CD133在人肝细胞癌中的表达特点及其同患者临床病理因素的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(hepatocellular carcinoma)是在中国位于第三位,全世界位于第六位的常见恶性肿瘤。2000年全球肝细胞癌发病数为56.4万人,其中约55%在中国。由于肝细胞癌恶性程度高,术后易复发,对放疗化疗等传统手段不敏感,因此其总体疗效仍不理想。
     近年来肿瘤干细胞理论的提出使人们对肿瘤的生物学行为有了新的认识,该理论认为,肿瘤组织中存在一小群具有自我更新和多向分化能力的肿瘤干细胞,是肿瘤形成的起始细胞,可能是肿瘤发生、发展、转移、复发的根源。迄今,肿瘤干细胞理论已经在包括白血病、乳腺癌、脑肿瘤、结直肠癌及胰腺癌等许多系统的恶性肿瘤中取得实验方面的支持,在这些实验中,细胞膜表面糖蛋白CD133经常被用作筛选肿瘤干细胞的表面标记物。肝癌干细胞领域的研究也表明,在肝细胞癌的发生发展过程中可能也有肿瘤干细胞的参与,这些实验结果显示,CD133阳性肝癌细胞具有更强的克隆形成能力、更高的增殖活性及体内成瘤性,表明CD133抗原可能是肝癌干细胞的表面标记物。更加深入地了解CD133抗原在肝细胞癌中的表达情况将有助于我们认识该抗原在肝细胞癌生物学行为中的作用,并为将来基于CD133阳性肝癌细胞的治疗研究提供实验参考。
     因为现有肝癌干细胞研究主要是以肝癌细胞系为研究对象进行的,这些细胞系在体外长期培养过程中因其培养条件的不同,其自身特性可能会发生一些未知的改变,从这些细胞系中分离得到的CD133阳性肝癌细胞及基于此所得出的结论也就可能与体内的真实情况不相吻合,也无法明确说明CD133抗原是否为肝癌干细胞的表面标记。而CD133抗原在人肝细胞癌组织中的表达情况及其临床意义,也少见报道。
     本研究以免疫组织化学为主要手段,系统地对CD133抗原在人正常肝脏、肝炎后肝硬化组织、肝细胞癌及癌旁肝组织、肝细胞癌门静脉癌栓、肝细胞癌肺转移瘤、肝癌细胞系移植瘤、FAH-/-小鼠诱发肝细胞癌标本中的表达情况及CD133抗原同AFP抗原及Ki-67抗原的共表达情况进行了研究,对CD133抗原表达同肝细胞癌患者主要临床病理特征的关系进行分析。
     我们的研究结果表明:1、人肝细胞癌组织中CD133抗原的表达同患者血清AFP水平、有无肝硬化、肿瘤分级及肝细胞癌组织中AFP抗原及Ki-67抗原的表达有显著相关性,CD133抗原多表达于血清AFP水平高、合并肝硬化、肿瘤分级差及高表达AFP抗原及Ki-67抗原的患者肝细胞癌组织内,其表达可以作为肝细胞癌诊断分级的辅助指标;2、人肝细胞癌门静脉癌栓中CD133抗原表达同原发灶无明显不同,人肝细胞癌肺转移瘤内未见CD133+肝癌细胞,显示人肝细胞癌肺转移瘤的生长可能同CD133+肝癌细胞无关;3、人及小鼠的正常肝组织汇管区胆管上皮细胞、肝炎后肝硬化组织汇管区胆管上皮细胞、肝细胞癌组织内增生的小胆管上皮细胞管腔侧细胞膜均可见普遍的CD133抗原的表达,但其表达与肝癌细胞CD133抗原的表达情况不同,其在肝癌细胞及胆管细胞内的不同表达模式可能代表两种细胞各自不同的分化或功能状态;4、在共表达CD133抗原及Ki-67抗原的肝细胞癌中,CD133+肝癌细胞多出现于高表达Ki-67抗原的区域,但多数CD133+肝癌细胞未见Ki-67抗原表达,表明CD133+细胞可能在短暂进入细胞周期,进行不对称分裂后又返回到G0期,其增殖在平时并不活跃,显示CD133+细胞具有部分肿瘤干细胞样特性。
     我们的研究结果显示,虽然CD133阳性肝癌细胞具有部分肿瘤干细胞样特性,并同肝细胞癌的临床病理特征间具有相关性,但其在肿瘤转移中的作用不明确,并且在胆管结构中也广泛表达。这些结果为进一步明确CD133在肝癌生物学行为中所起的作用及其同肝癌干细胞的关系提供了实验依据。
Hepatocellular carcinoma is the third common in China, the sixth common maliganancies worldwide. Its global incidence was 564,000 in 2000, 55% of which was in China. Due to its high maliganancy, high incidence of recurrence after surgeries and resistance to traditional therapies, the overall surival is still unsatisfactory.
     Recently, the cancer stem cells theory gave us a new insight into the tumor biological behavior. According to this theory, only a small amount of tumor cells should be responsible for the initiation, progression, metastasis and recurrence of tumors, and those cells are all characteristics of self-renewal ability and multiple differentiation potential. To date, this theory has gained supports from researches in various maliganancies, include leukemia, brain tumors, breast carcinoma, colorectal carcinoma and pancreatic carcinoma. A frequently used sorting markerin these experiments is the cell surface glucosylated protein CD133. Research on CSCs of hepatocellular carcinoma also revealed that CD133-positive cells possess a greater colony-forming efficiency, higher proliferative output, and a greater ability to form tumor in vivo, all of which indicates that CD133 is a potential surface marker of HCC CSCs. Deeper understanding of its expression in HCC may help us better understand the biological behavior of HCC and provides some insight into the future anti-tumor drug research targeted at CD133-postive cells.
     At presence, most research on HCC CSCs are based on HCC cell lines, the characteristics of those HCC cell lines might change because of long time culture in vitro. So, it is not known to what extent can those conclusions match the real condition in human. And its little known about its expression in human HCC tissues and its correlations with clinicopathological factors.
     By using immunohistochemistry, we systematically investigated the expression of CD133 in normal human liver, human cirrhotic liver, HCC and its adjacent non-tumor liver tissue, portal thrombosis, metastatic HCC in lung, xenograft of HCC cell lines in NOD/SCID mice, FAH-/--induced HCC. Also, we detected co-expression of CD133 with AFP and Ki-67 antigen, and we analyzed the correlations between CD133 expression in HCC and the major clinocopathological factors.
     Our results shows: 1. The expression of CD133 is significantly associated with serum AFP level, the existence of cirrhosis, tumor grade, AFP and Ki-67 expressions, higher expression of CD133 can be found in high tumor grade HCC tissues expressing AFP and Ki-67 from patients with higher serum AFP level, complicating cirrhosis; 2. There is no obvious difference between the expression of CD133 in portal thrombosis and its origin, and we didn’t find the expression of CD133 in metastatic HCC in lung that we tested, which might indicates that the sustain of its growth in lung have no association with CD133; 3. We found there are universal apical staining of CD133 in bile ducts of human and mouse liver triad area, human cirrhotic liver triad area and in hyperplastic bile ducts in HCC stroma and its adjacent non-tumor liver tissues, but this pattern of its expression is different from what in HCC, indicating that different expression patterns presents different states of differentiation or function in these two types of cells; 4. In those HCC specimens expressing both CD133 and Ki-67, CD133 was highly expressed in the areas where Ki-67 was also highly expressed, but the co-expression of these two antigens showed that only a small amount of CD133-positive HCC cells expressed Ki-67 simultaneously, which indicates CD133-positive HCC cells went into cell cycle temporarily and went back to G0 soon after asymmetric cell division, and remains quiescent until next division.
     Our results shows, although CD133+ HCC cells have some CSCs like properties, and is correlated with clinicopathological factors, their role in tumor metastasis remains unclear, and its expression can be found in bile ductal structures universally. Our resluts gave further evidence towards the role of CD133 in the biological behavior of HCC and its relationship with the genuine hepatocarcinoma stem cells.
引文
[1] Bruce W. R., Gaag H.v.d. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963(6);199:79-80.
    [2] Wodinsky I, Swiniarski J, Kensler C.J. Spleen colony studies of leukemia L1210. 3. Differential sensitivities of normal hematopoietic and resistant L1210 colony-forming cells to 6-mercaptopurine (NSC-755). Cancer Chemother 1968;52(2):251-255.
    [3] Bergsagel DE, Valeriote FA. Growth characteristics of a mouse plasma cell tumor. Cancer Res 1968;28(11):2187-2196.
    [4] Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977;197(4302):461-463.
    [5] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105-111.
    [6] Park CH, Bergsagel DE, McCulloch EA. Mouse myloma tumour stem cell:a primarey cell culture assay.J Natl Cancer Inst 1971;46(2):411-422.
    [7] Bonnet D, Dick JE. Human acute myeloid leukaemia is orgnized as a hierarchy that originates from a primitive hematopoietic cell .Nature Med 1997;3(7):730-743.
    [8] Matsui W, Huff CA, Wang Q et al. Characterization of clonogenic multiple myeloma cells.Blood 2004;103(6):2332-2336
    [9] Al-Hajj M,Wicha MS, Benito-Hernandez A, et al.Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100(7):3983-3988.
    [10] Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG. Highly purified CD44_ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25(12):1696–1708.
    [11] Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65(23):10946–10951.
    [12] Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117 (Pt 16):3539–3545.
    [13] Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC. Gastric cancer originating from bone marrow-derived cells.Science 2004;306(5701):1568–1571.
    [14] Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121:823–835.
    [15] O’brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice.Nature 2007;445(7123):106–110.
    [16] Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M,Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445(7123):111–115.
    [17] Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31(4):339–346.
    [18] Suetsugu, A., Nagaki, M., Aoki, H., Motohashi, T., Kunisada, T., and Moriwaki,H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351(4):820–824.
    [19] Ma S,Chan KW, Hu L,Lee KW, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132(7):2542-56.
    [20] Yin S, Li J,Hu C,Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D,et al.CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120(7):1444-1450.
    [21] Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A,Nakauchi H, Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006;44(1):240–251.
    [22] Ma S, Chan KW,et al.Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell population. Mol Cancer Res 2008;6(7):1146-1153.
    [23] Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer.Cancer Cell 2008;13(2):153–166.
    [24] Miraglia S, Godfrey W, Yin AH et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997; 90(12):5013–21.
    [25] Yin AH, Miraglia S, Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90(12):5002–12.
    [26]Peichev M, Naiyer AJ,Pereira D,Zhu,Z, Lane WJ,Williams M, et al. Expression ofVEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000;95(3):952–958.
    [27]Uchida N, Buck D., He D,Reitsma MJ, Masek M,Phan TV,et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000;97(26):14720–14725.
    [28] Weigmann A,Corbeil D,Hellwig A,Huttner WB.Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 1997;94(23):12425–12430.
    [29] Richardson GD,Robson CN,Lang SH,Neal DE,Maitland NJ,Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science 2004;117 (Pt 16):3539–3545.
    [30]Bussolati B,Bruno S, et al. Isolation of Renal Progenitor Cells from Adult Kidney.Am J Pathol 2005;166(2):545-555.
    [31] Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB.Identification of a cancer stem cell in human brain tumors.Cancer Res 2003;63(18):5821–5828.
    [32] Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB.Identification of human brain tumour initiating cells. Nature 2004;432(7015):396–401.
    [33] Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res 1982;42(9):3858-3863.
    [34] Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 2004;23(43):7274–7282.
    [35] Maeda S , Shinchi H et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J of Cancer 2008;98(8):1389–1397.
    [36] Immervoll H, Hoem D, et al. Expression of the“stem cell marker”CD133 in pancreas and pancreatic ductal adenocarcinoma. BMC Cancer 2008;8:48.
    [37] Horst D,Kriegl L,Engel J,Krichner T,Jung A.CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J of Cancer 2008; 99(8):1285–1289.
    [38] Abelev GI , Eraiser TL. Cellular aspect s of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol 1999;9(2):95-107.
    [39] Wang XW, Xu B. Stimulation of tumor-cell growth by alpha-fetoprotein. Int J Cancer 1998;75(4):596–599.
    [40] Mitsuhashi N, Kobayashi S, Doki T, et al. Clinical significance of a-fetoprotein: involvement in proliferation, angiogenesis, and apoptosis of hepatocellular carcinoma.J Gastroen Hepatol 2008;23 (7 Pt 2):e189-e197.
    [41] Bruix J, Sherman M,Llovet JM, et al.Clinical management of hepatocellular carcinoma.Conclusions of Barcelona-2000 EASL conference.European Association for the study of the liver. J Hepatol 2001;35(3):421-430.
    [42] The liver cancer study group of Japan. Predictive factors for long-term prognosis after partial hepatectomy for patients with hepatocellular carcinoma in Japan. Cancer 1994;74(10):2772-2780.
    [43] Shmelkov SV,Butler JM,Hooper AT et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133–metastatic colon cancer cells initiate tumors.J Clin Invest 2008;118(6):2111-2020.
    [44] Tsai TJ,Chau GY,Lui WY,et al. Clinical significance of microscopic tumor venous invasion in patients with resectable hepatocellular carcinoma. Surgery 2000;127(6):603-608.
    [45] Le NH, Franken P, Fodde R. Tumor-stroma interactions in colorectal cancer: converging onβ-Catenin activation and cancer stemness. Br J of Cancer 2008;98(12):1886–1893.
    [46] Thompson MD, Monga S. Wnt/β-Catenin signaling in liver health and disease. Hepatology 2007;45(5):1298-1305.
    [47]Shmelkov, SV, Jun L, St.Clair R, McGarrigle D, Derderian CA, Usenko JK, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 2004;103(6): 2055–2061.
    [48] Maw M A, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC,Bridges RJ, et al.A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Human Molecular Genetics 2000;9(1):27–34.
    [49] Bhatia, M.AC133 expression in human stem cells. Leukemia 2001;15(11):1685–1688.
    [50] Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100(25):15178-15183.
    [51] Galli R, Binda E, OrfanelliU, et al. Isolation and characterization of tumorigenic, stem2like neural precursors from human glioblastoma. Cancer Res 2004;64(19):7011-7021.
    [52] Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic p rostate cancer stem cells. Cancer Res 2005;65(23): 10946-10951.
    [53] Smith LM,Nesterova A,Ryan MC,Duniho S, Jonas M,Anderson M,Zabinski RF,Sutherland MK,Gerber H-P,Orden KL,Moore PA,Ruben SM,Carter PJ. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers.Br J of Cancer 2008;99(1):100-109.
    [54] Gitlin D, Perricelli A, Gitlin GM. Synthesis of AFP by liver, yolk sac and intestinal tract of the human conceptus. Cancer Res 1972; 32(5):970-972.
    [55] Peng SY, Chen WJ, Lai PL, Jeng YM, Sheu JC, Hsu HC. Highα-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age,p53 andβ-catenin mutation.Int J Cancer 2004;112(1):44-50.
    [56] Atkin SL, Green VL, Hipkin LJ, Landolt AM, Foy PM, Jeffreys RV, White MC.A comparison of proliferation indices in human anterior pituitary adenomas using formalin-fixed tissue and in vitro cell culture. J Neurosurg 1997;87(1):85-88.
    [57] D'Errico A, Grigioni WF, Fiorentino M, Baccarini P, Grazi GL, Mancini AM.Overexpression of p53 protein and Ki67 proliferative index in hepatocellular carcinoma: an immunohistochemical study on 109 Italian patients. Pathol Int 1994;44(9):682–687.
    [58] Nakanishi K, Sakamoto M, Yamasaki S, Todo S, Hirohashi S.Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer 2005;103(2):307–312.
    [1] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105-111.
    [2] Sell S. Cancer and stem cell signaling: a guide to preventive and therapeutic strategies for cancer stem cells. Stem Cell Rev 2007;3(1):1-6.
    [3] Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer 2007;96(7):1020-1024.
    [4] Reya T, Clevers H. Wnt signalling in stem cells and cancer.Nature 2005;434(7035):843-850.
    [5] Park CH, Bergsagel DE, McCulloch EA. Mouse myloma tumour stem cell:a primarey cell culture assay.Natl Cancer Inst 1971;46(2):411-422.
    [6] Bonnet D, Dick JE. Human acute myeloid leukaemia is orgnized as a hierarchy that originates from a primitive hematopoietic cell .Nature Med 1997;3(7):730-743.
    [7] Matsui W, Huff CA, Wang Q et al. Characterization of clonogenic multiple myeloma cells.Blood 2004;103(6):2332-2336.
    [8] Al-Hajj M, Wicha MS, Benito-Hernandez A, et al.Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100(7):3983-3988.
    [9] Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25(12):1696–1708.
    [10] Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65(23):10946–10951.
    [11] Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117 (Pt 16):3539–3545.
    [12] Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC. Gastric cancer originating from bone marrow-derived cells. Science 2004;306(5701):1568–1571.
    [13] Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121(6): 823-835.
    [14] O’brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice.Nature 2007;445(7123):106–110.
    [15] Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M,Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445(7123):111–115.
    [16] Al-Hajj M , Becker MW , Wicha M , et al. Therapeutic implication of cancer stem cells . Curr Opin Genet Dev 2004;14(1):43-47.
    [17] De Jonge -Peeters SD , Kuiper F , De Vries EG, et al. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol 2007;62(3):214-226 .
    [18] Hadnagy A , Gaboury L , Beaulieu R ,et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006;312(19):3701-3710.
    [19] Liu G, Yuan X , Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006;5:67.
    [20] Ma S, Lee TK, Zheng B-J, et al. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008;27(12):1749–1758.
    [21] Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells. Science 2007;317(5836):337-338.
    [22] Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31(4):339–346.
    [23] Robrechts C, De Vos R, Van den Heuvel M, Van Cutsem E, Van Damme B, Desmet V, Roskams T. Primary liver tumour of intermediate (hepatocyte-bile duct cell) phenotype: a progenitor cell tumour? Liver 1998;18(4):288-93.
    [24] Suetsugu, A., Nagaki, M., Aoki, H., Motohashi, T., Kunisada, T., and Moriwaki,H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351(4):820–824.
    [25] Ma S,Chan KW, Hu L,Lee KW, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132(7):2542-56.
    [26] Yin S, Li J,Hu C,Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D,et al.CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120(7):1444-1450.
    [27] Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A,Nakauchi H, Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006;44(1):240–251.
    [28] Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan ST,and Poon RT. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 2006;44(4):836–843.
    [29] Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer.Cancer Cell 2008;13(2):153–166.
    [30] Ma S, Chan KW,et al.Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell population. Mol Cancer Res 2008;6(7):1146-1153.
    [1] Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW: A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997;90:5013-5021.
    [2] Weigmann A, Corbeil D, Hellwig A, Huttner WB: Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 1997;94:12425-12430.
    [3] Uchida N, Buck DW, He D, Reitsma MJ, Masek M,Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000;97:14720–14725.
    [4] Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J of Bio Chem 2000;275:5512–5520.
    [5] Shmelkov SV, Jun L, St.Clair R, McGarrigle D, Derderian CA, Usenko JK, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 2004;103:2055–2061.
    [6] Peichev M, Naiyer AJ,Pereira D,Zhu,Z, Lane WJ,Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000;95:952–958.
    [7] Yin AH, Miraglia S, Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90:5002–12.
    [8] Richardson GD,Robson CN,Lang SH,Neal DE,Maitland NJ,Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science 2004;117:3539–3545.
    [9] Bussolati B,Bruno S, et al. Isolation of Renal Progenitor Cells from Adult Kidney.Am J Pathol 2005;166:545-555.
    [10] Maw, M. A., Corbeil, D., Koch, J., Hellwig, A., Wilson-Wheeler,J. C., Bridges, R. J., et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Human Molecular Genetics 2000;9(1):27–34.
    [11] Bhatia, M.AC133 expression in human stem cells. Leukemia 2001;15(11):1685–1688.
    [12] Hao HN, Zhao J, Thomas RL, Parker GC,Lyman WD. Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J of Hemato Stem Cell Res 2003;12:23–32.
    [13] Belicchi M, Pisati F, Lopa R, Porretti L, Fortunato F, Sironi M, et al. Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J of Neuro Res 2004;77:475–486.
    [14] Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M,D’Antona G, et al.Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. Jof Clin Invest 2004;114:182–195.
    [15] Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB.Identification of a cancer stem cell in human brain tumors.Cancer Res 2003;63: 5821–5828.
    [16] Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB.Identification of human brain tumour initiating cells. Nature 2004;432: 396–401.
    [17] Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA, 2003;100 (25) : 15178-15183.
    [18] Galli R, Binda E, OrfanelliU, et al. Isolation and characterization of tumorigenic, stem2like neural p recursors from human glioblastoma. Cancer Res, 2004;64 (19) : 7011-7021.
    [19] CollinsAT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic p rostate cancer stem cells. Cancer Res, 2005;65(23) : 10946-10951.
    [20] O’brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice.Nature 2007;445:106–110.
    [21] Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M,Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111–115.
    [22] Maeda S , Shinchi H et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J of Cancer 2008;98:1389–1397.
    [23] Immervoll H, Hoem D, et al. Expression of the“stem cell marker”CD133 in pancreas and pancreatic ductal adenocarcinoma. BMC Cancer 2008;8:48.
    [24] Suetsugu, A., Nagaki, M., Aoki, H., Motohashi, T., Kunisada, T., and Moriwaki,H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351:820–824.
    [25] Ma S,Chan KW, Hu L,Lee KW, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132:2542-56.
    [26] Yin S, Li J,Hu C,Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D,et al.CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120:1444-1450.
    [27] Ma S, Chan KW,et al.Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell population. Mol Cancer Res 2008;6:1146-1153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700