麦类作物对锶的富集特征和生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西北局部地区存在放射性锶污染问题。本文以治理放射性锶(90Sr)污染土壤为目的,采用稳定性锶-88模拟放射性锶-90同位素的方法,砂培盆栽试验和土培盆栽试验相结合,系统研究了锶在麦类作物(6个小麦品种,4个大麦品种、8个皮燕麦品种和8个裸燕麦品种)中的吸收、分配、转运和积累的规律特征。本文旨在筛选出对锶具有吸收浓度高,生物量大,适应当地生态条件的作物品种,并为核素污染土壤的植物修复做好前期工作准备。
     主要结果如下:
     1.2008-2009年砂培盆栽试验对26个麦类作物品种(6个小麦品种,4个大麦品种、8个皮燕麦品种和8个裸燕麦品种)的锶富集特征以及锶在不同器官的分配规律进行比较。本试验结果表明在锶对麦类作物品种的生物量没有显著影响。不同作物的地上锶富集浓度之间相比,裸燕麦最高,大麦,皮燕麦次之,小麦最低。同种作物的不同器官的锶富集浓度相比,大麦的根部最高,而小麦、皮燕麦和裸燕麦则是叶片最高。不同作物的根冠转移系数(TLFs)相比,在100mgkg-1Sr处理中,裸燕麦最高(0.653~1.959),其次是皮燕麦(0.480~1.476),小麦(0.474~0.824)和大麦(0.286~0.574)最低。在500mgkg-1Sr处理中,裸燕麦最高(1.041-2.741),其次是皮燕麦(0.396~1.890),小麦(0.223~0.804)和大麦(0.303-0.798)最低。植物修复材料可以在裸燕麦中选择。其中,内蒙科艺1号(裸燕麦)的地上锶富集浓度和根冠转移系数在26个麦类作物品种中都是最高的。内蒙科艺1号(裸燕麦)的地上锶富集浓度在100和500mgkg-1Sr处理中分别为2213mgkg-1和7865mkg-1, TLF分别为1-959和2.741。裸燕麦内蒙科艺1号具备超富集植物的特征(TLF>1),显示出很强的锶富集能力,是潜在的锶污染土壤的植物修复材料。小麦的地上锶浓度和转移系数都是最低的,表现出金属排除型植物的特征,可以作为锶轻度污染地区食用的作物类型。
     2.2009-2010年砂培盆栽试验比较了两个裸燕麦基因型(坝莜3号和内蒙科艺1号)在锶处理下苗期的植物生长以及抗氧化酶系的生理响应。实验结果如下:(1)锶处理显著减少了坝莜3号生物量的积累,包括地上生物量(16%)、根部生物量(18%)、根长(26%)和根面积(23%)。低浓度锶处理没有减少内蒙科艺1号生物量的积累。内蒙科艺1号地上生物量在高浓度锶处理下有所减少,但高于对照11%。(2)根部和叶片的锶富集浓度随着处理中锶浓度的增加而增加。内蒙科艺1号的锶富集浓度在低浓度锶处理下(0.15和0.6mMSr)接近或高于坝莜3号。而在高浓度锶处理下(3和6mMSr),内蒙科艺1号的锶富集浓度显著(约2倍)高于坝莜3号。(3)TLFs随着处理中锶浓度的增加先升高后降低。内蒙科艺1号的TLFs(1.66~2.03)在所有锶添加处理中都高于坝莜3号的TLFs(0.87-1.63)。(4)叶片和根部应对锶诱导的氧化胁迫响应不同。叶片的MDA含量低于根部,叶片的SOD和POD活性比根部高。(5)内蒙科艺1号的叶片和根部的MDA含量低于坝莜3号,内蒙科艺1号的叶片和根部的SOD、POD和CAT活性高于坝莜3号。以上结果说明在植物内部不同抗氧化防御系统应对锶的压力在裸燕麦基因型间存在差异性。不同裸燕麦基因型间对金属锶富集能力的不同有可能源于其内部不同抗氧化防御系统应对锶的压力的差异。
     3.2010-2011年土培盆栽试验比较了成熟期四个裸燕麦基因型(坝莜3号,蒙麦8313,定莜6号和内蒙科艺1号)的不同器官的锶的富集浓度和分布特征,比较不同燕麦基因型的植物修复效果。结果表明,锶富集浓度随着锶处理的增加而升高。内蒙科艺1号的锶富集能力最强。四个基因型中内蒙科艺1号的地上锶富集浓度都是最高的。TLFs在所有锶处理中高于其它基因型,且在高浓度锶处理下最高(1.37)。内蒙科艺1号从土壤中清除锶的百分比在所有锶处理中高于其它基因型,且在高浓度锶处理下最高(3.34%)。内蒙科艺1号富集锶主要分布在地上部分,叶片的锶富集浓度最高,而籽粒的锶富集浓度最低。锶主要分布在燕麦的非食用部分。叶片锶分布比例范围为41%-55%,籽粒锶分布比例范围为3%~5%。内蒙科艺1号的平均EC值的范围为0.521-1.343,接近于在矿区发现的超富集植物的EC(0.33~1.38)。经土培盆栽试验再次验证,内蒙科艺1号显示出很强的锶富集能力,可以作为一种有效的理想的锶污染土壤的植物修复材料。此外,本试验比较了锶对土壤酶活性(脱氢酶、β-糖苷酶、脲酶、酸性磷酸酶和碱性磷酸酶)以及微生物量碳氮的影响。结果发现锶显著影响了脲酶活性和微生物量碳氮,分别减少了39%,27%和40%。脲酶和微生物量碳氮对土壤锶污染较为敏感。脲酶和微生物量碳氮可以作为监测土壤锶污染程度的敏感指标。
     小麦的地上锶浓度最低,转移系数最低,可以考虑作为锶低度污染地区食用的作物品种。锶污染土壤的植物修复材料可以在裸燕麦中选择。内蒙科艺1号的地上锶富集含量最高,该基因型可以作为一种有效的理想的植物修复材料。脲酶和微生物量碳氮对土壤锶污染较为敏感。脲酶和微生物量碳氮可以作为监测土壤锶污染程度的敏感指标。本论文结果为农田核素污染土壤的植物医治做好前期准备工作。
Radioactive strontium pollution problems exist in parts of northwest China. For the purpose of controlling radioactive strontium (90sr) contaminated soil, the stable isotopes of strontium-88were adopted to simulate radioactive isotopes of strontium-90,26cultivar species (6wheat varieties,4barley varieties,8husk oats varieties and8naked oats varieties) were chosen as experimental material, the combination of sand pot experiment and soil culture pot experiment were carried out to research strontium on the absorption, distribution, transportation and accumulation patterns in wheat, oat and barley crops. This article is supposed to select species which has such advantages as high concentration, big bio mass, adapt to the local ecological conditions. This work is ready for the early work for phytoremediation of nuclide contaminated soil.
     The main results were as follows:
     1.2008-2009, sand pot experiment was carried out to investigate the enrichment characteristics of strontium and strontium distribution patterns in different organs of26varieties of wheat and barley crops (6wheat varieties,4barley varieties,8husk oats varieties and8naked oats varieties). The results showed that strontium had no significant impact on crop biomass. Compared strontium enrichment concentration between different crop varieties, the highest was naked oats, followed by barley, husk oats, minimum was wheat. Compared strontium concentration in different organs of same crop varieties, roots of barley was the highest, while leaf of wheat, oats and naked oats was the highest. Compared transfer coefficient (TLFs) in different crops, in100mgkg-1Sr treatment, naked oats was the highest (0.653~1.959), followed by skin oats (0.480~1.476), wheat (0.474~0.824) and barley (0.286~0.574). In500mgkg-1Sr treatment, naked oats was the highest (1.041~2.741), followed by skin oats (0.396~1.890), wheat (0.223~0.804) and barley (0.303~0.798). Phytoremediation materials can be chosen in naked oats. Among them, the Inner Mongolia technical arts (1naked oats) the floor of the enrichment of strontium concentration and root cap transfer coefficient in26varieties of wheat and barley crops are the highest. At100and500mgkg-1Sr treatments, strontium enrichment concentration of Neimengkeyi-1(naked oats) was2213mgkg-1and7865mgkg-1respectively, TLF was1.959and2.741, respectively. Neimengkeyi-1(naked oats) has the characteristics of hyperaccumulator (TLF>1), showed strong ability of strontium concentration, and was recommendable as potential strontium contaminated soil materials for phytoremediation. Strontium concentration and translocation factor in wheat varieties was the lowest, showed the characteristics of metal excluding plants, and could be used as edible crops grown in strontium lightly polluted areas.
     2. In2009-2010, this experiment compared the plant growth and physiological response of antioxidant enzyme system of two naked oat genotypes (Bayu-3and Neimengkeyi-1) at seedling stage in sand pot experiment. The results showed that:(1) strontium addition significantly reduced the bio mass of Bayou-3, including the ground bio mass (16%), root biomass(18%), root length (26%) and the root area (23%). Low concentration of strontium addition did not reduce Neimengkeyi-1biomass. Neimengkeyi-1aboveground biomass decreased under high concentration strontium treatment, but higher than control by11%.(2) The strontium enrichment concentration in roots and leaves increased with increased addition of strontium concentration. Strontium enrichment concentration of Neimengkeyi-1at low concentration of strontium treatments (0.15and0.15mM Sr) was close to or higher than the Bayou-3. And under the high concentration of strontium treatments (3and6mM Sr), strontium enrichment concentration of Neimengkeyi-1was significantly higher than Bayou-3(about2times higher).(3) TLFs first rose than dropped with the increase of strontium concentration treatments. The TLFs of Neimengkeyi-1(1.66~2.03) were higher than the TLFs of Bayou-3(0.87~0.87) in all strontium addition treatments.(4) The strategies of Leaves and roots responding differently to strontium treatments induced oxidative stress response. Leaf MDA content was below the root, leaf SOD and POD activity was higher than the root.(5) MDA content in the leaves and roots of Neimengkeyi-1was below the Bayou-3, SOD, POD and CAT activity in leaves and roots of Neimengleyi-1of is higher than Bayou-3. The all results showed that the antioxidant defense system within the plant to responding the strontium stress in naked oats differently between genotypes. The different ability of naked oat genotypes responding to metal strontium stress possibly originated from its internal antioxidant system to cope with strontium pressure stress.
     3. In2010-2011, the four naked oats varieties (Bayou-3, Mengmai-8313, Dingyou-6and Neimengkeyimai-1) were chosen in soil culture pot experiment. This experiment investigated metal strontium concentration distribution and enrichment in different organs in harvest between different crop varieties, we found that mature oats had higher strontium enrichment ability, strontium metal were mainly distributed in leaf and stem; Under the treatment of different concentrations of strontium stress, the concentration of the leaves was the highest, the concentration of the grain was the lowest; Under different concentration of strontium stress treatment, Neimengkeyimai-1above strontium enrichent concentration was the highest of four genotypes. Neimengkeyimai-1can be used as a kind of effective ideal phytoremediation plant for strontium pollution. In addition, this experiment compared the soil enzyme activity (dehydrogenase, β-glycosidase, urease, acid phosphatase and alkaline phosphatase) and microbial biomass carbon and nitrogen. Urease, MBC and MBN were sensitive to soil strontium pollution.
     In summary, phytoremediation materials can be choose in naked oats varieties. Strontium concentration of wheat was the lowest, translocation coefficient of wheat was the lowest, and wheat can be considered as food-grade crop varieties in low-dose strontium metal pollution area. Urease, MBC and MBN was sensitive to soil pollution of strontium. Shoot Sr enrichment concentration of Neimengkeyimai-1was the highest. Neimengkeyimai-1can be used as an effective ideal phytoremediation plant. Our results prepared for remediation of strontium nuclides polluted farmland.
引文
[1]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版,2000.
    [2]王寿祥,张永熙,胡秉民,等.锶-89在模拟黑麦草田中的动力学行为[J].生态学报.1992,12(4):310-315.
    [3]史建君,孙志明,陈晖,等.客土覆盖对降低放射性锶在作物中积累的效应[J].环境科学.2002,23(4):126-128.
    [4]史建君,王寿祥,陈传群.施用白里和膨润土对降低作物吸收放射性锶和饰的有效性[J].核农学报.2003,17(2):127-132.
    [5]史建君,王寿祥.黑麦草对放射性锶的吸收及撒洒硅藻土对其行为的影响[J].核农学报.2003,17(3):203-206.
    [6]史建君,赵小俊,陈晖.水生植物对水体中放射性鳃的富集动态[J].上海交通大学学报(农业科学版).2002,20(1):38-41.
    [7]翟建平,徐应成,涂俊.施粉煤灰农田和作物的钡、锶、镓、错、锆、铌和钪含量变化及影响评价[J].电力环境保护.1998,14(3):14-21.
    [8]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.
    [9]朱永懿,裘同才.裂变产物90Sr、137Cs、144Ce在土壤—植物系统中的行为[[J].中国环境科学.1991,11(4):266-269.
    [10]张永熙,陈传群,王寿祥.硅藻土和膨润土对锶-89的吸附[J].浙江农业大学学报.1996,22(6):656-657.
    [11]Alkorta I, Hernandez-Allica J, Garbisu C. Plants against the global epidemic of arsenic poisoning [J]. Environment international.2004,30(7):949-951.
    [12]Antonovis J, AD Bradshaw, RG Turner. Heavy metal tolerance in plants [J]. Adv. Ecol. Res. 1971,7,1-85.
    [13]Anderson T H, Domsch K H. The metabolic quotient for CO2/qCO2 as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils [J]. Soil biology and biochemistry.1993,25(3):393-395.
    [14]Assche FV, Clijsters H. Effects of metals on enzyme activity in plants [J]. Plant, Cell & Environment.1990,13(3):195-206.
    [15]ATSDR. Agency for Toxic Substances and Disease Registry:Toxicological profile for Strontium. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. 2004. www.atsdr.cdc. gov/toxprofiles/tpl 59.html.
    [16]Azevedo S. Toxinas de cianobacterias:causas e consequencias para a saude publica [J]. Medicina on line.1998,3(1):1-19.
    [17]Baath E. Effects of heavy metals in soil on microbial processes and populations [J]. Water Air and Soil Pollution.1989,41(3-4):335-379.
    [18]Baker AM, Younger A. Factors affecting the leaf extension rate of perennial ryegrass in spring [J]. Grass and Forage Science.1987,42(4):381-390.
    [19]Barcan VS, Kovnatsky EF, Smetannikova MS. Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions [J]. Water, Air, and Soil Pollution. 1998,103(1-4):173-195.
    [20]Baumann A. Das Verhalten von Zinksalzen gegen Pflanzen und in Boden [J]. Landwirt. Vers. Stn.1885,31,1-53.
    [21]Baker AJM., Walker PL. Phyiological responses of plants to heavy metals and the quantification of tolerance and toxicity [J]. Chem Spec Bioavail.1989,1,7-17.
    [22]Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution [J]. Ecology and Phytochemistry.1989,1,81-126.
    [23]Beyer WF, Fridovich Y. Assaying for superoxide dismutase activity:some large consequences of minor changes in conditions [J]. Analytical Biochemistry.1987,161(2):559-566.
    [24]Boussama N, Ouariti O, Suzuki A, Ghorbal MH. Cd-stress on nitrogen assimilation [J]. Journal of Plant Physiology.1999,155(3):310-317.
    [25]Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol.1992,43(1):83-116.
    [26]Bonza MC, Luoni L, De Michelis MI. Functional expression in yeast of an N-deleted form of At-ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, and characterization of a hyperactive mutant [J]. Planta.2004,218(5):814-823.
    [27]Brookes PC. The use of microbial parameters in monitoring soil pollution by heavy metals [J]. Biology and Fertility of Soils.1995,19(4):269-279.
    [28]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein dye binding [J]. Anal Biochem.1976.72(1):248-254.
    [29]Burton K, Petersen GB. The frequencies of certain sequences of nucleotides in deoxyribonucleic acid [J]. Biochemical Journal.1960,75(1):17.
    [30]Chardonnens AN, Ten Bookum WM, Kuijper LDJ, Verkleij JA, Ernst WH. Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris [J]. Physiologia Plantarum.1998,104(1):75-80.
    [31]Chandra R, Yadav S. Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin [J]. Ecological Engineering.2010,36(10): 1277-1284.
    [32]Chaney L, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker A. JPhytoremediation of soil metals [J]. Current opinion in Biotechnology.1997,8(3):279-284.
    [33]Choi YH, Kang HS, Jun L. Transfer of 90Sr to ryegrass plants after its acute deposition onto flooded paddy soils [J]. Journal of Environmental Radioactivity.2007,93,157-169.
    [34]Cohen-Solal M. Strontium overload and toxicity:impact on renal osteodystrophy [J]. Nephrology Dialysis Transplantation.2002,17(suppl 2):30-34.
    [35]Coplen TB, Kendall C, Hopple J. Comparison of stable isotope reference samples [J].1983.
    [36]Corpas FJ, Barroso JB, del Rio L A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells [J]. Trends in plant science.2001,6(4):145-150.
    [37]Cuypers ANN. Vangronsveld J, Clijsters H. Peroxidases in roots and primary leaves of Phaseolus vulgaris Copper and Zinc Phytotoxicity:a comparison [J]. Journal of Plant Physiology. 2002.159(8):869-876.
    [38]Cunningham SD, Berti WR, Huang JW. Phytoremediation of contaminated soilsn[J]. Trends in biotechnology,1995,13(9):393-397.
    [39]Cunningham SD, Ow DW. Promises and prospects of phytoremediation [J]. Plant physiology. 1996,110(3):715.
    [40]del Rio LA, Ortega MG, Lopez AL, Gorge JL. A more sensitive modification of the catalase assay with the Clark oxygen electrode:application to the kinetic study of the pea leaf enzyme [J]. Analytical Biochemistry.1977,80(2):409-415.
    [41]Dalal RC. Hydrolysis products of solution and exchangeable aluminium in acidic soils [J]. Soil Sci.1975,119(2):127-131.
    [42]Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C. Incorporation and distribution of strontium in bone [J]. Bone.2001,28(4): 446-453.
    [43]Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants:a review[J]. Environmental pollution.1997,98(1):29-36.
    [44]Dascoli R, Rao MA, Adamo P. Impact of river over flowing on trace element contamination of volcanic soils in south Italy:Part. Soil biolog ical and biochem ical propert ies in relat ion to trace element speciation [J]. Environmental Pollution.2006,144(1):317-326.
    [45]De Leonardis S, Dipierro N, Dipierro S. Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria[J]. Plant Physiology and Biochemistry.2000,38(10): 773-779.
    [46]Demirevska K, Simova-Stoilova L, Fedina I, Georgieva K, Kunert K. Response of oryzacystatin I transformed tobacco plants to drought, heat and light stress [J]. Journal of Agronomy and Crop Science.2010,196(2):90-99.
    [47]DJ Anderson, B Matthews. An investigation into the peputed desensitizing effect of applying silver nitrate and strontium chloride to human dentine [J]. Arch Oral Biol.1966,11(11):29-35.
    [48]Dick R P. Soil enzyme activities as indicators of soil quality [J]. Defining soil quality for a sustainable environment,1994 (definingsoilqua):107-124.
    [49]Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B. Removal of uranium from water using terrestrial plants [J]. Environmental Science & Technology.1997, 31(12):3468-3474.
    [50]Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B. Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine [J]. Environmental science & technology.1999,33(3):469-475.
    [51]Dick W A, Tabatabai M A, Metting Jr F B. Significance and potential uses of soil enzymes [J]. Soil microbial ecology:applications in agricultural and environmental management.1992:95-127.
    [52]Evans EJ, Dekker AJ. Contamination of 36 genotypes of crop plants with Cs-137 and Sr-90 [J]. Canadian Journal of Soil Science.1968,48,45-63.
    [53]Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad)[J]. Journal of Experimental Botany.2001,52(358): 1101-1109.
    [54]Eapen S, Singh S, Thorat V, Kaushik CR, Raj K, D'Souza SF. Phytoremediation of radiostrontium (90Sr) and radiocesium (137Cs) using giant milky weed (Calotropis gigantea R. Br.) plants [J]. Chemosphere.2006,65(11):2071-2073.
    [55]Ebbs SD, Kochian LV. Toxicity of zinc and copper to Brassica species:Implications for phytoremediation [J]. Journal of Environmental Quality.1997,26(3):776-781.
    [56]Ebbs SD, Kochian LV. Phytoextraction of zinc by oat(Avena sativa), barley (Hordeum vulgare), and Indian mustard(Brassica juncea) [J]. Environmental Science & Technology.1998, 32(6):802-806.
    [57]Entry JA, Rygiewicz PT, Emmingham WH. Accumulation of cesium-137 and strontium-90 in ponderosa pine and Monterey pine seedlings [J]. Journal of Environmental Quality.1993,22(4): 742-746.
    [58]Entry JA, Watrud LS. Potential remediation of 137Cs and 90Sr contaminated soil by accumulation in Alamo switchgrass [J]. Water, Air and Soil Pollution.1998,104(3-4):339-352.
    [59]Entry JA, Watrud LS, Reeves M. Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi [J]. Environmental Pollution.1999,104(3): 449-457.
    [60]Entry JA, Watrud LS, Reeves M. Influence of organic amendments on the accumulation of 137Cs and 90Sr from contaminated soil by three grass species [J]. Water, Air and Soil Pollution. 2001,126(3-4):385-398.
    [61]Epelde L, Becerril JM, Hernandez-Allica J, Barrutia O, Garbisu G. Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction [J]. Applied Soil Ecology.2008,39(3):299-310.
    [62]Epelde L, Hernandez-Allica J, Becerril JM, Blanco F, Garbisu, C. Effects of chelates on plants and soil microbial community:comparison of EDTA and EDDS for lead phytoextraction [J]. Science of the total environment.2008,401(1):21-28.
    [63]Evseeva TI, Geras'kin SA, Shuktomova Ⅱ. Genotoxicity and toxicity assay of water sampled from a radium production industry storage cell territory by means of Allium test [J]. Journal of environmental radioactivity.2003,68(3):235-248.
    [64]Fornazier RF, Ferreira RR, Pereira GJG, Molina SM., Smith RJ, Lea PJ, Azevedo RA. Cadmium stress in sugar cane callus cultures:effect on antioxidant enzymes [J]. Plant cell, tissue and organ culture.2002,71(2):125-131.
    [65]Fuhrmann M, Lasat MM, Ebbs SD, Kochian LV, Cornish J. Uptake of Cesium-137 and Strontium-90 from Contaminated Soil by Three Plant Species; Application to Phytoremediation [J]. Journal of Environmental Quality.2002,31(3):904-909.
    [66]Giller KE, Witter E, Mcgrath SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review[J]. Soil Biology and Biochemistry.1998,30(10): 1389-1414.
    [67]Groppa MD, Tomaro ML, Benavides MP. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs [J]. Plant Science.2001,161(3): 481-488.
    [68]Goldstein SJ, Jacobsen SB. The Nd and Sr isotopic systematics of river-water dissolved material:Implications for the sources of Nd and Sr in seawater [J]. Chemical Geology:Isotope Geoscience section.1987,66(3):245-272.
    [69]Gussarsson M. Cadmium-induced alterations in nutrient composition and growth of betula pendula seedlings:The significance of fine roots as a primary target for cadmium toxicity [J]. Journal of Plant Nutrition.1994,17(12):2151-2163.
    [70]Hagemeyer J. Ecophysiology of plant growth under heavy metal stress [M]. In:Prasad MNV (ed) Heavy metal stress in plants.2nd edn. Springer, Berlin,2004,201-222.
    [71]Haunold E, M. Horak, M. Gerzabek. Umweltradioaktivitat und ihre Auswirkung auf die Landwirtschaft. I. Das Verhalten von Radionucliden in Boden und Pflanze [J]. OEFZS.1986, 4369,63-86.
    [72]Heath RL, Packer L. Photoperoxidation in isolated choroplasts. I. Kinetics and stochiometry of fatty acid peroxidation [J]. Archive of Biochemistry and Biophysics.1968,125(1):189-190.
    [73]Hegedus A, Erdei S, Horvath G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress [J]. Plant Science.2001,160(6):1085-1093.
    [74]Henner P, Colle C, Morello M. Retention and translocation of foliar applied 239.240Pu and 241Am as compared to 137Cs and 85Sr, into bean plants(Phaseolus vulgar is) [J]. Journal of Environmental Radioactivity.2005,83(2):213-229.
    [75]Hernandez-Allica J, Becerril JM, Garbisu Carlos. Assessment of the phytoextraction potential of high biomass crop plants [J]. Environmental Pollution.2008,152(1):32-40.
    [76]Hernandez-Allica J, Becerril JM, Zarate O, Garbisu C. Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health [J]. Plant and soil.2006, 281(1-2):147-158.
    [77]Hepler PK, Wayne RO. Calcium and plant development [J]. Annu. Rev. Plant Physiol.1985, 36(1):397-439.
    [78]Hoagland DR, Arnon DI. The water culture method for growing plants without soil [J]. California:Agriculture Experiment Station Circular.1950,347 (2nd edit),1-32.
    [79]Huang JW, Chen JJ, Berti WR, Cunningham SD. Phytoremediation of lead-contaminated soils:role of synthetic chelates in lead phytoextraction [J]. Environ. Sci. Technol.1997,31(3): 800-805.
    [80]Ibeanusi VM, Grab DA, Jensen L, Ostrodka S. Radionuclide Biological Remediation Resource Guide [M]. U.S. Environmental Protection Agency. Region 5, Superfund Division,2004.
    [81]Insam H, Domsch KH. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites [J]. Microb. Ecol.1988,15(2):177-188.
    [82]International Atomic Energy Agency (IAEA) "Risk management of knowledge loss in nuclear industry organizations", Vienna.2006.
    [83]JD Burton, G M Milbourn, R Scott Russell. Ralationship between the rate of fall-out and the concentration of strontium-90 in human diet in the United Kingdom [J]. Nature.1960,185, 498-500.
    [84]Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants [M]. Third Edition. CRC Press, Boca Raton, USA,2001.
    [85]Kabala K, yna Klobus G. Plant Ca2+-ATPases [J]. Acat Physiolgiae Plantrum.2005,27(4): 559-574.
    [86]Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants [M]. CRC Press.2001.
    [87]Karadeniz O, Yaprak G. Dynamic equilibrium of radiocesium with stable cesium within the soil-mushroom system in Turkish pine forest [J]. Environmental pollution.2007,148(1):316-324.
    [88]Kelly JJ, Tate RL. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter[J]. Journal of Environmental Quality.1998,27(3): 609-617.
    [89]Kendall AC, Keys AJ, Turner JC, Lea PJ, Miflin BJ. The isolation and characterisation of a catalase-deficient mutant of barley (Hordeum vulgare L.)[J]. Planta.1983,159(6):505-511.
    [90]Kim TW, Heinrich G. Effect of strontium on chlorophyll content, peroxidase activity, and iron distribution in cell walls [J]. Journal of plant nutrition.1997,20(2):255-269.
    [91]Kliebenstein DJ, Monde RA, Last RL. Superoxide dismutase in Arabidopsis:an eclectic enzyme family with disparate regulation and protein localization [J]. Plant physiology.1998, 118(2):637-650.
    [92]Kostial K, Gruden N, Durakovic A. Intestinal absorption of calcium-47 and strontium-85 in lactating rats [J]. Calcified Tissue International.1969,4(1):13-19.
    [93]Kucharski R, Sas-Nowosielska A, Malkowski E, Japenga J, Kuperberg JM, Pogrzeba M, Krzyzak J. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland [J]. Plant and soil.2005,273(1-2):291-305.
    [94]Kumar PBAN, Dushenkov V, Motto H, Raskin I. Phytoextraction±the use of plants to remove heavy metals from soils [J]. Environ. Sci. Technol.1995,29(5):1232-2238.
    [95]Ladd JN, Butler JHA. Short-term assays of soil proteolytic enzyme activities using proteins and peptide derivatives as substrates [J]. Soil Biol. Biochem.1972,4(1):19-30.
    [96]Larson BL, Ebner KE. Significance of Strontium-90 in Milk [J]. Journal of Dairy Science. 1958,41(12):1647-1662.
    [97]Lasat MM, Baker AJM, Kochian LV. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens[J]. Plant Physiology.1998,118(3):875-883.
    [98]Lee CC, Sosulski FW. Uptake of 85Sr by cereal crops and varieties [J]. Can J Plant Sci.1965, 45,13-17.
    [99]Leung JKC, Shang ZR. Uptake of 137Cs and 90Sr in rice plants [J]. Health Physics.2003, 84(2):170-179.
    [100]Lin T, Morales M. Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins [J].Anal. Biochem.1977,77(1):10-17.
    [101]Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of Action and Therapeutic Potential of Strontium in Bone [J]. Calcified Tissue International.2001,69(3):121-129.
    [102]Markert B., Vtorova V.N. Concentration cadaster of chemical elements in plants of eastern European forest ecosystem [J]. Biology Bulletin.1995,22,453.
    [103]Marschner H. Mineral nutrition of higher plants [M].2nd Edn. Academic Press, London, 1995.889.
    [104]Milone MT, Sgherri C, Clijsters H, Navari-Izzo F. Antioxidative responses of wheat treated with realistic concentration of cadmium [J]. Environmental and Experimental Botany.2003,50(3): 265-276.
    [105]Minguzzi C, Vergnano O. Nickel content of Alyssum bertolonii [J]. Atti Soc. Tosc. Sci. Nat. 1948,55,49-74.
    [106]Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L [J]. Plant Physiology and Biochemistry.2006,44(1):25-37.
    [107]Moyen C, Roblin G. Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio:comparison with Ca effects [J]. Environmental and experimental botany.2010,68(3):247-257.
    [108]Mitch M. Lasat, Alan J.M. Baker, Leon V. Kochian. Altered Zn Compartmentation in the Root Symplasm and Stimulated Zn Absorption into the Leaf as Mechanisms Involved in Zn Hyperaccumulation in Thlaspi caerulescens [J]. Plant Physiol.1998,118(3):875-883.
    [109]Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S. Are diverse signalling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? [J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences.2000,355(1402):1531-1540.
    [110]Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil [J]. Enzymes in the environment. Marcel Dekker, New York,2002: 1-33.
    [111]Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage [J]. Plant Physiology.2008,147(3):1251-1263.
    [112]Noctor G, Foyer CH. Ascorbate and glutathione:keeping active oxygen under control [J]. Annual review of plant biology.1998,49(1):249-279.
    [113]Ouzounidou G. Copper-induced changes on growth, metal content and photosynthetic function of Alyssum inontanum L. plants [J]. Environmental and Experimental Botany.1994,34(2): 165-172.
    [114]Pilon-Smits EAH, Zhu YL, Sears T, Terry N. Overexpression of glutathione reductase in Brassica juncea:effects on cadmium accumulation and tolerance [J]. Physiologia plantarum.2000, 110(4):455-460.
    [115]Prister B, Loshchilov N, Perepelyatnikova L, Perepelyatnikova G, Bondar P. Efficiency of measures aimed at decreasing the contamination of agricultural products in areas contaminated by the Chernyobl NPP accident [J]. Science of the Total Environment.1992,112(1):79-87. [116] Putyatin YV, Seraya TM, Petrykevich OM, Howard BJ. Comparison of the accumulation of
    137Cs and 90Sr by six spring wheat varieties [J]. Radiation and Environmental Biophysics.2006, 44(4):289-298.
    [117]Raskin I. Smith RD. Salt DE. Phytoremediation of metals:using plants to remove pollutants from the environment [J]. Current opinion in biotechnology.1997,8(2):221-226.
    [118]Rediske JH, Selders AA. The absorption and translocation of strontium by plants [J]. Plant physiology.1953,28(4):594.
    [119]Rota MC, VallejoJ VR. Effect of soil potassium and calcium on caesium and strontium uptake by plant roots environment [J]. Radioactivity.1995,28(2):141-159.
    [120]Rout TK, Sengupta DK, Kaur G, Kumar S. Enhanced removal of dissolved metal ions in radioactive effluents by flocculation [J]. International Journal of Mineral Processing,2006,80(2): 215-222.
    [121]Ruhm W, Yoshida S, Muramatsu Y, Steiner M, Wirth E. Distribution patterns of stable 133Cs and their implications with respect to the long-term fate of radioactive 134Cs and 137Cs in a semi-natural ecosystem [J]. Journal of Environmental Radioactivity.1999,45(3):253-270.
    [122]Rufus L Chaney, Minnie Malik, Yin M Li, Sally L Brown, Eric P Brewer, J Scott Angle, Alan JM Baker. Phytoremediation of soil metals [J]. Environmental biotechnology.1997.8(3): 279-284.
    [123]Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I. Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants [J]. Nature Biotechnology.1995,13(5):468-474.
    [124]Salin ML. Toxic oxygen species and protective systems of the chloroplast [J]. Physiologia Plantarum.1987,72(3):681-689.
    [125]Sanzharova NI, Fesenko SF, Lisyanskii KB, Kuznetsov VK, Abramova TN, Kotik VA. Forms and accumulation dynamics of 137Cs in crops after the accident at the Chernobyl Nuclear Power Plant [J]. Pochvodenie.1997,60(2):159-164.
    [126]Sasmaza A, Sasmaz M. The phytoremediation potential for strontium of indigenous plants growing in a mining area [J]. Environmental and Experimental Botany.2009,67(1):139-144.
    [127]Scandalios JG, Foyer CH, Mullineaux PM. Regulation and properties of plant catalases [J]. Causes of photooxidative stress and amelioration of defense systems in plants.1994:275-315.
    [128]Schickler H, Caspi H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum [J]. Physiologia plantarum.1999,105(1):39-44.
    [129]Schimmack W, Gerstmann U, Schultz W, Sommer M, Tschopp V, Zimmermann G. Intra-cultivar variability of the soil-to-grain transfer of fallout 137Cs and 90Sr for winter wheat[J]. Journal of environmental radioactivity.2007,94(1):16-30.
    [130]Schiitzendubel A, Polle A. Plant responses to abiotic stress:heavy metal-induced oxidative stress and protection by mycorrhization [J]. J. Exp. Bot.2002,53(372):1351-1365.
    [131]Siedlecka A, Krupa Z. Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus [J]. Photosynthetica.1999,36(3):321-331.
    [132]Singh S, Eapen S, Thorat V, Kaushik CP, Raj K, D'Souza SF. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides [J]. Ecotoxicology and Environmental Safety.2008,69(2):306-311.
    [133]Somashekaraiah BV, Padmaja K, Prasad ARK. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris):Involvement of lipid peroxides in chlorphyll degradation [J]. Physiologia Plantarum.1992,85(1):85-89.
    [134]Soudek P, Valenova Sarka, Vavrikova Zuzana, Vanek Tomas. 137Cs and 90Sr uptake by sunflower cultivated under hydroponic conditions [J]. Journal of Environmental Radioactivity. 2006,88(3):236-250.
    [135]Stamoulis KC, Assimakopoulos PA, Ioannides KG, Johnson E, Soucacos PN. Strontium-90 concentration measurements in human bones and teeth in Greece [J]. Science of the total environment.1999,229(3):165-182.
    [136]Tabatabai MA, Bremner JM. Arylsulfatase activity of soils [J]. Soil Science Society of America Journal.1970,34(2):225-229.
    [137]Tabatabai M A. Soil enzymes [J]. Methods of Soil Analysis:Part 2-Microbiological and Biochemical Properties.1994 (methodsofsoilan2):775-833.
    [138]Tahlil N, Rada A, Baaziz M, Morel JL, El Meray M, El Aatmani M. Quantitative and qualitative changes in peroxidase of Cucurbita pepo cultivars stressed with heavy metals [J]. Biologia plantarum.1999,42(1):75-80.
    [139]Tolra RP, Poschenrieder C, Barcelo J. Zinc hyperaccumulation in Thlaspi caerulescens. Ⅱ. Influence on organic acids [J]. Journal of Plant Nutrition.1996,19(12):1541-1550.
    [140]Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S. Rice uptake and distributions of radioactive 137Cs, stable 133Cs and K from soil [J]. Environmental Pollution.2000,117,403-409.
    [141]Tsukada. H, Takeda A, Takahashi T, Hasegawa H, Hisamatsu S, Inab J. Uptake and distribution of 90 Sr and stable Sr in rice plants [J] Journal of Environmental Radioactivity.2005, 81(2):221-231.
    [142]Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M. The potential distribution of bioenergy crops in Europe under present and future climate [J]. Biomass and Bioenergy.2006, 30(3):183-197.
    [143]Twining JR, Payne TE, Itakura T. Soil-water distribution coefficients and plant transfer factors for 134Cs,85Sr and Zn underfield conditions in tropical Australia [J]. Journal of Environmental Radioactivity.2004,71(1):71-87.
    [144]Verma S, Dubey RS. Effect of cadmium on soluble sugars and enzymes of their metabolism in rice [J]. Biologia Plantarum.2001,44(1):117-123.
    [145]Von Fircks Y, Rosen K, Sennerby-Forsse L. Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants [J]. Journal of Environmental Radioactivity.2002,63(1):1-14.
    [146]Wallnofer PR, Engelhardt G. Schadstoffe die aus dem Boden aufgenommen werden.-In: Hock B, Elstner EF. (ed.):Pflanzentoxicologie.95-117. Bibliographisches Institut, Mannheim 1984.
    [147]Wang JJ, Wang CJ, Huang CC, Lin YM. Transfer factors of 90Sr and 137Cs from paddy soil to the rice plant in Taiwan [J]. Journal of Environmental Radioactivity.1998,39(1):23-34.
    [148]Wardle DA, Ghani A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development [J]. Soil biology & Biochemistry.1995, 27(12):1601-1610.
    [149]Wenzel W W, Lombi E, Adriano D C. Biogeochemical processes in the rhizosphere:role in phytoremediation of metal-polluted soils [M]. Heavy metal stress in plants. Springer Berlin Heidelberg,1999:273-303.
    [150]Wen FP, Wang D, Xu CH, Xu FT, Zhang ZW, Zhang XX. Uptake and D istr ibution of 133Cs and 88Sr in sunflower (Helian thus annuus L.) [J]. Bulletin of Botanical Research.2009, 29(5):592-596.
    [151]Wu FB, Zhang GP. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedling [J]. Bull. Environ. Contam. Toxicol.2002,69(2):219-227.
    [152]Wu FB, Zhang GP, Dominy P. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity [J]. Environmental and Experimental Botany. 2003,50(1):67-78.
    [153]Xiangliang Pan, Daoyong Zhang, Xi Chen, Anming Bao, Lanhai Li. Antimony Accumulation, Growth Performance, Antioxidant Defense System and Photosynthesis of Zea mays in Response to Antimony Pollution in Soil [J]. Water Air Soil Pollut.2011,215(1-4): 517-523.
    [154]Xu LL, Ye MB. A measurement of peroxidase activity using continuous recording method [J]. J Nanjing Agricult Univ.1989,12(3):82-83.
    [155]Yamamoto M, Kofuji H, Tsumura A, Yamasaki, S, Yuita, K, Komamura M, Ueno K. Temporal Feature of Global Fallout 237Np Deposition in Paddy Field through the Measurement of Low-level 237Np by High Resolution ICP-MS[J]. Radiochimica Acta.1994,64(3):217-224.
    [156]Ye WL, Khan MA, McGrath SP, Zhao FJ. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice [J]. Environmental Pollution. 2011,159(12):3739-3743.
    [157]Zhang XZ. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system [J]. Research Methodology of Crop Physiology.1992, 208-211.
    [158]Zhu YG, Shaw G. Soil contamination with radionuclides and potential remediation [J]. Chemosphere.2000,41(1):121-128.
    [159]Zu YQ, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China [J]. Environment International. 2005,31(5):755-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700