用户名: 密码: 验证码:
抑癌基因TSLC1对人前列腺癌T_3B细胞增殖、侵袭和转移能力影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)建立稳定表达肺癌抑癌基因—1(TSLC1)的人前列腺癌T_3B细胞系并对其进行鉴定;(2)探讨TSLC1基因对人前列腺癌T_3B细胞增殖和侵袭的生物学特性影响;(3)研究TSLC1对人前列腺癌T_3B细胞成瘤和转移能力的影响。
     方法:(1)脂质体转染的方法将pCI-TSLC1质粒稳定转染至T_3B细胞系,经克隆化培养以及G418筛选,建立了稳定表达TSLC1蛋白的细胞系。分别从核酸和蛋白水平对转染进行鉴定,并对其细胞纯度、遗传稳定性等生物学特性进行鉴定。(2)以稳定表达外源基因TSLC1的人前列腺癌T_3B细胞为实验组,以转染空质粒pCI-neo的T_3B细胞为对照组,野生型T_3B细胞为空白组。MTT法检测细胞增殖,FACSort流式细胞仪检测细胞周期,AnnexinV/PI双染法检测细胞凋亡情况,Tanswell法检测细胞体外侵袭能力,细胞划痕实验检测细胞迁移能力。(3)将培养的实验组、对照组、空白组三组肿瘤细胞分别以4.0×10~6/200μL浓度注入裸鼠皮下,观察各组成瘤情况。按上述分组以4.0×10~6/200μL浓度进行尾静脉注射观察建立转移模型。将三组细胞分别以2.0×10~6/10μL进行骨原位注射建立骨转移瘤模型,观察各组骨转移率。
     结果:(1)成功获得高表达TSLC1的稳定细胞系,核酸和蛋白水平鉴定都说明TSLC1基因成功整合到细胞基因组中。生物学性状研究结果表明该转基因细胞系纯度好,遗传性状稳定。(2)与对照组和空白组相比,实验组细胞株细胞生长速度减慢,增殖受到明显抑制;实验组细胞周期发生了明显的G_0/G_1期阻滞;实验组细胞早期凋亡率、晚期凋亡率和总凋亡率均明显升高(P<0.01);体外侵袭和迁移能力受到较大抑制(P<0.05)。(3)实验组皮下瘤出现明显晚于对照组和空白组,而且瘤体也明显小于对照组和空白组(P<0.01);尾静脉注射注射后实验组体内肺转移形成时间晚,转移灶数目少;实验组的骨转移率为20%,明显低于对照组(100%)和空白组(100%),P<0.05。
     结论:(1)成功建立了稳定表达TSLC1的T_3B细胞系,该细胞系遗传性质稳定,为进一步研究TSLC1在前列腺癌中发挥的作用奠定了基础。(2) TSLC1基因能明显抑制T_3B细胞的增殖和侵袭,并诱导细胞发生凋亡。(3) TSLC1基因明显抑制T_3B细胞的成瘤和转移能力。
Objective 1. To establish the prostatic carcinoma cell subline which expressingTSLC1 protein and to identify its biological characteristics. 2. To elucidate the effect ofTSLC1 on proliferation and invasion of human prostatic carcinoma cell line T_3B. 3. Tostudy the effect of TSLC1 on tumorigenicity and metastasis of human prostatic carcinomacell line T_3B.
     Methods 1. The recombinant plasmid pCI-TSLC1 was stably transfected into T_3Bcells with Lipofectamine 2000. The positive clones were developed by selection by G418.Biological characteristics of T_3B cells which were stably transfected with pCI-TSLC1 werestudied. 2. The T_3B cells stably transfected with exogenous gene TSLC1 (experimentalgroup) and those treated with pCI-neo vector (control group) and without any treatment(blank group) were compared. Cell proliferation was analyzed with MTT assay. FACSortflow cytometry analysis was performed to assess the cell cycle distribution and apoptosis.Transwell was performed to assess the ability of invasion. The speed of cell migration wasdetected by cell scratch method. 3. The experimental group, control group and blank groupcells were injected respectively into nude mices subcutaneously with cell concentration of4.0×10~6/200μL. The growth of tumor was examined in three groups. The three groups cellconcentration of 4.0×10~6/200μL was injected into nude mice through vena caudalis toobserve metastasis. The three groups cell concentration of 2.0×10~6/10μL were injectedin-situ to establish osseous metastasis model. We examined the rate of osseous metastasis inthree groups.
     Results 1. The stable cell subline highly expressing TSLC1 protein was obtained. The ectogenous gene TSLC1 has integrated into the genomes of T_3B cells which wereidentified from both nucleic acid and protein levels. The genetic stability and purity of thecell population were confirmed. 2. The growth of TSLC1-transfected cells was significantlysuppressed in vitro compared with those of the control and blank groups, displaying that theamount of G_0/G_1 cells increased and the amount of S phase cells decreased significantly,which suggest a G_0/G_1 cell cycle arresting. The number of cells in early, late and total phaseapoptosis were significantly higher than those of the control and blank groups (P<0.01).The ability of invasion and migration were significantly suppressed compared with those ofthe control and blank groups (P<0.05). 3. The subcutaneous tumor of the experimentalgroup occurred later and smaller than the control and blank groups(P<0.01). Lungmetastases of nude mice occurred later and less than the control and blank groups. The rateof osseous metastasis was 20% in experimental group, which decreased significantly(P<0.05) compared with the control group (100%) and the blank group (100%).
     Conclusions 1. The stable prostatic carcinoma cell subline highly expressingTSLC1 has successfully established, which provided a basis for further exploring the rolesof TSLC1 in prostatic carcinoma. 2. TSLC1 strongly inhibits the proliferation and invasionof T_3B cells in vitro and induces apoptosis of cells. 3. TSLC1 strongly inhibits thetumorigenicity and metastasis of T_3B cells
引文
1. Jemal A, Murray T, Samuels A, et al. Cancer Statistics[J]. CA Cancer J Clin, 2003, 53:5-26.
    2. Linehan WM, Long JP, Steeg PS, et al. Metastatic models and molecular genetics of prostate cancer[J]. J Natl Cancer Inst, 1992, 84(12): 914-915.
    3. Roth JA, Cristiano RJ. Gene therapy for cancer: what we have done and where are we going[ J ]? J Natl Cancer Inst, 1997, 89: 21-39.
    4. Gomyo H, Arai Y, Tanigami A, et al. A 2-Mb sequence-ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11q23.2[J]. Genomics, 1999, 62(2): 139-146.
    5. Kuramochi M, Fukuhara H, Nobukuni T, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer[J]. Nature Genetics, 2001, 27(4): 427-430.
    6. Masuda M, Yageta M, Fukuhara H, et al. The tumor suppressor protein TSLC1 is involved in cell-cell adhesion[J]. J Biol Chem, 2002, 277: 31014-31019.
    7. Shingai T, Ikeda W, Kakunaga S, et al. Nectin like molecule2/IGSF4/RA 175/SpIGSF/ TSLC1/SynCAM1 in cell-cell adhesion and transmenbrane protein localization in epithelial cells[J]. Biol Chem, 2003, 278: 3541-3542.
    8. Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis[J]. Cancer Sci, 2005, 96: 543-552.
    1. Pletcher MT, Nobukuni T, Fukuhara H, et al. Identification of tumor suppressor candidate genes by physical and sequence mapping of the TSLCl region of human chromosome 11q23[J]. Gene, 2001, 273(2): 181-189.
    2. Murakami Y. Functional cloning of a tumor suppressor gene, TSLCl, in human non-small cell lung cancer[J]. Oncogene, 2002, 21: 6936-6948.
    3. Masuda M, Yageta M, Fukuhara H, et al. The tumor suppressor protein TSLCl is involved in cell-cell adhesion[J]. J Biol Chem, 2002, 277(34): 31014-31019.
    4. Ito A, Okada M, Uchino K, et al. Expression of the TSLCl adhesion molecule in pulmonary epithelium and its down-regulation in pulmonary adenocarcinoma other than bronchioloalveolar carcinoma[J]. Lab Invest, 2003, 83: 1175-1183.
    5. Uchino K, Ito A, Wakayama T, et al. Clinical implication and prognostic significance of the tumor suppressor TSLCl gene detected in adenocarcinoma of the lung[J]. Cancer,2003, 98: 1002-1007.
    6. Jansen M, FukushimaN, Rosty C, et al. Aberrant methylation of the 5'CpG island of TSLCl is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs[J]. Cancer Biol Ther, 2002, 1: 293-296.
    7. Tamura G. Promoter methylation status of tumor suppressor and tumor-related genes in neoplastic and non- neoplastic gastric epithelia[J]. Histol Histopathol, 2004, 19:221-228.
    8. Fukami T, Fukuhara H, Kuramochi M, et al. Promoter methylation of the TSLCl gene in advanced lung tumors and various cancer cell lines[J]. Int J Cancer, 2003, 107: 53-59.
    9. Steenbergen RD, Kramer D, Braakhuis BJ, et al. TSLCl gene silencing in cervical cancer cell lines and cervical neoplasia[J]. J Matl Cancer Inst, 2004, 96: 294-305.
    10. Ito T, Shimada Y, Hashimoto Y, et al. Involvement of TSLCl in progression of esophageal squamous cell carcinoma[J]. Cancer Res, 2003, 63: 6320-6326.
    11. Fukuhara H, KuramochiM, Fukami T, et al. Promoter Methylation of TSLCl and Tumor Suppression by Its Gene Product in Human Prostate Cancer[J]. Jpn J Cancer Res,2002, 93: 605-609.
    12. Mao X, Seidlitz E, Ghosh K, et al. The cytoplasmic domain is critical to the tumor-suppressor activity of TSLCl in non-small cell lung cancer[J]. Cancer Res, 2003,63: 7979-7985.
    1. Kuramochi M, Fukuhara H, Nobukuni T, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer[J]. Nat Genet, 2001, 27: 427-430.
    2.覃莉,张正茂,郝友华,等.肺癌抑癌基因1对HepG2细胞生长的抑制效应[J].中华肝病杂志,2007,15(7):509-512.
    3. Qin L, Zhu WT, Xu T, et al. Effect of TSLC1 gene on proliferation, invasion and apoptosis of human hepatocellular carcinoma cell line HepG2[J]. Journal of Huzhong University of Science and Technology [Med Sci], 2007, 27(5): 535-537.
    4. Ito T, Shimada Y, Hashimoto Y, et al. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma[J]. Cancer Res, 2003, 63: 6320-6326.
    5.廖晖,陈安民,郭风劲,等.不同骨转移潜能人前列腺癌细胞亚株的筛选[J].中国癌症杂志,2007,17(3):231-235.
    6. Murakami Y, Nobukuni T, Tamura K, et al. Localization of tumor suppressor activity important in nonsmall cell lung carcinoma on chromosome 11q[J]. Proc Natl Acad Sci USA, 1998, 95(14): 8153-8158.
    7. Fukuhara H, Kuramochi M, Fukami T, et al. Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer[J]. Jpn J Cancer Res, 2002, 93: 605-609.
    8. Hui AB, Lo KW, Kwong J, et al. Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma[J]. Mol Carcinog, 2003, 38: 170-178.
    9. Steenbergen RD, Kramer D, Braakhuis BJ, et al. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia[J]. J Matl Cancer Inst, 2004, 96: 294-305.
    10. Mao X, Seidlitz E, Truant R, et al. Re-expression of TSLC1 in non-small-cell lung cancer line induces apoptosis and inhibits tumor growth[J]. Oncogene, 2004, 23: 5632-5642.
    11. Zhao H, Dupont J, Yakar S, et al. PTEN inhibits cell proliferation and induces apoptosis by down-regulating cell surface IGF-IR expression in prostate cancer cells[J]. Oncogene 2004.23: 786-794.
    1.翁迈,周利群,王建伟,等.PM1蛋白激酶在前列腺癌组织中的表达[J].基础医学与临床,2005,25(6):503-506.
    2. Linehan WM, Long JP, Steeg PS, et al. Metastatic models and molecular genetics of prostate cancer[J]. J Natl Cancer Inst, 1992, 84(12): 914-915.
    3. Cooper C, Pienta K. Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview[J]. Prostate Cancer Prostatic Dis, 2000, 3(1): 6-12.
    4. Bogenrieder T, Herlyn M. Axis of evil : molecular mechanisms of cancer metastasis[J]. Oncogene, 2003, 22(42): 6524-6536.
    5. Usami Y, Ito A, Ohnuma K, Fuku T, et al. Tumor suppressor in lung cancer-1 as a novel ameloblast adhesion molecule and its downregulation in ameloblastoma[J]. Pathol Int, 2007, 57(2): 68-75.
    6. Yamada D, YoshidaM, Williams YN, et al. Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1 /IGSF4, an immunoglobulin superfamily cell adhesion molecule[J]. Mol Cell Biol, 2006, 26(9): 3610-3624.
    7. Ito T, Shimada Y, Hashimoto Y, et al. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma[J].Cancer Res, 2003, 63: 6320-6326.
    8. Hui AB, Lo KW, Kwong J, et al. Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma[J]. Mol Carcinog, 2003, 38: 170-178.
    9. Steenbergen RD, Kramer D, Braakhuis BJ, et al. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia[J]. J Mati Cancer Inst, 2004, 96: 294-305.
    10. Qin L, Zhang ZM, Hao YH, et al. The growth inhibition effects of TSLC1 gene on human hepatocyte carcinoma cell line HepG2[J]. Zhonghua Gan Zhang Bing Za Zhi, 2007, 15(7): 509-512.
    11. Qin L, ZHU WT, XU T, et al. Effect of TSLC1 gene on proliferation, invasion and apoptosis of human hepatocellular carcinoma cell line HepG2[J]. Journal of Huzhong University of Science and Technology [Med Sci], 2007, 27(5): 535-537.
    12. Boles KS, Barchet W, Diacovo T, et al. The tumor suppressor TSLCl/ NECL-2 triggers NK - cell and CD8 ~+ T cell responses through the cell surface receptor CRTAM[J]. Blood, 2005, 106(3): 779-786.
    13. Galibert L, Diemer GS, Liu Z, et al. Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell associated molecule[J]. J Biol Chem, 2005, 280(23): 21955-21964.
    1. Vieweg J, Rosenthal F M, Bannerji R, et al. Immunotherapy of prostate cancer in the dunning rat model: use of cytokine gene modified tumor vaccines[J]. Cancer Res, 1994,54(7): 1760-1765.
    2. Wei CM, GibsonM, Spear PG, et al. Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1 [J]. J Virol, 1981, 39 : 935-944.
    3. Shimotohno K, Temin HM. Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus[J]. Cell, 1981, 26:67-77.
    4. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus[J]. J Virol, 1994, 68: 510-516.
    5. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection[J]. Mol Cell Biol, 1994, 10:4239-4242.
    6. Barzon L, Bonaguro R, Castagliuolo I, et al. Gene therapy of thyroid cancer via retrovirally - driven combined expression of human interleukin - 2 and herpes simplex virus thymidine kinase[J]. Eur J Endocrinol, 2003, 148: 73-80.
    7. Heise C, Hermiston T, Johnson L, et al. An adenovirus El A mutant that demostrates potent and selective systemic anti-tumoral efficacy [J]. NatMed, 2000, 6: 1134-1139.
    8. Rodriguez R, Schuur ER, Lim HY, et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate - specific antigenpositive prostate cancer cells[J]. Cancer Res, 1997, 57: 2559-2563.
    9. Samulski RJ, Zhu X, Xiao X, et al. Targeted integration of adeno-associatedvirus (AAV ) into human chromosome 19[J]. EMBO J, 1991, 10: 3941-3950.
    10. Lilley CE ,Geoutsi F ,Han Z ,et al .Multiple immediate - early gene - deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo[J]. J Virol, 2001, 75:4343-4356.
    11. Gomella LG, Mastrangelo MJ, McCue PA, et al. Phase I study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer[J]. J Urol, 2001, 166:1291-1295.
    12. Gulley J, Chen AP, Dahut W, et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA ( rV - PSA) in patients with metastatic androgen - independent prostate cancer[J]. Prostate, 2002, 53: 109- 117.
    13. Belldegrun A, Tso CL, Zisman A, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology[J]. Hum Gene Ther,2001, 12(8): 883 - 892.
    14. Teh BS, Aguilar-Cordova E, Kernen K, et al. Phase Ⅰ/Ⅱ trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer-a preliminary report[J]. Int J Radiat Oncol Biol Phys, 2001, 51(7):605-613.
    15. DeWeese TL, Van Poel H, Li S. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy[J]. Cancer Res, 2001, 61(16): 7464-74 72.
    16. Sanda MG, Smith DC, Charles LG. et al. Recombinant vaccinia-PSA(PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer[J]. Urology, 1999, 53(3): 260-266.
    17. Tolcher AW. Preliminary phase I results of G3139 (bcl22 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer[J]. Semin Oncol, 2001, 28(suppl): 67-70.
    18. Steiner MS, Anthony CT, Lu Y, et al. Antisense c - myc retroviral vector suppresses established human prostate cancer[J]. Hum Gene Ther, 1998, 9(5): 747-755.
    19. Geiger T, Muller M, Monia BP, et al. Antitumor activity of a C-raf antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted subcutaneously into nude mice[J]. Clin Cancer Res, 1997,3(7): 1179-1185.
    20. Dorai T, Olsson CA, Katz AE, et al. Development of a hammerhead ribozyme against bll-2. I. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer[J]. Prostate, 1997, 32 (4): 246-258.
    21. Rahman MM, Miyamoto H, Lardy H, et al. Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cellsfJ]. Proc Natl Acad Sci USA, 2003, 100(9): 5124 -512921.
    22. Shen C, Rattat D, Buck A, et al. Targeting bcl-2 by triplex-forming oligogonucle-otide-a promising carrier for gene-radiotherapy[J]. Cancer Biother Radiopharm, 2003,18(1): 17-26.
    23. Eastham JA, Grafton W, Martin CM, et al. Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancerfJ]. J Urol,2000, 164:814-819.
    24. Harrington KJ, Spitzweg C, Bateman AR, et al. Gene therapy for prostate cancer: current status and future prospects[J], J Urol, 2001, 166: 1220-1233.
    25. Allay JA, Steiner MS, Zhang Y, et al. Adenovirus pl6 gene therapy for prostate cancer[J]. World J Urol, 2000, 18(2): 111-120.
    26. Davies MA, Kim SJ, Parikh NU, et al. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells[J]. Clin Cancer Res, 2002, 8(6): 1904-1914.
    27. Mabjeesh NJ, Zhong H, Simons JW. Gene therapy of prostate cancer: current and future directions[J]. Endocrine Related Cancer, 2002, 9: 115-139.
    28. Lin SH, Pu YS, Luo W, et al. Schedule-dependence of C-CAM1 adenovirus gene therapy in a prostate cancer model[J]. Anticancer Res, 1999, 19(1A): 337-340.
    29. Eastham JA, Chen SH, Sehgal I, et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models[J]. Hum Gene Ther, 1996, 7(4): 515-523.
    30. Hall SJ, Sanford MA, Atkinson G, et al. Induction of potent antitumor natural killer cell activity by herpes simplex virus-themidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer[J]. Cancer Res, 1998, 58(15) : 3221-3225.
    31. Hall SJ, Canfield SE, Yan Y, et al. A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer[J]. Gene Ther, 2002, 9(8): 511-517.
    32. Ebara S, Shimura S, Nasu Y, et al. Gene therapy for prostate cancer: toxicological profile of four HSV-tk transducing adenoviral vectors regulated by different promoters [J]. Prostate Cancer Prostatic Dis, 2002, 5(4): 316-525.
    33. Pramudji C, Shimura S, Ebara S, et al. In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter[J]. Clin Cancer Res, 2001, 7(12): 4272-4279.
    34. Pasanen T, Karppinen A, Alhonen L, et al. Polyamine biosynthesis inhibition enhances HSV-1 thymidine kinase/ganciclovir-mediated cytotoxicity in tumor cells [J]. Int J Cancer, 2003, 104(3): 380-388.
    35.邢毅飞,鲁功成,肖亚军,等.单纯疱疹胸苷激肽酶/更昔罗韦系统杀伤前列腺癌细胞的“旁观者效应”及其调控[J].中华医学杂志,2002,82(21):1484-1487.
    36. Loimas S, Toppinen MR, Visakorpi T, et al. Human prostate carcinoma cells as targets for herpes simplex virus thymidine kinase-mediated suicide gene therapy[J]. Cancer Gene Ther, 2001, 8(2): 137-144.
    37. Zacchigna S, Zentilin L, Morini M, et al. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo[J]. Cancer Gene Ther, 2004, 11(1): 73-80.
    38. Spitzweg C, O'Connor MK, Bergert ER, et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter[J]. Cancer Res, 2000, 60(22): 6526-6530.
    39. Simons J, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating fac tor using ex vivo gene transfer[J]. Cancer Res, 1999, 59(20): 5160-5168.
    40. Belldegrun A, Tso CL, Zisman A, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology[J]. Hum Gene Ther, 2001, 12(8): 883-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700