基于电磁直线执行器的运动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁直线执行器将电能直接转换成直线运动机械能,不需要任何中间转换机构,能显著提升直线运动性能,近年来在工业自动化、机器人等领域得到了广泛的应用。电磁直线执行器及其运动控制技术是直接驱动领域的关键技术,本文围绕一类应用轴向充磁永磁体的动圈式新型电磁直线执行器及其运动控制技术展开了一系列研究。
     研制并分析了新型电磁直线执行器的结构、工作原理和性能特点,建立了电磁直线执行器的数学模型,构建了基于Matlab/Simulink的系统仿真模型,研制了基于数字信号处理器的电磁直线执行器运动控制系统软硬件平台,并在此基础上进行运动控制技术的仿真和实验研究。
     为解决新型电磁直线执行器所特有的换相推力波动问题,提出了基于预测电流控制的换相推力波动抑制技术。分析了换相推力波动的产生机理及条件,剖析了预测电流控制的工作原理,分别给出了电磁直线执行器处于高、低速运动时的换相推力波动抑制策略。与现有的无刷直流电机换相转矩波动抑制技术相比,所提方法具有系统配置简单、精度高、易于实现和适用于全数字控制系统等特点,有效地减小了换相推力波动,有利于新型电磁直线执行器实现高性能的直线运动。
     高精度轨迹跟踪是电磁直线执行器运动控制的重要任务之一,为此开发出了基于改进型自抗扰控制器的高精度轨迹跟踪运动控制技术。利用参考加速度作为前馈控制量对常规自抗扰控制器加以改进,分别考察了改进型自抗扰控制器的正弦轨迹跟踪能力、不同目标值的点到点运动轨迹跟踪能力、系统参数摄动抑制能力以及外部扰动抑制能力等,并与加入了前馈控制的比例-积分-微分控制器、常规自抗扰控制器进行了对比分析。研究结果表明,提出的改进型自抗扰控制器不但保留了常规自抗扰控制器优良的扰动抑制能力,还有效地提高了其轨迹跟踪精度,为高精度轨迹跟踪控制问题提供了一个新的解决方案。
     针对电磁直线执行器运动控制的另一项重要任务——高速运动下的高精度定位,提出了基于扩张状态观测器的时间最优点位运动控制技术。将双积分系统的时间最优控制与扩张状态观测器相结合,并以此为基础设计了电磁直线执行器的高速高精度点位运动控制系统,利用李雅普诺夫第二法分析了该控制系统的稳定性。采用特殊的非线性函数对时间最优控制的抖振现象进行了改进。实验结果表明,目标位置为8mm、最大速度为1m/s时的定位误差为2μm;目标位置为32mm、最大速度为1.6m/s时的定位误差为3μm;现有条件下达到的最大速度为3.1m/s。
     最后对新型电磁直线执行器的一类典型应用——六自由度运动平台的控制进行了实验研究。构建了基于dSPACE的运动控制系统,利用基于运动学的控制方法对六自由度运动平台进行控制,采用预测电流控制法和改进型自抗扰控制器对各电磁直线执行器进行轨迹跟踪控制。研究结果表明,各个电磁直线执行器均能较好地跟踪各自的目标轨迹,带动上平台实现给定的运动规律,验证了所提控制方法的有效性,体现了新型电磁直线执行器在六自由度运动平台中良好的应用前景。
Electromagnetic linear actuators obtain high performance linear motions by eliminating mechanical transmission mechanisms, and they have been widely used in industrial applications such as automation and robotics in recent years. Electromagnetic linear actuators and their motion control are key technology to realize high performance linear motions. In this dissertation, a series of researches were done on motion control of a novel moving-coil electromagnetic linear actuator based on axially-magnetized magnets.
     The novel electromagnetic linear actuator was made, and its structure, working principle and characteristics were analyzed. Mathematical model was built, and the system simulation model was established based on Matlab/Simulink. Control system of the electromagnetic linear actuator was constructed based on a digital-signal-processor. Simulation and experiments were carried out based on aforementioned systems.
     To reduce the commutation force ripple in the novel electromagnetic linear actuator, a compensation approach based on predictive current control was proposed. Conditions of the commutation force ripple generation and working principle of the predictive current control were analyzed. Commutation force ripple reduction strategies in high and low speed operation were given respectively. Compared with the existing compensation methods used for brushless DC motors, the presented approach has the advantages of simple system configuration, high precision and easy to implement. Commutation force ripple was reduced effectively with the proposed method, which is good for the novel electromagnetic linear actuator to realize high performance linear motions.
     One important motion control task of the electromagnetic linear actuator is precision trajectory tracking, and a modified active disturbance rejection controller has been developed to accomplish this task. A reference acceleration feedforward was added to the conventional active disturbance rejection controller, and its control abilities of sinusoidal trajectory tracking, different point-to-point motion trajectories tracking, parameter variations and external disturbance rejection were tested. Compared with the PID controller with reference acceleration feedforward and conventional active disturbance rejection controller, the proposed modified active disturbance rejection controller achieved precision trajectory tracking control besides the original excellent disturbance rejection performance. Consequently, this novel electromagnetic linear actuator along with the modified active disturbance rejection controller provides a new solution for high-performance linear motion applications.
     The other important motion control task of the electromagnetic linear actuator is precision positioning under high speeds. An extended state observer-based time-optimal control was proposed to achieve fast and precision point-to-point motions. Extended state observer was combined with time-optimal control of the double-integrator system, and on this basis fast and precision point-to-point motion control system of the electromagnetic linear actuator was designed. Closed-loop stability of the control system was analyzed according to the Lyapunov's second method. Special nonlinear functions were used to eliminate the chattering of the time optimal control. Experimental results indicated that when the desired position was8mm and the maximum velocity was1m/s, the positioning error was2μm. When the desired position was32mm and the maximum velocity was1.6m/s, the positioning error was3μm. The maximum velocity under exsiting conditions was3.1m/s.
     Finally, a typical application of the novel electromagnetic linear actuator was studied, that is the motion control of a6-DOF platform. Motion control system was constructed based on dSPACE. Trajectory tracking experiments of the6-DOF platform were carried out based on kinematic control methods, predictive current control and modified active disturbance rejection controller. Experimental results indicated that each electromagnetic linear actuator tracked its desired trajectory accurately, and the upper platform realized the given pose well. The proposed control methods are verified effective, and the novel electromagnetic linear actuator exhibits its good potential in6-DOF platform applications.
引文
[1]Xie Q. Modeling and control of linear motor feed drives for grinding machines[D]. Georgia:Georgia Institute of Technology,2008.
    [2]王英.面向芯片封装的直线伺服系统的高速高精运动控制[D].上海:上海交通大学,2006.
    [3]Fujimoto Y, Kominami T, Hamada H. Development and analysis of a high thrust force direct-drive linear actuator[J]. IEEE Transactions on Industrial Electronics,2009, 56(5):1383-1392.
    [4]黄学良,周赣,张前.平面电机的海尔贝克型直线电机执行器[J].中国电机工程学报,2009,29(21):80-86.
    [5]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000.
    [6]杜志强.高响应短行程直线直流电机的建模、控制与实验研究[D].武汉:华中科技大学,2006.
    [7]胡楚雄.基于全局任务坐标系的精密轮廓运动控制研究[D].杭州:浙江大学,2010.
    [8]Yao B. Advanced motion control:From classical PID to nonlinear adaptive robust control [A]. The 11th IEEE International Workshop on Advanced Motion Control[C]. Nagaoka, Japan:2010.815-829.
    [9]Otten G, Vries T J A d, Amerongen Jv, Rankers A M. Linear motor motion control using a learning feedforward controller[J]. IEEE/ASME Transactions on Mechatronics,1997,2(3):179-187.
    [10]山田一.工业用直线电动机[M].北京:新时代出版社,1986.
    [11]叶云岳.新型直线驱动装置与系统[M].北京:冶金工业出版社,2000.
    [12]吴建华.高加速度直线伺服系统的快速高精度定位控制[D].上海:上海交通大学,2007.
    [13]Boldea I, Nasar S A. Linear electric actuators and generators[M]. New York: Cambridge University Press,1997.
    [14]叶云岳,卢琴芬,范承志.直线电机技术手册[M].北京:机械工业出版社,2003.
    [15]刘文,李敏,白象忠,张海军.电磁炮发射轨道受指数函数磁压力的变形计算[J].哈尔滨工业大学学报,2010,42(8):1336-1340.
    [16]Kim J, Chang J. A new electromagnetic linear actuator for quick latching[J]. IEEE Transactions on Magnetics,2007,43(4):1849-1852.
    [17]Kim W-j, Murphy B C. Development of a novel direct-drive tubular linear brushless permanent-magnet motor[J]. International Journal of Control, Automation and Systems,2004,2:279-288.
    [18]Ustun O, Tuncay R N. Design, analysis, and control of a novel linear actuator[J]. IEEE Transactions on Industry Applications,2006,42(4):1007-1013.
    [19]Boldea I, Nasar S A. Linear electric actuators and generators[J]. IEEE Transactions on Energy Conversion,1999,14(3):712-717.
    [20]D.Howe. Magnetic actuators [J]. Sensors and Actuators,2000(81):268-274.
    [21]Bianchi N, Bolognani S, Corte D D, Tonel F. Tubular linear permanent magnet motors: an overall comparison [J]. IEEE Transactions on Industry Applications,2003,39(2): 466-475.
    [22]Yajima H, Wakiwaka H, Minegishi K, Fujiwara N, Tamura K. Design of linear DC motor for high-speed positioning[J]. Sensors and Actuators, A:Physical,2000,81(1): 281-284.
    [23]丛爽,李泽湘.实用运动控制技术[M].北京:电子工业出版社,2006.
    [24]Ohnishi K, Shibata M, Murakami T. Motion control for advanced mechatronics[J]. IEEE/ASME Transactions on Mechatronics,1996,1(1):56-67.
    [25]Lee H S. Robust digital tracking controllers for high-speed/high-accuracy positioning systems[D]. Berkeley:University of California at Berkeley,1994.
    [26]李宏胜.轮廓跟踪运动控制系统关键技术的研究[D].南京:东南大学,2005.
    [27]Wit C C d, Olsson H, Astrom K J, Lischinsky P. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [28]Amthor A, Zschaeck S, Ament C. High precision position control using an adaptive friction compensation approach[J]. IEEE Transactions on Automatic Control,2010, 55(1):274-278.
    [29]Wit C C D, Lischinsky P. Adaptive friction compensation with partially known dynamic friction model [J]. International Journal of Adaptive Control and Signal Processing,1997,11(1):65-80.
    [30]郭庆鼎,王成元,周美文,孙廷玉.直线交流伺服系统的精密控制技术[M].北京:机械工业出版社,2000.
    [31]Goodwin G C, Mayne D Q. A parameter estimation perspective of continuous time model reference adaptive control [J]. Automatica,1987,23(1):57-70.
    [32]Xu L, Yao B. Output feedback adaptive robust precision motion control of linear motors[J]. Automatica,2001,37(7):1029-1039.
    [33]夏长亮.无刷直流电机控制系统[M].北京:科学出版社,2009.
    [34]Lu L, Chen Z, Yao B, Wang Q. Desired compensation adaptive robust control of a linear-motor-driven precision industrial gantry with improved cogging force compensation[J]. IEEE/ASME Transactions on Mechatronics,2008,13(6):617-624.
    [35]Tan K K, Lee T H, Huang S. Precision motion control[M]. London: Springer,2008.
    [36]Lee M G, Choi Y-M, Lee S Q, Lim D-c, Gweon D-G. Design of high precision linear stage with double-sided multi-segmented trapezoidal magnet array and its compensation for force ripples[J]. Mechatronics,2006,16(6):331-340.
    [37]穆海华,周云飞,温新,周艳红.直线电机齿槽推力波动的标定与补偿方法[J].电机与控制学报,2009,13(5):721-727.
    [38]Yao B, Hu C, Wang Q. Adaptive robust precision motion control of high-speed linear motors with on-line cogging force compensations [A].2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics[C]. Zurich:2007.1-6.
    [39]Kim D-K, Lee K-W, Kwon B-I. Commutation torque ripple reduction in a position sensorless brushless DC motor drive[J]. IEEE Transactions on Power Electronics, 2006,21(6):1762-1768.
    [40]Shi T, Guo Y, Song P, Xia C. A new approach of minimizing commutation torque ripple for brushless DC motor based on DC-DC converter[J]. IEEE Transactions on Industrial Electronics,2010,57(10):3483-3490.
    [41]刘金琨.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社,2004.
    [42]Tomizuka M. Zero phase error tracking algorithm for digital control [J]. Journal of Dynamic Systems, Measurement, and Control,1987,109:65-68.
    [43]Ding H, WuJ. Point-to-point motion control for a high-acceleration positioning table via cascaded learning schemes[J]. IEEE Transactions on Industrial Electronics,2007, 54(5):2735-2744.
    [44]Liu L, Chang S. Motion control of the electromagnetic valve actuator based on inverse system method[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2011, DOI:10.1177/0954407011413033
    [45]刘豹.现代控制理论[M].北京:机械工业出版社,2000.
    [46]Pan J F, Cheung N C. An adaptive controller for the novel planar switched reluctance motor[J]. IET Electric Power Applications,2011,5(9):677-683.
    [47]Islam M S, Islam R, Sebastian T, Chandy A, Ozsoylu S A. Cogging torque minimization in PM motors using robust design approach[J]. IEEE Transactions on Industry Applications,2011,47(4):1661-1669.
    [48]Lee H-I, Noh M D. Optimal design of radial-flux toroidally wound brushless DC machines[J]. IEEE Transactions on Industrial Electronics,2011,58(2):444-449.
    [49]Astrom K J, Wittenmark B. Adaptive control[M]. Boston:Addison-Wesley Longman Publishing Co., Inc.,1994.
    [50]赵希梅,郭庆鼎.永磁直线同步电动机的变增益零相位H∞鲁棒跟踪控制[J].中国电机工程学报,2005,25(20):132-136.
    [51]Li X. Observer based adaptive robust control with application to coordinated precision control of linear motor driven high speed electro-mechanical systems[D]. Indiana: Purdue University,2001.
    [52]Zaky M S. Adaptive switching plane of integral variable structure control for speed control of permanent magnet synchronous motor drives [J]. Electric Power Components and Systems,2011,39(13):1353-1372.
    [53]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [54]Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:theory and experiments [J]. IEEE/ASME Transactions on Mechatronics,2001,6(4):444-452.
    [55]Hong Y, Yao B. A globally stable high-performance adaptive robust control algorithm with input saturation for precision motion control of linear motor drive systems[J]. IEEE/ASME Transactions on Mechatronics,2007,12(2):198-207.
    [56]Lu L, Yao B, Wang Q, Chen Z. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model[J]. Automatica,2009,45(12): 2890-2896.
    [57]Hu C, Yao B, Wang Q. Integrated direct/indirect adaptive robust contouring control of a biaxial gantry with accurate parameter estimations [J]. Automatica,2010,46(4): 701-707.
    [58]Hu C, Yao B, Wang Q. Coordinated adaptive robust contouring control of an industrial biaxial precision gantry with cogging force compensations [J]. IEEE Transactions on Industrial Electronics,2010,57(5):1746-1754.
    [59]刘金琨.智能控制[M].北京:电子工业出版社,2009.
    [60]Naso D, Cupertino F, Turchiano B. Precise position control of tubular linear motors with neural networks and composite learning[J]. Control Engineering Practice,2010, 18(5):515-522.
    [61]Jang J O. Neuro-fuzzy networks saturation compensation of DC motor systems[J]. Mechatronics,2009,19(4):529-534.
    [62]韩京清.自抗扰控制技术[M].北京:国防工业出版社,2008.
    [63]陈红,曾建,王广军.蒸汽发生器水位的自抗扰控制[J].中国电机工程学报,2010,30(32): 103-107.
    [64]李一染,陈慧,高博麟.自抗扰控制在前轮主动转向控制中的应用[J].汽车工程,2011,33(5):388-391.
    [65]Han J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics,2009,56(3):900-906.
    [66]Gao Z. Active Disturbance Rejection Control:A Paradigm Shift in Feedback Control System Design[A].2006 American Control Conference[C]. Minneapolis, Minnesota, USA:2006.
    [67]Talole S E, Kolhe J P, Phadke S B. Extended-State-Observer-based control of flexible-joint system with experimental validation [J]. IEEE Transactions on Industrial Electronics,2010,57(4):1411-1419.
    [68]常思勤,刘梁.高功率密度的动圈式永磁直线电机[P].中国:101127474A,2008-02-20.
    [69]常思勤,刘梁,施昕听.一种应用轴向充磁永磁体的电磁直线执行器[P].中国:CN102005892A,2011-04-06.
    [70]刘梁.发动机电磁驱动配气机构的研究[D].南京:南京理工大学,2011.
    [71]Zhang Y, Zhu J. Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency [J]. IEEE Transactions on Power Electronics,2011,26(1):235-248.
    [72]孙立志.PWM与数字化电动机控制技术应用[M].北京:中国电力出版社,2008.
    [73]Armstrong-Helouvry B, Dupont P, Wit C C d. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica,1994, 30(7):1083-1138.
    [74]刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展[J].力学进展,2008,38(2):201-213.
    [75]Boukais B, Zeroug H. Magnet segmentation for commutation torque ripple reduction in a brushless dc motor drive[J]. IEEE Transactions on Magnetics,2010,46(11): 3909-3919.
    [76]Liu Y, Zhu Z Q, Howe D. Commutation-torque-ripple minimization in direct-torque-controlled PM brushless DC drives[J]. IEEE Transactions on Industry Applications,2007,43(4):1012-1021.
    [77]Lu H, Zhang L, Qu W. A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF[J]. IEEE Transactions on Power Electronics,2008,23(2):950-958.
    [78]Kim Y-H, Kook Y-S, Ko Y. A new technique of reducing torque ripples for BDCM drives[J]. IEEE Transactions on Industrial Electronics,1997,44(5):735-739.
    [79]Bharatkar S S, Yanamshetti R, Chatterjee D, Ganguli A K. Dual-mode switching technique for reduction of commutation torque ripple of brushless dc motor[J]. IET Electric Power Applications,2011,5(1):193-202.
    [80]Nam K-Y, Lee W-T, Lee C-M, Hong J-P. Reducing torque ripple of brushless DC motor by varying input voltage[J]. IEEE Transactions on Magnetics,2006,42(4): 1307-1310.
    [81]Kim I, Nakazawa N, Kim S, Park C, Yu C. Compensation of torque ripple in high performance BLDC motor drives[J]. Control Engineering Practice,2010,18: 1166-1172.
    [82]Lee D-H, Ahn J-W. A current ripple reduction of a high-speed miniature brushless direct current motor using instantaneous voltage control[J]. IET Electric Power Applications,2009,3(2):85-92.
    [83]Song J-H, Choy I. Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor [J]. IEEE Transactions on Power Electronics,2004, 19(2):312-319.
    [84]Jang J-S, Kim H-H, Kim B-T. Torque ripple minimization in a BLDC motor using an improved voltage control method[J]. International Journal of Applied Electromagnetics and Mechanics,2010,33(1-2):235-241.
    [85]Kim K-H, Youn M-J. DSP-based high-speed sensorless control for a brushless DC motor using a DC link voltage control[J]. Electric Power Components and Systems, 2002,30(6):889-906.
    [86]Jahns T M, Soong W L. Pulsating torque minimization techniques for permanent magnet AC motor drives-A review[J]. IEEE Transactions on Industrial Electronics, 1996,43(2):321-330.
    [87]Carlson R, Lajoie-Mazenc M, Fagundes J C d S. Analysis of torque ripple due to phase commutation in brushless DC machines[J]. IEEE Transactions on Industry Applications,1992,28(3):632-638.
    [88]Aghili F. Ripple suppression of BLDC motors with finite driver/amplifier bandwidth at high velocity [J]. IEEE Transactions on Control Systems Technology,2011,19(2): 391-397.
    [89]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters:a survey[J]. IEEE Transactions on Industrial Electronics,1998,45(5):691-703.
    [90]纪志成,沈艳霞,姜建国.基于Matlab无刷直流电机系统仿真建模的新方法[J].系统仿真学报,2003,15(12):1745-1749.
    [91]马瑞卿,刘卫国.无刷直流电动机电流控制方法研究[J].微电机,2009,42(4):42-45.
    [92]韦鲲,林平.无刷直流电机换相转矩脉动的电流预测控制[J].浙江大学学报:工学版,2006,40(1):171-175.
    [93]韦鲲.永磁无刷直流电机电磁转矩脉动抑制技术的研究[D].杭州:浙江大学,2005.
    [94]Moon H-T, Kim H-S, Youn M-J. A discrete-time predictive current control for PMSM[J]. IEEE Transactions on Power Electronics,2003,18(1):464-472.
    [95]Liu Z Z, Luo F L, Rahman M A. Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism[J]. IEEE Transactions on Industrial Electronics,2005,52(5):1357-1363.
    [96]苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制[D].西安:西安电子科技大学,2002.
    [97]Chen S-L, Tan K K, Huang S, Teo C S. Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay[J]. IEEE/ASME Transactions on Mechatronics,2010,15(4):586-594.
    [98]Shieh N-C. A study on robust servo control for linear brushless DC motor[D]. Taiwan:National Central University,2001.
    [99]Wang Y, Xiong Z, Ding H. Robust controller based on friction compensation and disturbance observer for a motion platform driven by a linear motor[J]. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering,2006,220(1):33-39.
    [100]Cao R, Low K-S. A repetitive model predictive control approach for precision tracking of a linear motion system[J]. IEEE Transactions on Industrial Electronics,2009, 56(6):1955-1962.
    [101]Tan K K, Huang S N, Lee T H. Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors [J]. IEEE Transactions on Magnetics,2002,38(1):221-228.
    [102]Shi X, Chang S. Commutation force ripple reduction in a novel linear brushless DC actuator based on predictive current control[J]. Electric Power Components and Systems,2011,39(15):1609-1620.
    [103]Horng R-H, Chou H-L, Lee A-C. Rejection of limit cycles induced from disturbance observers in motion control[J]. IEEE Transactions on Industrial Electronics,2006, 53(6):1770-1780.
    [104]Cominos P, Munro N. PID controllers:recent tuning methods and design to specification[J]. IEE Proceedings-Control Theory and Applications,2002,149(1): 46-53.
    [105]Su Y X, Duan B Y, Zheng C H, Zhang Y F, Chen G D, Mi J W. Disturbance-rejection high-precision motion control of a stewart platform[J]. IEEE Transactions on Control Systems Technology,2004,12(3):364-374.
    [106]李辉,戴怡.基于PLC的经济型龙门式数控钻床控制系统设计[J].机床与液压2011,39(12): 67-69.
    [107]Li H, LeMD, Gong Z M, Lin W. Motion profile design to reduce residual vibration of high-speed positioning stages[J]. IEEE/ASME Transactions on Mechatronics, 2009,14(2):264-269.
    [108]Chang B-H, Hori Y. Trajectory design considering derivative of jerk for head-positioning of disk drive system with mechanical vibration[J]. IEEE/ASME Transactions on Mechatronics,2006,11(3):273-279.
    [109]Potsaid B, Wen J T-Y, Unrath M, Watt D, Alpay M. High performance motion tracking control for electronic manufacturing [J]. Journal of Dynamic Systems, Measurement, and Control,2007,129:767-776.
    [110]Freeman C T, Cai Z, Rogers E, Lewin P L. Iterative learning control for multiple point-to-point tracking application[J]. IEEE Transactions on Control Systems Technology,2011,19(3):590-600.
    [111]Wu J, Ding H. Iterative learning variable structure controller for high-speed and high-precision point-to-point motion[J]. Robotics and Computer-Integrated Manufacturing,2008,24:384-391.
    [112]Wu J, Xiong Z, Lee K-M, Ding H. High-acceleration precision point-to-point motion control with look-ahead properties[J]. IEEE Transactions on Industrial Electronics, 2011,58(9):4343-4352.
    [113]Clayton G M, Tien S, Leang K K, Zou Q, Devasia S. A review of feedforward control approaches in nanopositioning for high-speed SPM[J]. Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME,2009,131(6):1-19.
    [114]Hirose N, Iwasaki M, Kawafuku M, Hirai H. Deadbeat feedforward compensation with frequency shaping in fast and precise positioning[J]. IEEE Transactions on Industrial Electronics,2009,56(10):3790-3797.
    [115]Kim B K, Chung W K, Ohba K. Design and performance tuning of sliding-mode controller for high-speed and high-accuracy positioning systems in disturbance observer framework[J]. IEEE Transactions on Industrial Electronics,2009,56(10): 3798-3809.
    [116]Tsuruta K, Sato K, Ushimi N, Fujimoto T. High-speed and high-precision position control using a sliding mode compensator [J]. Electrical Engineering in Japan,2011, 174(2):65-71.
    [117]董景新,赵长德.控制工程基础[M].北京:清华大学出版社,1992.
    [118]Pi Y, Wang X. Observer-based cascade control of a 6-DOF parallel hydraulic manipulator in joint space coordinate [J]. Mechatronics,2010,20(6):648-655.
    [119]Culmer P R, Jackson A E, Makower S, Richardson R, Cozens J A, Levesley M C, Bhakta B B. A control strategy for upper limb robotic rehabilitation with a dual robot system[J]. IEEE/ASME Transactions on Mechatronics,2010,15(4):575-585.
    [120]Abdellatif H, Heimann B. Advanced model-based control of a 6-DOF hexapod robot: a case study[J]. IEEE/ASME Transactions on Mechatronics,2010,15(2):269-279.
    [121]Pi Y, Wang X. Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances [J]. Control Engineering Practice,2011, 19(2):185-193.
    [122]Lee S-H, Song J-B, Choi W-C, Hong D. Position control of a Stewart platform using inverse dynamics control with approximate dynamics [J]. Mechatronics,2003,13(6): 605-619.
    [123]Bechlioulis C P, Doulgeri Z, Rovithakis G A. Guaranteeing prescribed performance and contact maintenance via an approximation free robot force/position controller[J]. Automatica,2012,48(2):360-365.
    [124]Lian R-J. Intelligent controller for robotic motion control[J]. IEEE Transactions on Industrial Electronics,2011,58(11):5220-5230.
    [125]Patel R V, Talebi H A, Jayender J, Shadpey F. A robust position and force control strategy for 7-DOF redundant manipulators [J]. IEEE/ASME Transactions on Mechatronics,2009,14(5):575-589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700