Constructing reconfigurable software for machine controlsystems [J]. Transaction on Robotics and Automation,2002,18(4):475-485
    [90]陈友东,樊锐,陈五一等.基于RT-Linux开放式虚轴机床数控系统研究[J].中国机械工程,2002,13(15):133-134
    [91] Y.Z.Wang, X.B.Ma, L.J.Chen, Z.Y.Han. Realization methodology of a5-axis splineinterpolator in an open CNC system [J]. Chinese J. of Aeronautics.2007,20(4):362~369.
    [92]马雄波.基于PC机的开放式多轴软数控系统关键技术研究与实现[D].哈尔滨:哈尔滨工业大学.2007
    [93]欧阳三泰,周琴,欧阳希.软PLC控制技术综述[J].电气传动.2005,35(9):52-54
    [94]彭瑜.工控编程语言IEC61131-3的现状和发展[J].世界仪表和自动化,2002,25(2):14-18
    [95]陈友东,陈五一,王田.基于组件的开放结构数控[J].机械工程学报,2006,42(6):188-192
    [96]李霞.基于SERCOS接口的开放式数控系统的研究[D].北京:北京工业大学,2002
    [97]宋志峰,梅顺齐.软PLC的网络实时控制系统研究[J].现代制造工程,2007,9:107-109
    [98]方晓柯,孙盛骇,王建辉,顾树生. DeviceNet现场总线的实时性分析及改进[J].信息与控制.2004,33(l):36-40
    [99] Xiaoke Fang,Min Huang,Jianhui Wang,Shusheng Gu. Development of DeviceNetfield-bus intelligent node. Proceedings of WCICA2004,2004,6(2):1396-1400
    [100]方晓柯.现场总线网络技术的研究[D].沈阳:东北大学,2005
    [101]王巧玉.基于EtherCAT总线的燃气轮机控制系统的研究与设计[D],武汉:湖北工业大学,2010
    [102] EtherCAT技术组. EtherCAT技术介绍及发展概貌[J].国内外机电一体化技术,2006,8(6):17-23
    [103] Yang H T, Eagleson R.Design and Implementation of an Internet-based Embedded ControlSystem [A]. In: Proceedings of2003IEEE Conference on Control Applications.Istanbul[C].2003,1181-1185
    [104]纪文刚,林立,焦向东等.管道焊接机器人的位置检测与控制的技术研究[J].仪器仪表学报,2008,29(S1):203-206
    [105]王延军.晶体生长超低速控制技术研究[D].北京:北京化工大学,2009
    [106]孙法强,纪文刚,焦向东,周灿丰等.全位置自动焊机焊枪摆动系统平稳性研究[J].北京石油化工学院学报,2009,17(2):24-27
    [107]闫志峰,刘立君,崔元彪.管道焊接机器人控制系统设计[J].哈尔滨理工大学学报,2006,5(2):24-27
    [108]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006
    [109]刘军.永磁电动机控制系统若干问题的研究[D].杭州:华中科技大学,2010
    [110] Yu-feng Li, Jan Wikander. Model reference discrete-time sliding mode control of linearmotor precision servo systems [J]. Mechatronics,2004,52(14):538-851
    [111]韦鲲.永磁无刷直流电机电磁转矩脉动抑制技术的研究[D].杭州:浙江大学,2005
    [112] N.Zhuravlyov. On LQ-Control of Magnetic Bearing [J]. IEEE Transactions on ControlSystems Technology,2000,8(2):344-350
    [113]孙立志.PWM与数字化电动机控制技术应用[M].北京:中国电力出版社,2008
    [114] Prats Ma A M, Escobar G, Galvan E, et al. A switching control strategy based on outputregulation subspaces for the control of in-duction motors using a three-level inverter [J].Power Electronics Letters,2003,1(2):29-32
    [115]王宗培,韩光鲜等.无刷直流电动机的方波与正弦波驱动[J].微电机,2002,35(6):3-6
    [116]邱建琪.永磁无刷直流电动机转矩脉动抑制的控制策略研究[D].杭州:浙江大学,2002
    [117]何克忠.计算机控制系统[M].北京:清华大学出版社,1998.157-159
    [118]刘强.高性能机械伺服系统运动控制技术综述[J].电机与控制学报,2008,12(5):603-609
    [119]张艳阳,孙炜.基于数字陷波器的局放信号周期窄带干扰抑制方法研究[J].长沙电力学院学报,2006,21(1):71-72
    [120] Yuee S, Lin W, Jinsong T. An approach to measure the pose of RHJD4-1arc welding robotfor calibration [J].China Welding,2002,11(1):5-8
    [121]王宝仁,张承瑞,贾磊.永磁同步电机低脉动直接转矩控制建模与仿真[J].电机与控制学报,2007,11(3):221-224.
    [122]罗雨,焦向东,纪文刚,等.基于CAN总线的管道焊机行走电动机同步控制[J].上海交通大学学报,2010,44(S1):167-170
    [123]王智峰,张朋飞,何克忠.智能车辆自动驾驶控制系统方案设计[J].车辆与动力技术,2011,14(1):26-29
    [124]陈鹏展,唐小琦,金宏星.伺服系统速度环控制参数自整定方法研究[J].仪表技术与传感器,2010,25(2):78-82
    [125] C. Villegas,M. Akar,R.N. Shorten,J. Kalkkuhl. A Robust PI Controller for EmulatingLateral Dynamics of Vehicles [J]. Intelligent Vehicles,2007,12(10):828-833
    [126]李澄,赵辉. CANopen协议及在电机系统控制中的应用[J].机电工程,2008,7:15-20
    [127]李澄,赵辉. CANopen协议及在电动机控制系统中的应用[J].微电机,2009,42(4):24-27
    [128]李澄,赵辉.基于CANopen协议多电机系统实时控制[J].微电机,2009,42(9):53-57
    [129] S. Hasnaoui, O. Kallel. An implementation of a proposed modification of CAN protocolon CAN fieldbus controller component for supporting a dynamic priority policy [A]. In:Industry Applications Conference[C].2003,23-31
    [130]阎涛,杨帅,周华彬,刘嘉,殷树言.数字弧焊电源的模块化设计与RS485通信[J].电焊机,2005,35(10):27-31
    [131]罗雨,焦向东,纪文刚,周灿丰等.基于CAN-open的数字化焊接电源网络通信[J].上海交通大学学报,2010,44(S1):62-65
    [132]焦向东,周灿丰,陈家庆.海底管线铺设焊接技术现状与发展趋势[J].上海交通大学学报,2008,42(S1):122-125
    [133] Yong-B K, Hyong-S M, Jeong-C K. Automatic Pipeline Welding System withSelf-Diagnostic Function and Laser Vision Sensor[A].In:Proc15th Int Conf[C].2005,2-5
    [134]洪波.电弧传感移动式焊接机器人的数学建模及仿真[D].湘潭:湘潭大学,2005
    [135]潘际栾.新型自动焊跟踪系统[J].机械工程学报,1987,16(l):l-14
    [136]洪波,袁灿,潘际銮等.电弧传感器小波信号处理系统[J].焊接学报,2005,26(1):61-64
    [137] Matsuda, F., et al., Application of fast weaving to CO2arc welding. Report1: On beadappearance and spattering loss [J].Transactions of JWRI.1979,8(1):13-19
    [138]罗传红,张富巨,黄颖.基于电弧传感方式的窄问隙焊枪高度自适应跟踪系统[J].焊接技术,2001,30(4):40-41
    [139]曾松盛.高速旋转电弧传感焊缝自动跟踪技术的研究[D].广州:华南理工大学,2008
    [140]吴金锋,焦向东,罗雨,周灿丰.基于Labview的电弧传感焊缝跟踪的实现[J].北京石油化工学院学报,2011,19(4):17-19
    [141]曾惠林.管道全位置自动焊机的机电一体化设计及焊接工艺研究[D].北京:北京化工大学,2000
    [142]李慨.基于视觉传感管道焊接机器人跟踪系统研究[D].哈尔滨:哈尔滨工业大学,2007
    [143]刘立君,李冬青.管道焊接过程智能控制技术及应用[M].北京:北京大学出版社,2010
    [144]周文奇.全位置管道自动焊接控制系统的研究[D].济南:山东大学,2006
    [145]周灿丰,焦向东,陈家庆.深水海底管线铺设自动焊接技术研究[J].船海工程,2012,41(1):96-98
    [146]李志彬.日本NKK焊接机器人和自动化焊接装备[J].造船技术,1995,(2):1-5
    [147]杨学谦.横焊摆动轨迹的研究[J].焊接学报,1980,1(4):197-204
    [148]杨学谦.横焊自由成形的摆动轨迹研究[J].电焊机,1979,5(2):15-19
    [149]李晋梅. CO_2气体保护焊摆动过程的焊缝成形力学行为研究[D].北京:中国石油大学,2008
    [150]孙亚玲.基于专家系统的导轨式管道焊接机器人的研究[D].北京:北京化工大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700