3.0T MRI在肝脏结节性病变及弥漫性疾病的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分3.0T MRI全肝十期动态增强扫描LAVA技术成像参数探讨
     目的:分析正常成人和肝硬化患者MR全肝灌注扫描的“时间-信号强度”曲线特点和肝血管重建期相,探讨全肝十期动态增强扫描LAVA技术的成像参数。
     材料与方法:对8例无任何肝脏疾病的正常成人和8例肝硬化患者行MR全肝灌注成像,探讨全肝十期动态增强扫描LAVA技术的成像参数。
     (1)扫描野包括全肝,采用GE公司的LAVA容积成像技术,平静呼吸,用高压注射器经肘前静脉注入非离子型对比剂GD-DTPA 20ml,注射速度为3ml/s,在注射对比剂后10s开始扫描;每期扫描40层,层厚4.4mm,扫描时间为7秒,每期重建72层;连续扫描12期,共重建864层图像,扫描时间为84s。
     (2)扫描图像经adw 4.2工作站处理,绘制腹主动脉、门静脉、肝静脉和肝实质的“时间-信号强度”曲线,分析正常成人和肝硬化患者腹主动脉、门静脉、肝静脉和肝实质的达峰时间和波动期时间,腹主动脉、门静脉、肝静脉及肝实质同时处于平衡期时间,制定正常成人及肝硬化患者全肝十期最佳扫描时间及血管重建期相。
     结果:(1)正常成人和肝硬化患者腹主动脉的“时间-信号强度”曲线呈“速升-速降”型,强化峰值时间分别为25.75秒、26.63秒,波动期时间段分别为17~31秒、17~38秒;门静脉的“时间-信号强度”曲线呈“速升-缓降”型,峰值出现较主动脉晚,幅度明显低于主动脉,峰值强化时间分别为45、53.75秒,波动期时间段分别为31~59秒、38~66秒;肝静脉的“时间-信号强度”曲线呈“缓升-缓降”型,峰值出现较门静脉晚,峰值强化时间分别为59.88、68.63秒,波动期时间段分别为45~73秒、52~80秒;肝实质的“时间-信号强度”曲线呈“缓升-缓降”型,动脉期上升缓慢,门静脉期上升较快并迅速达峰值,然后缓慢下降呈平稳状态,肝实质峰值期时间分别为52.88、59.88秒,波动期时间段最长,分别为38~66秒、45~73秒;肝动脉、门静脉和肝实质均处于平稳状态时间分别为68.25、77.38秒,平衡期时间段分别为66~94秒、73~94秒。(2)正常成人和肝硬化患者腹主动脉达峰时间无显著性差异(P>0.05),门静脉、肝静脉、肝实质达峰时间和进入真正意义平衡期时间点均有显著性差异(P<0.05),说明肝硬化患者门脉供血延迟。(3)肝动脉、门脉、肝静脉峰值期显示血管图像评分,较峰值前期及峰值后期均有显著性差异(P<0.05)。
     结论:(1)采用平静呼吸,注射20ml对比剂,注射速度为3ml/s,在注射对比剂后10s开始连续扫描84s共重建864层图像的扫描方式,基本能反映正常肝脏及肝硬化组织的血液动力学变化过程,是较理想并较实用的预扫描方案,能完整包括肝动脉、门静脉、肝静脉和肝实质平衡期多时相图像。选取肝动脉、门静脉、肝静脉峰值期图像,能很好重建出肝动脉、门脉及肝静脉血缸管,是较理想的血管重建期相。(2)选用屏气方法,用四个时间段扫描,前三次每次扫描3期(21秒),正常及肝硬化组分别以10~31秒、12~33秒作动脉三期扫描,40~61秒、45~66秒静脉三期扫描,70~91秒、75~96秒肝实质平衡三期扫描,最后加作一期3分钟延迟扫描,基本上能包括所有肝实质波动期、平衡期和延迟期图像。
     第二部分3.0T MRI全肝十期动态增强扫描在肝脏结节性病变的检出及诊断价值
     目的:探讨MR全肝十期动态增强扫描在肝脏结节性病变的检出和诊断价值,分析各期相组合对病变诊断的敏感性、特异性和准确性,缺期扫描可能造成的漏诊及误诊率,总结肝脏结节性病变各期相的强化特点和最佳动态增强扫描方案。
     材料与方法:对180例肝脏结节性病变(肝炎后肝硬化伴或不伴肝癌病例、肝内转移瘤病例及肝脏其它少见结节性病变)行LAVA全肝十期动态增强扫描。扫描图像经adw4.2工作站和GC RIS PACS系统处理,绘制腹主动脉、门静脉和肝实质的“时间-信号强度”曲线,分析扫描十期图像是否完整包括肝动脉三期、门静脉三期、肝静脉三期及平衡三期,统计各期相对病变的显示价值;分析各期相组合可能造成的漏诊及误诊率,总结肝脏结节性病变的各期相强化特点和最佳动态增强扫描方案。
     结果:本组180例纳入对象148例符合要求,扫描十期图像完整包括肝动脉三期、门静脉三期、肝静脉三期、平衡三期及延迟期图像,占82.2%。
     1各期相强化特点
     (1)肝炎后肝硬化56例,其中肝癌54例,共80个病灶。①病灶强化持续时间为2或3期,分别为65%和28.75%;②病灶以动脉期开始强化为主,动脉早、中、晚期分别为25%、62.5%、12.5%;③最佳观察强化期为动脉中、晚期,分别占87.5%、93.75%;④肿瘤信号下降最快(对比剂廓清最快期)为门脉中期,占72.5%;⑤最佳观察信号下降期(廓清期)为门脉中、晚期,肝静脉中期及平衡期,分别为75%、86.25%、96.25%、100%。
     (2)肝癌介入治疗后20例,共33个病灶。①病灶强化持续时间为2或3期,分别为75.76%、24.24%;②病灶以动脉期开始强化为主,动脉早、中、晚期分别为15.15%、63.63%、21.21%:③最佳观察强化期为动脉中、晚期,分别为78.79%、90.91%;④肿瘤信号下降最快(对比剂廓清最快期)为门脉中、晚期,分别为45.45%、36.36%;⑤最佳观察信号下降期(廓清期)为门脉中、晚期及肝静脉中期,分别为54.55%、90.90%、100%。
     (3)肝炎后肝硬化56例,其中再生结节(RN或DN)12例,共发现共29个病灶。①病灶强化持续时间为1或2期,分别为58.62%、34.48%;②病灶以动脉早、中期开始强化为主,分别为31.03%、62.07%;③最佳观察强化期为动脉早、中、晚期,分别为31.03%、82.76%、34.48%;④病变信号下降最快(对比剂廓清最快期)为动脉晚期及门脉中期,分别为55.17%、34.48%;⑤最佳观察信号下降期(廓清期)为动脉晚期及门脉中期,分别为65.52%、100%。
     (4)富血供转移(乳腺癌肝转移24例,70个病灶)。①病灶强化持续时间为2或3期,分别为57.14%、32.86%;②病灶以动脉期开始强化为主,动脉早、中、晚期分别为14.29%、51.43%、34.29%%;③最佳观察强化期为动脉中、晚期及门脉中、晚期,分别为65.71%、97.14%、47.14%、30%;④病变信号下降最快(对比剂廓清最快期)为门脉中、晚期及肝静脉中期,分别为44.29%、25.71%、24.29%;⑤最佳观察信号下降期(廓清期)为门脉中、晚期及肝静脉中期和平衡期,分别为44.29%、70%、94.29%、94.29%。
     (5)乏血供转移(消化道及肺部肿瘤转移43例,126个病灶)。①病灶强化持续时间为2或3期,分别为65.08%、30.95%;②病灶以动脉中、晚期开始强化为主,分别为20.63%、65.87%;③最佳观察强化期为动脉中、晚期及门脉中、晚期,分别为20.63%、86.51%、87.30%、34.92%:④病变信号下降最快(对比剂廓清最快期)为门脉晚期及肝静脉中期,分别65.08%、26.19%;⑤最佳观察信号下降期(廓清期)为门脉晚期及肝静脉中期和平衡期,分别为65.08%、91.27%、99.21%。(6)肝脏局灶性结节增生5例,共8个病灶。①病灶强化持续时间为2或3期,分别为25%、62.5%;②病灶以动脉早、中期开始强化为主,分别为37.5%、62.5%;③最佳观察强化期为动脉早、中期,分别为37.5%、100%。④病变信号下降最快(对比剂廓清最快期)为门脉中、晚期,分别为50%、50%;⑤中央瘢痕开始强化为门脉晚期及肝实质平衡期,分别为25%、62.5%。
     2 LAVA十期及各期相组合诊断价值
     (1)各期相组合诊断肝癌的灵敏度、特异度、准确度、漏诊率及误诊率:十期分别为96.25%,96.57%,96.49%,3.75%,3.43%;九期分别为96.25%,96.57%,96.49%,3.75%,3.43%;八期分别为93.75%,96.57%,95.85%,6.25%,3.43%;六期分别为96.25%,96.57%,96.49%,3.75%,3.43%;四期分别为92.50%,94.85%,94.25%,7.50%,5.15%;三期分别为88.75%,92.27%,91.37%,11.25%,7.73%。
     (2)各期相组合经ROC检测诊断肝癌,其曲线下面积及P值:十期为0.985(p=0.000),九期为0.984(0.009),八期为0.980(0.009),六期为0.983(0.009),四期为0.969(0.000),三期为0.955(0.000)。
     (3)各期相组合诊断肝硬化肝内再生结节的灵敏度、特异度、准确度、漏诊率及误诊率为:十期分别为93.10%,98.59%,98.08%,6.90%,1.41%;九期分别为86.21%,98.59%,97.44%,13.79%,1.41%;八期分别为68.97%,98.59%,95.85%,31.03%,1.41%;四期分别为58.62%,97.89%,94.23%,41.38%,2.11%;三期分别为51.72%,97.18%,92.97%,48.28%,2.82%。
     (4)各期相组合经ROC检测诊断肝内再生结节,其曲线下面积及P值:十期为0.980(p=0.000),九期为0.961(0.000),八期为0.921(0.000),四期为0.881(0.000),三期为0.839(0.000)。
     结论:肝内结节性病灶常呈多发性,完整意义十期扫描对肝内病变的检出及诊断具有重要价值,能较常规三期、四期扫描提供更多的检出及诊断信息。
     (1)肝癌组及肝癌介入治疗后病例以及肝内其它富血供病例,主要在动脉中、晚期强化,门脉中、晚期廓清,强化持续2~3期。因此,动脉中、晚期+门脉中、晚期+平衡期及延迟期共扫描6期应作为基本扫描方案。
     (2)肝炎后肝硬化肝内再生结节病例,主要在动脉早、中期强化,且强化期别非常短,故完整动脉三期+门脉中、晚期+平衡期共6期对其显示有重要价值。
     (3)肝乏血供转移瘤,大多接受门脉供血,动脉中、晚期,静脉三期,平衡期加延迟期扫描可满足诊断要求。
     第三部分3.0T MRI扩散加权成像在肝脏结节性病变及弥漫性疾病的量化诊断及鉴别诊断价值
     目的:探讨高场强MRI扩散加权成像对肝脏结节性病变及弥漫性疾病的量化诊断及鉴别诊断价值。
     材料与方法:2007.4~2008.3共431例肝脏MR扫描入选病例(正常肝脏、肝硬化、脂肪肝和肝脏结节性病变)进行常规MR扫描确定DWI扫描层面,采用EPI-DWI序列,b值取400,600,800s/mm~2,行DWI扫描,观察图像质量并测量ADC值。
     结果:(1)DWI图像质量随着b值的增加而降低,在b值取600、800时,图像质量有显著性差异(t=1.97,p=0.001)。(2)正常肝脏及肝脏弥漫性疾病(b=600s/mm~2):正常肝脏ADC值=1.36±0.13×10~(-3)mm~2/s,脂肪肝ADC值=1.18±0.13×10~(-3)mm~2/s,肝硬化Child-Pugh A级ADC值=1.32±0.11×10~(-3)mm~2/s,Child-Pugh B级ADC值=1.23±0.11×10~(-3)mm~2/s,child-Pugh C级ADC值=1.11±0.11×10~(-3)mm~2/s。正常肝脏与脂肪肝及肝硬化间ADC值均有显著性差异(P<0.05),肝硬化Child-Pugh A、B、C级间亦有统计学差异(P<0.05)。(3)肝脏结节性病变(b=600s/mm~2):肝细胞癌ADC值=1.38±0.15×10~(-3)mm~2/s,肝癌介入后ADC值=1.42±0.21×10~(-3)mm~2/s,肝乏血供转移癌ADC值=1.36±0.19×10~(-3)mm~2/s,肝富血供转移癌ADC值=1.49±0.19×10~(-3)mm~2/s,胆管细胞癌ADC值=1.44±0.12×10~(-3)mm~2/s,血管瘤ADC值=1.90±0.16×10~(-3)mm~2/s,肝良性肿瘤ADC值=1.48±0.19×10~(-3)mm~2/s。肝脏良性病灶的ADC值大于恶性病灶,但二者亦有交叉。b=600时,截止点ADC值取1.55×10~(-3)mm~2/s,诊断的敏感性为80.18%,特异性为81.08%,准确性为80.41%,阳性预测值为92.71%,阴性预测值57.69%,阳性似然比4.24,阴性似然比为0.24。
     结论:(1)正常肝脏及病变DWI信号随着扩散敏感度b值的增大均匀降低,综合评价图像质量及ADC值鉴别价值,b值取600s/mm~2较为合适。(2)ADC值对正常肝脏、脂肪肝及肝硬化Child-Pugh A、B、C级间有量化价值。(3)肝脏良性结节性病变的ADC值大于恶性病变,选择合适的b值测量ADC值,有助于良、恶性病变的鉴别。
PartⅠTo Study the Technical Parameters of Hepatic 10-phase Dynamic Enhancement with Liver Acceleration Volume Acquisition(LAVA) at 3.0T MRI
     Purpose:To analyze the signal intensity time curves and the phase of hepatic vascular reconstruction at normal liver and hepatic cirrhosis by whole liver perfusion weighted imaging,in order to investigate the technical parameters of hepatic 10-phase dynamic enhancement with liver acceleration volume acquisition(LAVA) at 3.0 T MRI.
     Materials and Methods:Perfusion weighted images of whole liver were performed in 8 health adults and 8 patients with hepatic cirrhosis,in order to investigate the technical parameters of hepatic 10-phases dynamic enhancement with liver acceleration volume acquisition(LAVA) at high field 3.0 T MRI.(1) After bolus injection 20 ml GD-DTPA(the injection rate was 3ml/s) of 10 seconds in anterior ulnar vein by high-pressure syringe,perfusion weighted images of whole liver were performed with LAVA technique at quiet breath by a 3.0 T MRI(GE medical system). With section thickness of 4.4 mm,scan time of 7s,40 slices of whole liver were scan every phase.The total 864 slices(72 slices were reconstructed every phase) were reconstructed with 12 phases scan continuously at 84 seconds.(2) The scanned images were processing by adw4.2 workstation.The signal intensity-time curves of abdominal aorta,portal vein,hepatic vein and liver parenchyma were drawn and the peak time,fluctuant time and the simultaneously reach time of balanced phase were analyzed in both normal liver and hepatic cirrhosis.
     Results:(1) The signal intensity time curve of abdominal aorta was rapid ascending and rapid descending both at health adults and patients with hepatic cirrhosis.The peak time of the abdominal aorta enhancement was 25.75s,26.63s;Time segments of fluctuant state were 17~31s,17~38s respectively.The signal intensity time curve of portal vein was rapid ascending and slow descending.The peak time of portal vein enhancement were 45s,53.75s,Time segments of the fluctuant state were 31~59s and 38~66s respectively.The peak time of portal vein was longer than abdominal aorta and the intensity of enhancement was weaker than abdominal aorta obviously.The signal intensity time curve of hepatic vein was slow ascending and slow descending. The peak time of hepatic vein enhancement was 59.88s,68.63;Time segments of the fluctuant state were 45~73s and 52~80s respectively.The signal intensity time curve of liver parenchyma was slow ascending and slow descending.The signal intensity of liver parenchyma increases slowly in arterial phase and rapidly reached the peak in portal phase.And then,it decreases slowly and keeps relative stationary state.The peak time of hepatic parenchyma enhancement was 52.88s,59.88s;Time segments of the fluctuant phase were 38~66s and 45~73s respectively.The simultaneously reached equilibrium phase time of abdominal aorta,portal vein,hepatic vein and liver parenchyma was 68.25s,77.38s;the time segments of equilibrium phase were 66~94s, 73~94s respectively.(2) The peak time of abdominal aorta has no significant difference between health adult and patients with hepatic cirrhosis(P>0.05).But the peak time of portal vein,hepatic vein and liver parenchyma and the real time of equilibrium phase have significant difference(P<0.05).It illustrates the blood supply of portal vein in patients with hepatic cirrhosis longer than the healthy.(3)There was significant difference between the peak time phase and other phase of showing the quality of hepatic artery,portal vein and hepatic vein imaging(P<0.05).
     Conclusion:(1) The scan mode can reflect the hemodynamic alteration procedure at both normal liver and liver cirrhosis;it is an ideal and practical pre-scan procedure, which included hepatic artery,portal vein,hepatic vein,liver parenchyma and equilibrium phase entirely.The optimal phases to observe and reconstruct vessel of hepatic artery,portal vein and hepatic vein are the peak time phase images correspondingly.(2) The optimal scan mode include with breath holding method,the time of arterial 3 phases at 10~31s,12~33s,vein 3 phases at 40~61s,45~66s, equilibrium 3 phases at 70~91s,75~96s for normal adults and patients with hepatic cirrhosis respectively,which could include all the fluctuant phases and equilibrium phases of whole liver entirely.
     PartⅡThe Detection and Diagnosis of Hepatic Nodular Lesions with 3.0T MRI Ten-phase Dynamic Scanning
     Objective:To assess the value of MRI ten-phase dynamic scanning in the detection and diagnosis of hepatic nodular lesions,to analyze the sensitivity,specificity, accuracy,false negative rate and false positive rate of multi-phase combination scans, and to summarize the enhancement features of nodular lesions in different phase and their optimal enhancing scan projects.
     Materials and Methods:Ten-phase dynamic enhanced images of whole liver were performed with LAVA volume technique in 180 cases with hepatic nodular lesions (hepatic cirrhosis after hepatitis with or without hepatic cancer,Hepatic Metastases and other rare nodular lesions).All images were processed with adw4.2 workstation and GC RIS PACS,time-intensity curves for abdominal aorta,portal veins and hepatic parenchyma were obtained.Ten-phase images including arterial three phases, portal vein three phases,hepatic venous three phases and balanced 3 phases were analyzed.The values of different phase to demonstrate lesions were assessed,as well as multi-phase combination.The dynamic enhancement features of hepatic nodular lesions and their optimal scan projects were summarized.
     Results:148 cases(82.2%) completed scans of ten phases including arterial three phases,portal vein three phases,hepatic venous three phases,balanced three phases and delayed phase.
     1 Enhancing features in different phase
     (1) 80 lesions in 54 cases of hepatic cirrhosis after hepatitis with liver cancer:① Enhancement persists for 2 or 3 phases in 65%and 28.75%respectively.②Enhancement mainly begins at arterial phase,arterial early phases in 25%,arterial middle phase in 62.5%and arterial late phase in 12.5%.③Optimal phases to observe enhancement(enhancing phase) were arterial middle phase in 87.5%and arterial late phase in 93.75%.④Fastest signal attenuation of tumors was observed at portal middle phase in 72.5%(fastest attenuation phase).⑤The optimal phases to observe signal attenuation(attenuation phase) were portal middle,late phase,hepatic venous late phase and balanced phase in 75%,86.25%,96.25%and 100%respectively.
     (2) 33 lesions in 20 cases with liver cancer after intervention treatment:①Enhancement persists for 2 or 3 phases in cases of 75.76%and 24.24%respectively.②Enhancement mainly begins at arterial phase,arterial early phase in 15.15%, arterial middle phase in 63.63%and arterial late phase in 21.21%.③The optimal phases to observe enhancement were arterial middle phase in 78.79%,and arterial late phase in 90.91%.④Fastest signal attenuation of tumors(fastest attenuation phase) were observed at portal middle phase in 45.45%and portal late phase in 36.36%.⑤The optimal phases to observe signal attenuation(attenuation phase) were portal middle,late phase and hepatic venous middle phase in 54.55%,90.90%and 100% respectively.
     (3) 29 lesions in 56 cases with hepatic cirrhosis after hepatitis accompanying liver cancer or not,including 12 cases with regenerative nodules or dysplastic nodular(RN or DN):①Enhancement persists for 2 or 3 phases in 58.62%and 34.48%respectively.②Enhancement begins at arterial phase for most lesions,arterial early phases in 31.03%and arterial middle phase in 62.07%.③The optimal phases to observe enhancement were arterial early,middle and late phase in 31.03%,82.76%and 34.48%respectively.④Fastest signal attenuation of tumors were observed at arterial late phase in 55.17%and portal middle phase in 34.48%.⑤The optimal phases to observe signal attenuation(attenuation phase) were arterial late phase in 65.52%and portal middle phase in 100%.
     (4) Hyper-vascular Hepatic Metastases(70 lesions in 24 cases with primary breast carcinoma):①Enhancement persists for 2 or 3 phases in cases of 57.14%and 32.86%respectively.②Enhancement begins at arterial phase for most lesions,arterial early,middle and late phase in 14.29%,51.43%and 34.29%,respectively.③The optimal phases to observe enhancement(enhancing phase) were arterial middle,late phase,portal middle and late phase in 65.71%,97.14%,47.14%and 30%respectively.④Fastest signal attenuation of tumors were observed at portal middle,late phase and hepatic venous phase in 44.29%,25.71%and 24.29%respectively.⑤Optimal phases to observe signal attenuation(attenuation phase) were portal middle,late phase, hepatic venous middle phase and balanced phase in 44.29%,70%,94.29%and 94.29%respectively.
     (5) Hypo-vascular Hepatic Metastases(126 lesions in 43 cases with primary digestive tract or lung tumors):①Enhancement persists for 2 or 3 phases in cases of 65.08% and 30.95%respectively.②Enhancement begins at arterial phase for most lesions, arterial middle and late phase in 20.63%and 65.87%,respectively.③The optimal phases to observe enhancement(enhancing phase) were arterial middle,late phase, portal middle and late phase in 20.63%,85.61%,87.30%and 34.92%,respectively.④Fastest signal attenuation of tumors were observed at portal late phase in 65.08% and hepatic venous middle phase in 26.19%.⑤The optimal phases to observe signal attenuation(attenuation phase) were portal late phase,hepatic venous middle phase and balanced phase in 65.08%,91.27%and 99.21%respectively.
     (6) 8 lesions in 5 cases with focal nodular hyperplasia:①Enhancement persists for 2 or 3 phases in cases of 25%and 62.5%respectively.②Enhancement mainly begins at arterial early and middle phases in 37.5%and 62.5%respectively.③The optimal phases to observe enhancement were early arterial and peak phase in 37.5%,100% respectively.④Fastest signal attenuation of tumors was observed at portal peak phase for 50%and late portal phase for 50%.⑤Central scars enhancement begins at late portal phase and balanced liver parenchyma phase in 25%and 62.5%respectively.
     2 The diagnosis value of LAVA ten phases and multi-phase combination
     (1)The sensitivity,specificity,accuracy,false negative rate and false positive rate in diagnosis of liver cancer with ten-phase combination were 96.25%,96.57%,96.49%, 3.75%and 3.43%respectively;nine-phase were 96.25%,96.57%,96.49%,3.75%and 3.43%respectively;eight-phase were 93.75%,96.57%,95.85%,6.25%and 3.43% respectively;six-phase were 96.25%,96.57%,96.49%,3.75%and 3.43%respectively; four-phase were 92.50%,94.85%,94.25%,7.50%and 5.15%respectively; three-phase were 88.75%,92.27%,91.37%,11.25%and 7.73%respectively.
     (2)The diagnosis of liver cancer with multi-phase combination through ROC:Area under curves was 0.985(p=0.000) for ten-phase combination,0.984(p=0.009) for nine-phase,0.980(p=0.009) for eight-phase,0.983(p=0.009) for six-phase,0.969 (p=0.000) for four-phase and 0.955(p=0.000) for three-phase.
     (3) The sensitivity,specificity,accuracy,false negative rate and false positive rate in diagnosis of regenerative nodules or dysplastic nodular lesions of liver with ten-phase combination were 93.10%,98.59%,98.08%,6.90%and 1.41%respectively; nine-phase were 86.21%,98.59%,97.44%,13.79%and 1.41%respectively; eight-phase were 68.97%,98.59%,95.85%,31.03%and 1.41%respectively; six-phase were 96.25%,96.57%,96.49%,3.75%and 3.43%respectively;four-phase were 58.62%,97.89%,94.23%,41.38%and 2.11%respectively;three-phase were 51.72%,97.18%,92.97%,48.28%and 2.82%respectively.
     (4) The diagnosis of liver regenerative nodular or dysplastic nodular lesions with multi-phase combination through ROC:Area under curves was 0.980(p=0.000) for ten-phase combination,0.961(p=0.000) for nine-phase,0.921(p=0.000) for eight-phase,0.881(p=0.000) for four-phase and 0.839(p=0.000) for three-phase.
     Conclusions:Nodular lesions are often multiple in the liver.Ten-phase dynamic scanning is important in the detection and diagnosis of hepatic lesions,which can provide more characteristic and definite information than route three-phase or four-phase scans.
     (1)Enhancing at arterial peak or late arterial phase,signal attenuation at portal peak or late portal phase and persistent enhancement for two or three phases are the features of liver cancer with or without intervention treatment and other lesions with hyper-vascular.Six-phase scan including arterial peak,late phase,portal peak and late phase,balanced and delayed phase is the basic scan project for such lesions.
     (2)Regenerative nodular or dysplastic nodular lesions in patients with hepatic cirrhosis after hepatitis often show enhancement at early arterial and peak phase,with short enhancement and attenuation phase.Six-phase scan including arterial three phases,portal peak and late phase,and balanced one phase is important to detect those lesions.
     (3)Hepatic metastasis tumors with hypo-vascular were often supplied by portal vein. Multi-phase scan including arterial peak,late phase,venous three phases,balanced and delayed phase can give enough information for diagnosis.
     PartⅢEvaluation of Diffusion Weighted Imaging on Differential Diagnosis and Quantitative Diagnosis of Nodular Hepatic Lesions and Diffused Liver Lesions at 3 Tesla Magnetic Resonance
     Objective:To investigate the value of Diffusion-Weighted Imaging(DWI) on differential diagnosis and quantitative diagnosis of liver diffuse lesions and nodular hepatic lesions with 3.0 T MRI.
     Materials and Methods:Diffusion weighted imaging(DWI) was obtained in a total of 431 cases of nodular hepatic lesions and liver diffuse lesions including normal liver, liver cirrhosis,fatty liver,hepatocellular carcinoma(HCC),cholangiocellular carcinoma(CC) and secondary tumors of liver from Apr,2007 to Mar,2008.The quality of the DWI and apparent diffusion coefficient(ADC) values were analyzed.
     Results:(1) The quality of DWI attenuated homogeneously according to the gradient factor(b value).There was a significant difference between the quality of b=600 and b=800 DWI(p<0.05).(2) The ADC value of the normal liver,fatty liver,liver cirrhosis Child-Pugh A,B,C was 1.36±0.13×10~(-3)mm~2/s,1.18±0.13×10~(-3)mm~2/s, 1.32±0.11×10~(-3)mm~2/s,1.23±0.11×10~(-3)mm~2/s,1.11±0.11×10~(-3)mm~2/s respectively. There was a significant difference between normal liver tissue,fatty liver and the liver cirrhosis,(P<0.05),and significant difference were found among Child-Pugh A,B,C (P<0.05).(3) The ADC value of the hepatocellular carcinoma(HCC),the HCC after transcatheter arterial chemoembolization(TACE) treatment,hypovascular Hepatic Metastases,hypervascular Hepatic Metastases,cholangiocarcinoma,haemangioma, and benign lesions was 1.38±0.15×10~(-3)mm~2/s,1.42±0.21×10~(-3)mm~2/s,1.36± 0.19×10~(-3)mm~2/s,1.49±0.19×10~(-3)mm~2/s,1.44±0.12×10~(-3)mm~2/s,1.90±0.16×10~(-3)mm~2/s,1.48±0.19×10~(-3)mm~2/s respectively,and the ADC value was higher in benign lesion than that in malignant tumor.With ADC value of 1.55×10~(-3)mm~2/s as the threshold for malignant tumors and benign lesions,the sensitivity,specificity, accuracy,positive predictive value,negative predictive value,positive likelihood ratio, and negative likelihood ratio were 80.18%,81.08%,80.41%,92.71%,57.69%,4.24, 0.24,respectively.
     Conclusion:(1) With b value increased,the ADC value and quality of DWI decreased at the same time.According to both the value of differential diagnosis and the quality of DWI,b=600 is a free parameters in DWI scanning to get appropriate imaging on 3.0T MRI.(2) DWI is relevant to the severity of hepatic cirrhosis and fatty liver,and may be a useful quantitative tool for evaluating the severity of hepatic cirrhosis and fatty liver.(3) ADC values of malignant tumors were lower than that of benign lesions.Proper threshold of ADC value was helpful to differentiating malignant tumor from benign lesion.
引文
1. Zhao H, Yao JL, Wang Y, et al. Detection of small hepatocellular carcinoma: comparison of dynamic enhancement magnetic resonance imaging and multiphase multirow-detector helical CT scanning. World J Gastroenterol, 2007,13(8):1252-1256.
    
    2. White MJ, O Gorman RL, Charles-Edwards EM, et al. Parametric mapping of the hepatic perfusion index with gadolinium-enhanced volumetric MRI. Br J Radiol, 2007,80(950):113-120.
    
    3. Danrad R, Martin DR. MR imaging of diffuse liver diseases. Magn Reson Imaging Clin N Am, 2005, 13(2):277-293.
    
    4. Maleux G, De Keyzer F, Prinsloo J, et al. Dynamic MR perfusion measurements before and after TIPS in cirrhotic patients with refractory ascites. Acad Radiol, 2007,14(11): 1400-1408.
    
    5. Kim YK, Kim CS, Chung GH, et al. Comparison of gadobenate dimeglumine-enhanced dynamic MRI and 16-MDCT for the detection of hepatocellular carcinoma. AJR Am J Roentgenol, 2006, 86(1): 149-157.
    
    6. Yu JS, Rofsky NM. Hepatic metastases: perilesional enhancement on dynamic MRI.JR Am J Roentgenol, 2006, 186(4): 1051-1058.
    
    7. Ito K. Hepatocellular carcinoma: conventional MRI findings including gadolinium-enhanced dynamic imaging. ur J Radiol, 2006, 58(2): 186-199.
    
    8. Karahan OI, Yikilmaz A, Artis T, et al. Contrast-enhanced dynamic magnetic resonance imaging findings of hepatocellular carcinoma and their correlation with histopathologic findings. Eur J Radiol, 2006, 57(3):445-452.
    
    9. Jung EM, Clevert DA, Schreyer AG, et al. Evaluation of quantitative contrast harmonic imaging to assess malignancy of liver tumors: a prospective controlled two-center study. World J Gastroenterol, 2007, 13(47):6356-6364.
    
    10. Macari M, Yeretsian R, Babb J. Assessment of low signal adjacent to the falciform ligament on contrast-enhanced MRI. AJR Am J Roentgenol, 2007, 189(6): 1443-1448.
    
    11. Van den Bos IC, Hussain SM, et al. MR imaging of hepatocellular carcinoma: relationship between lesion size and imaging findings, including signal intensity and dynamic enhancement patterns. J Magn Reson Imaging, 2007, 26(6): 1548-1555.
    
    12. Chen F, Sun X, De Keyzer F, et al. Liver tumor model with implanted rhabdomyosarcoma in rats: MR imaging, microangiography, and histopathologic analysis. Radiology, 2006, 239(2):554-562.
    
    13. Haacke EM, Filleti CL, Gattu R, Ciulla C, et al. New algorithm for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 values. Magn Reson Med, 2007, 58(3):463-472.
    
    14. Efremidis SC, Hytiroglou P, Matsui O. Enhancement patterns and signal-intensity characteristics of small hepatocellular carcinoma in cirrhosis: pathologic basis and diagnostic challenges. Eur Radiol, 2007, 17(11):2969-2982.
    
    15. Gabata T, Matsui O, Terayama N, et al. Imaging diagnosis of hepatic metastases of pancreatic carcinomas: significance of transient wedge-shaped contrast enhancement mimicking arterioportal shunt.Abdom Imaging, 2007 Jul 4.
    
    16. Piscaglia F, Bolondi L. Recent advances in the diagnosis of hepatocellular carcinoma. Hepatol Res, 2007, 37 Suppl 2:S178-192.
    
    17. Gabata T, Matsui O, Terayama N, et al. Imaging diagnosis of hepatic metastases of pancreatic carcinomas: significance of transient wedge-shaped contrast enhancement mimicking arterioportal shunt. Abdom Imaging, 2007 Jul 4.
    
    18. Kubo H, Harada M, Ishikawa M, et al. Hemodynamic changes with liver fibrosis measured by dynamic contrast-enhanced MRI in the rat. Magn Reson Med Sci, 2006,5(2):65-71.
    
    19. Yamauchi M, Asayama Y, Yoshimitsu K, et al. Hepatocellular carcinoma with a prominent vascular scar in the center: MR imaging findings. Radiat Med, 2006,24(6):467-470.
    
    20. Barash H, Gross E, Matot I, et al. Functional MR imaging during hypercapnia and hyperoxia: noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model. Radiology, 2007, 243(3):727-735.
    
    21. Guan S, Zhao WD, Zhou KR, et al. Assessment of hemodynamics in precancerous lesion of hepatocellular carcinoma: evaluation with MR perfusion. World J Gastroenterol, 2007, 13(8): 1182-1186.
    
    22. Hayashida M, Ito K, Fujita T, et al. Small hepatocellular carcinomas in cirrhosis:differences in contrast enhancement effects between helical CT and MR imaging during multiphasic dynamic imaging. Magn Reson Imaging, 2008, 6(1):65-71.
    
    23. Shimizu A, Ito K, Sasaki K, et al. Small hyperintense hepatic lesions on T1-weighted images in patients with cirrhosis: evaluation with serial MRI and imaging features for clinical benignity. Magn Reson Imaging, 2007, 5(10): 1430-1436.
    
    24. Van den Bos IC, Hussain SM, Terkivatan T, et al. Stepwise carcinogenesis of hepatocellular carcinoma in the cirrhotic liver: demonstration on serial MR imaging. J Magn Reson Imaging, 2006, 4(5): 1071-1080.
    
    25. Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radio 1, 2006, 7(3):505-512.
    
    26. Liu R, Wang JH, Zhou KR, et al. A comparative study of MRI manifestations and pathological changes in hepatocellular carcinoma treated by transcatheter arterial chemoembolization with lipiodol. Zhonghua Gan Zang Bing Za Zhi, 2005,13(10):754-758.
    
    27. Unal B, Bilgili Y, Kara S, et al. Transient arterial enhancement in a hepatic peritumoral fat-spared area. Diagn Interv Radiol, 2005, 11 (3):159-162.
    1. Materne R, Smith AM, Peeters F, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med, 2002, 47(1):135-142.
    
    2. Erturk SM, Ichikawa T, Sou H, et al. Effect of duration of contrast material injection on peak enhancement times and values of the aorta, main portal vein, and liver at dynamic MDCT with the dose of contrast medium tailored to patient weight.Clin Radiol, 2008, 63(3):263-271.
    
    3. Van den Bos IC, Hussain SM, Dwarkasing RS, et al. MR imaging of hepatocellular carcinoma: relationship between lesion size and imaging findings, including signal intensity and dynamic enhancement patterns. J Magn Reson Imaging, 2007, 26(6):1548-1555.
    
    4. Maleux G, De Keyzer F, Prinsloo J, et al. Dynamic MR perfusion measurements before and after TIPS in cirrhotic patients with refractory ascites. Acad Radiol, 2007,14(11): 1400-1408.
    
    5. Fujita T, Ito K, Honjo K, et al. Hepatic parenchymal enhancement in the cirrhotic liver: evaluation by triple-phase dynamic MRI. Abdom Imaging, 2002, 27(1):29-33.
    
    6. Maleux G, De Keyzer F, Prinsloo J, et al. Dynamic MR perfusion measurements before and after TIPS in cirrhotic patients with refractory ascites. Acad Radiol, 2007,14(11):1400-1408.
    
    7. Wu W, Zhao JN, Guo DJ, et al. The application of 3D liver acquisition volume acceleration integrated with array spatial sensitivity encoding technique in liver dynamic-enhancement scanning. Zhonghua Gan Zang Bing Za Zhi, 2008,16(4):294-297.
    
    8. Leyendecker JR, Gakhal M, Elsayes KM,et al. Fat-suppressed dynamic and delayed gadolinium-enhanced volumetric interpolated breath-hold magnetic resonance imaging of cholangiocarcinoma. J Comput Assist Tomogr, 2008, 32(2): 178-184.
    
    9. Larson AC, Wang D, Atassi B, et al. Transcatheter intraarterial perfusion: MR monitoring of chemoembolization for hepatocellular carcinoma-feasibility of initial clinical translation. Radiology, 2008, 246(3):964-971.
    
    10. Hagiwara M, Rusinek H, Lee VS, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging-initial experience. Radiology, 2008,246(3):926-934.
    
    11. Xu H, Xie JX, Li X, et al. Perrusion-weighted MRI in evaluating the intranodular hemodynamic characteristics of dysplastic nodules and hepato cellular carcinomas in an experimental rat model. J Magn Reson Imaging, 2008, 27(1): 102-109.
    
    12. Hwang SH, Yu JS, Kim KW, et al. Small hypervascular enhancing lesions on arterial phase images of multiphase dynamic computed tomography in cirrhotic liver:fate and implications. J Comput Assist Tomogr, 2008, 32(1):39-45.
    
    13. Wang L, Van den Bos IC, Hussain SM, et al. Post-processing of dynamic gadolinium-enhanced magnetic resonance imaging exams of the liver: explanation and potential clinical applications for color-coded qualitative and quantitative analysis.Acta Radiol, 2008, 49(1):6-18.
    
    14. Nakaura T, Awai K, Yanaga Y, et al. Detection of early enhancement of hypervascular hepatocellular carcinoma using single breath-hold 3D pixel shift dynamic subtraction MDCT. AJR Am J Roentgenol, 2008, 190(1):W13-8.
    
    15. Wang D, Bangash AK, Rhee TK, et al. Liver tumors: monitoring embolization in rabbits with VX2 tumors—transcatheter intraarterial first-pass perfusion MR imaging.Radiology, 2007, 245(1): 130-139.
    
    16. Macari M, Yeretsian R, Babb J. Assessment of low signal adjacent to the falciform ligament on contrast-enhanced MRI. AJR Am J Roentgenol, 2007, 189(6): 1443-8.
    
    17. Passera KM, Mainardi LT, Setti E,et al. Improved detection of liver metastasis by registration and subtraction of dynamic contrast-enhanced magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc, 2007:59-62.
    
    18. Haacke EM, Filleti CL, Gattu R, et al. New algorithm for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 values. Magn Reson Med, 2007, 58(3):463-472.
    
    19. Kim YK, Jang KY, Cho BH, et al. Three-phase dynamic CT of pelioid hepatocellular carcinoma. AJR Am J Roentgenol, 2007, 189(3):W160-162.
    
    20. Efremidis SC, Hytiroglou P, Matsui O. Enhancement patterns and signal-intensity characteristics of small hepatocellular carcinoma in cirrhosis: pathologic basis and diagnostic challenges. Eur Radiol, 2007, 17(11):2969-2982.
    
    21. Gabata T, Matsui O, Terayama N, et al.Imaging diagnosis of hepatic metastases of pancreatic carcinomas: significance of transient wedge-shaped contrast enhancement mimicking arterioportal shunt. Abdom Imaging, 2007 Jul 4.
    
    22. Totman JJ, O gorman RL, Kane PA, et al. Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br J Radiol, 2005, 78(926): 105-109.
    
    23. Taouli B, Losada M, Holland A, et al. Magnetic resonance imaging of hepatocellular carcinoma. Gastroenterology, 2004, 127(5 Suppl 1):S144-152.
    
    24. Wang J, Chen LT, Tsang YM, et al. Dynamic contrast-enhanced MRI analysis of perfusion changes in advanced hepatocellular carcinoma treated with an antiangiogenic agent: a preliminary study. AJR Am J Roentgenol, 2004,183(3):713-719.
    
    25. Hayashida M, Ito K, Fujita T, et al. Small hepatocellular carcinomas in cirrhosis: differences in contrast enhancement effects between helical CT and MR imaging during multiphasic dynamic imaging. Magn Reson Imaging, 2008, 26(1):65-71.
    
    26. Yamaguchi J, Sakamoto Y, Sano T, et al. Spontaneous regression of inflammatory pseudotumor of the liver: report of three cases. Surg Today, 2007, 37(6):525-529.
    
    27. Zhao H, Yao JL, Wang Y, et al. Detection of small hepatocellular carcinoma:comparison of dynamic enhancement magnetic resonance imaging and multiphase multirow-detector helical CT scanning. World J Gastroenterol, 2007,13(8):1252-1256.
    
    28. Naruo K, Tozaki M, Fukuda Y, et al. Enhancement of the liver on dynamic MDCT:investigation among three groups consisting of noncirrhotic patients and cirrhotic patients with and without a large portosystemic shunt.Radiat Med, 2007,25(3):106-112.
    1. Charles-Edwards EM, Desouza NM. Diffusion weighted magnetic resonance imaging and its application to cancer. Cancer Imaging, 2006, 13:135-143.
    
    2. Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol, 2004, 183: 677-680.
    
    3. Deng J, Miller FH, Salem R, et al. Multi-shot diffusion weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol, 2006, 41:769-775.
    
    4. Naganawa S, Kawai H, Fukatsu H, et al. Diffusion weighted imaging of the liver:technical challenges and prospects for the future. Magn Reson Med Sci, 2005, 31:175-186.
    
    5. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, et al. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol, 2008, 18(3):486-492.
    
    6. Yuan YH, Xiao EH, Liu JB, et al. Characteristics and pathological mechanism on magnetic resonance diffusion-weighted imaging after chemoembolization in rabbit liver VX-2 tumor model. World J Gastroenterol, 2007, 13(43):5699-5706.
    
    7. Nasu K, Kuroki Y, Fujii H, et al. Hepatic pseudo-anisotropy: a specific artifact in hepatic diffusion-weighted images obtained with respiratory triggering. MAGMA,2007, 20(4):205-211.
    
    8. Inan N, Arslan A, Akansel G, et al. Diffusion-weighted imaging in the differential diagnosis of simple and hydatid cysts of the liver. AJR Am J Roentgenol, 2007,189(5):1031-1036.
    
    9. Colagrande S, Carbone SF, Carusi LM,et al. Magnetic resonance diffusion weighted imaging: extraneurological applications. Radiol Med (Torino), 2006, 111:392-419.
    
    10. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol, 2006,187:1521-1530.
    
    11. Youn BJ, Chung JW, Son KR, et al. Diffusion-Weighted MR Therapeutic Evaluation after Chemoembolization of VX-2 Carcinoma Implanted in Rabbit Liver.Acad Radiol, 2008, 15(5):593-600.
    
    12. Dineen RA, Sibtain N, Karani JB, et al. Cerebral manifestations in liver disease and transplantation. Clin Radiol, 2008, 63(5):586-599.
    
    13. Wang H, Van de Putte M, Chen F, et al. Murine liver implantation of radiation-induced fibrosarcoma: characterization with MR imaging,microangiography and histopathology. Eur Radiol, 2008 Mar 15.
    
    14. Sasaki T, Shinya S, Nakagawa Y, et al. Diffusion-weighted imaging is a feasible method for screening colorectal cancer: report of a case. Hepatogastroenterology,2007, 54(79):1951-1953.
    
    15. Deng J, Miller FH, Rhee TK, et al. Diffusion weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization.J Vasc Interv Radiol, 2006, 17:1195-1200.
    
    16. Kim T, Murakami T, Takahashi S, et al. Diffusion weighted single shot echoplanar MR imaging for liver disease. Am J Roentgenol, 1999, 173: 393-398.
    
    17. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single shot echo planar MR imaging sequences: prospective study in 66 patients. Radology, 2003, 226: 71-78.
    
    18. Amano Y, Humazaki T, Ishihara M. Single shot diffusion weighted echo planar imaging of normal and cirrhotic livers using a phased array multicoil. Acta Radiological, 1998, 39:440- 442.
    
    19. Xie Q, Liang BL, Jiang XQ, et al. Hepatic metastasis of human colon carcinoma:establishment of a nude mouse model and its magnetic resonance imaging. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(1):97-100.
    
    20. Koh DM, Brown G, Riddell AM, et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination.Eur Radiol,2008,18(5):903-910.
    21.周减,杨正汉,叶晓华.CT、MR功能成像在肝脏病变的应用进展.中国医学汁算机成像杂志,2004,10:329-337.
    22.Annet L,Peeters F,Abarca-Quinones J,et al.Assessment of diffusion weighted MR imaging in liver fibrosis.J Magn Reson Imaging,2006,25:122-128.
    23.Boulanger Y,Amara M,Lepanto L,et al.Diffusion weighted MR imaging of the liver of hepatitis C patients.NMR Biomed,2003,16:132-136.
    24.Herneth AM,Guccione S,Bednarski M.Apparent diffusion coefficient:a quantitative parameter for in vivo tumor characterization.Eur J Radiol,2003,45:208-213.
    25.Chenevert TL,McKeever PE,Ross BD.Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging.Clin Cancer Res,1997,3:1457-1466.
    26.Lyng H,Haraldseth O,Rofstad EK.Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.Magn Reson Med,2000,43:828-836.
    27.Geschwind JF,Artemov D,Abraham S,et al.Chemoembolization of liver tumor in a rabbit model:assessment of tumor cell death with diffusion weighted MR imaging and histologic analysis.J Vase Inter Radiol,2000,11:1245-1255.
    28.Kamel IR,Bluemke DA,Ra msey D,et al.Role of dffusion weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma.Am J Roentgeno 1,2003,181:708-710.
    29.Chert F,De Keyzer F,Wang H,et al.Diffusion weighted imaging in small rodents using clinical MRI scanners.Methods,2007,43(1):12-20.
    30.Shinya S,Sasaki T,Nakagawa Y,et al.The usefulness of diffusion-weighted imaging(DWI) for the detection of gastric cancer.Hepatogastroenterology,2007,54(77):1378-1381.
    31.Coenegrachts K,Delanote J,Ter Beek L,et al.Improved focal liver lesion detection:comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol, 2007, 80(955):524-531.
    
    32. Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging, 2007, 25(4):848-858.
    
    33. Annet L, Peeters F, Abarca-Quinones J, et al. Assessment of diffusion-weighted MR imaging in liver fibrosis. J Magn Reson Imaging, 2007, 25(1): 122-128.
    1. Charles-Edwards EM, Desouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging, 2006,13:135-143.
    
    2. Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol, 2004, 183: 677-680.
    
    3. Deng J, Miller FH, Salem R, et al. Multi-shot diffusion weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol, 2006,41:769-775.
    
    4. Naganawa S, Kawai H, Fukatsu H, et al. Diffusion weighted imaging of the liver:technical challenges and prospects for the future. Magn Reson Med Sci, 2005, 31:175-186.
    
    5. Colagrande S, Carbone SF, Carusi LM,et al. Magnetic resonance diffusion weighted imaging: extraneurological applications. Radiol Med(Torino), 2006, 111:392-419.
    
    6. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol, 2006,187:1521-1530.
    
    7. Deng J, Miller FH, Rhee TK, et al. Diffusion weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization.J Vasc Interv Radiol, 2006, 17:1195-1200.
    
    8. Kim T, Murakami T, Takahashi S, et al. Diffusion weighted single shot echoplanar MR imaging for liver disease. Am J Roentgenol, 1999, 173: 393-398.
    
    9. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single shot echo planar MR imaging sequences: prospective study in 66 patients. Radology, 2003, 226: 71-78.
    
    10. Amano Y, Humazaki T, Ishihara M. Single shot diffusion weighted echo planar imaging of normal and cirrhotic livers using a phased array multicoil. Acta Radiological,1998,39:440-442.
    11.周诚,杨正汉,叶晓华.CT、MR功能成像在肝脏病变的应用进展.中国医学计算机成像杂志,2004,10:329-337.
    12.Annet L,Peeters F,Abarca-Quinones J,et al.Assessment of diffusion weighted MR imaging in liver fibrosis.J Magn Reson Imaging,2006,25:122-128.
    13.Boulanger Y,Amara M,Lepanto L,et al.Diffusion weighted MR imaging of the liver of hepatitis C patients.NMR Biomed,2003,16:132-136.
    14.Herneth AM,Guccione S,Bednarski M.Apparent diffusion coefficient:a quantitative parameter for in vivo tumor characterization.Eur J Radiol,2003,45:208-213.
    15.Chenevert TL,McKeever PE,Ross BD.Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging.Clin Cancer Res,1997,3:1457-1466.
    16.Lyng H,Haraldseth O,Rofstad EK.Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.Magn Reson Med,2000,43:828-836.
    17.Geschwind JF,Artemov D,Abraham S,et al.Chemoembolization of liver tumor in a rabbit model:assessment of tumor cell death with diffusion weighted MR imaging and histologic analysis.J Vase Inter Radiol,2000,11:1245-1255.
    18.Kamel IR,Bluemke DA,Ra msey D,et al.Role of dffusion weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma.Am J Roentgeno 1,2003,181:708-710.
    19.Hollingsworth KG,Lomas DJ.Influence of perfusion on hepatic MR diffusion measurement.NMR Biomed.2006,19:231-235.
    20.Kamel IR,Bluemke DA,Eng J,et al.The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma.J Vasc Interv Radiol,2006,17:505-512.
    21.Brasch R,Turetschek K.MRI characterization of tumors and grading angiogenesis using macromolecular contrast media:status report.Eur J Radiol,2000,34:148-155.
    22.管生,赵卫东,周康荣.大鼠肝脏MR弥散、灌注成像的初步研究.中国医学影像技术, 2004,20:850-852.
    
    23. Ichikawa T, Haradome H, Hachiya J, et al. Characterization of hepatic lesions by perfusion weighted MR imaging with an echoplanar sequence. Am J Roentgenol,1998,170:1029-1034.
    
    24. Ichikawa T, Arbab AS, Araki T, et al. Perfusion MR imaging with a superparamagnetic iron oxide using T2 weighted and susceptibility sensitive echoplanar sequences: evaluation of tumor vascularity in hepatocellular carcinoma.Am J Roentgenol, 1999, 173:207- 213.
    
    25. Tsui EY, Chan JH, Cheung YK, et al. Evaluation of therapeutic effectiveness of transarterial chemoembolization for hepatocellular carcinoma: correlation of dynamic susceptibility contrast enhanced echoplanar imaging and hepatic angiography. Clin Imaging, 2000, 24:210-216.
    
    26. Zhao JG, Feng GS, Kong XQ, et al. Assess ment of hepatocellular carcinoma vascularity before and after transcatheter arterial chemoembolization by using first pass perfusion weighted MR imaging. World J Gastroentero 1. 2004, 10:1152-1156.
    
    27. Uematsu H, Yamach H, Sadato N, et al. Assessment of hepatic portal perfusion using T2* measurement of Gd-DTPA. Magn Reson Imaging, 1998, 8: 650-654.
    
    28. Kuo YT, Li CW, Chen CY, et al. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imaging, 2004, 19:598-604.
    
    29. Corbin I R, Buist R, Volotovskyy V, et al. Regenerative activity and liver function following partial hepatectomy in the rat using (31 )P MR spectroscopy. Hepatology,2002,36:345-353.
    
    30. Corbin IR, Buist R, Peeling J, et al. Utility of hepatic phospharus-31 magnetic resonance spectroscopy in a rat model of acute liver failure. J Investig Med,2003,51:42-49.
    
    31. Bell JD and Bhakoo kk. Metabolic changes underlying 31P MR spectral alterations in human hepatic tumors. N MR Bio med, 1998, 11:354.
    
    32. Thomas CP, Dixon RM, Tian M, et al. Phosphoms metabolism during growth of lymphoma in mouse liver, a comparison of 31P MRS in vivo and in vitro. Br J Cancer,1994,69:633-640.
    
    33. Munakata T, Griffiths RD, Martin PA, et al. An in vivo 31 P MRS study of patients with liver cirosos: progress towards a nom-invasive assessment of disease severity. NMR Biomed, 1993, 6 :168-172.
    
    34. Taylor Robinson SD, Sargentoni J, Bell JD, et al. In vivo and in vitro hepatic 31 P magnetic resonance spectroscopy and electron microscopy of the cirrhotic liver. Liver,1997, 17:198-209.
    
    35. Kiyono K, Shibata A, Sone S, et al. Relationship of 31 P MR spectroscopy to the histopathological grading of chronic hepatitis and response to therapy. Acta Radiol,1998,39:309-314.
    
    36. Meyerhoff DJ, Karcz mar GS, Valone F, et al. Hepatic cancers and their response to chemoembolization therapy. Quantitative image-guided 31P magnetic resonance spectroscopy. Invest Radiol, 1992, 27:456-464.
    
    37. Taniguchi K, Ka minaga T, Sakon M, et al. The change of hepaticenergy status after transcatheter arterial embolization(TAE) for hepatocellular carcinoma a study using 31P- MRS. Gan To Kagaku Ryoho, 1997, 24:1632-1634.
    
    38. Ikehira H, Girard F, Obata T, et al. A preliminary study for clinical pharmacokinetics of oral fluorine anticancer medicines using the commercial MRI system 19F- MRS. Br J Radiol, 1999, 72: 584-589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700