齿轮同步器流场分析与同步特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮马达分流器因其具有安装调试简单,分流精度高且不受负载影响,而且具有增压的功能。被广泛应用于冶金、水利、工程机械等多个行业,但目前国内相关产品精度还达不到要求。
     通过对同步器内部流场的动态特性的研究,为进一步提高齿轮分流器的分流精度提供理论依据。本文从对其内部流场的动态特性入手,利用FLUENT软件对其内部流场区域进行数值模拟。通过设置不同的结构参数,找出影响分流精度的主要因素。
     首先,对进口齿轮马达分流器进行测绘,利用所测尺寸对齿轮马达分流器进行几何建模。通过CAXA软件绘制精确的渐开线齿轮,利用FLUENT前处理器Gambit对齿轮马达分流器内部流场区域进行网格划分。由于网格数量庞大,利用多台电脑对模型进行并行运算求解。
     其次,根据实际工况,设置不同的转速、壳体与齿顶的间隙值,压差值;引入标准的k-ε湍流模型,设定流场分析的边界条件,利用动网格技术,对模型进行求解。利用FLUENT监视器的功能,对出口设置流量检测。利用FLUENT软件检测出的流量数据导入EXCEL进行图形化处理,可以得到齿轮马达分流器两出口的流量值。
     最后,依据FLUENT仿真的结果,根据流量检测的数据,以及齿轮马达分流器内部流场进行分析。根据不同参数下检测出的流量值分析同步误差,对所得结果进行分析,给出在不考虑端面泄漏情况下,齿轮马达分流器在不同负载,不同转速下,不同齿顶和壳体间隙值下的分流精度及其变化规律。
Gear Type Flow Divider is widely used in metallurgy, water conservancy, engineering machinery, for it is very easy to fit and debugging. But at present domestic related products accuracy also isn't up to scratch.
     Through the synchronizer internal flow field of research, In order to further improve the gear of shunt provide theoretical basis for shunt accuracy, This article from the internal flow field, Using FLUENT software of the internal flow field in regional numerical simulation. Through setting different structural parameters, find out the main factors of influence shunt accuracy.
     First, by surveyed and mapped a foreign brand product, then establish the gear motor shunt geometric modeling, and eatabished the modeling using the measured dimension. It has rendered accurate involute gea through CAXA software. The internal flow field of the gear motor was meshed using FLUENT Gambit former processor. Due to the grid huge, and computer hardware limitations, the computer models are parallel computing solution.
     Secondly, for seeking the relationship of shunt error and the motor speed, tooth crest and shell clearance, differential pressure, according to the actual working condition, set up different speed, shell and tooth crest of inner-space value, differential pressure value; Introducing standard k-turbulence model, setting the boundary conditions of flow field analysis, using dynamic grid technology to solve the model. Using FLUENT soft monitor function, set flow detection. Gear motor respectively on the export of shunt flow test. Using FLUENT software detected flow data import EXCEL for graphical processing, can get the two export flow value of the gear motor shunt.Limited to computer condition limit and the haste, here I just analysis the four situation.
     Finally, analyzed the FLUENT software simulation results, the flow measuring data, and the pressure of convective of the gear motor shunt's internal flow field. According to different parameters to detect flow value analysis synchronization error, flows pulsation. Utilizing pressure image analysis trapped oil phenomenon. The results obtained are analyzed. The diversion error of the gear motor shunt were given in in different load, different speed, different tooth crest and shell clearance value under the condition the leakage of gear eed is not considered. The correctness of the theoretical reasoning was verified through simulation and calculation of flow pulsation. Pocketed oil phenomenon was simulated in detali through the simulation analysis of pressure image And there are specific numerical to illustrate the harm of pocketed oil phenomenon.
引文
1 陈德国,李慧忠,柏峰,等.多流液压同步马达应用研究.机床与液压2010,38(8):55-56
    2 徐永江.齿轮式流量分配器.煤矿机械,1991,1:14-15
    3 王经伟.液压系统同步回路的设计.重工与起重技术,2010,1:19-21
    4 胡建刚.液压分流器增压特性与应用.液压与气动,2009,4:55-56
    5 杨立勤,温济全.齿轮式液压分流器同步精度的理论分析.液压气动与密封.1996,3:7-8
    6 Hyun Kim, Hazel Marie, Suresh Patil. Two-dimensional CFD analysis of a hydraulic gear pump[C]. American Society for Engineering Education,2007:439-454
    7 Kris Riem slagh,Jan V ierendeels,Erik Dick An arbitrary Lagrangian-Eulerian finite-volume method for the simulation of rotary displacement pump flow [J].Applied Numerical Mathematics,2000, (32):419-433
    8 John Vande Voorde,Jan Vierendeels,Erik Dick Flow simulations in rotary volumetric pumps and compressors with the fictious domain method[J].Journal of Computional and Applied Mathematics,2004, (168):491-499
    9 Goto A. Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD and Inverse Design Method. In Proceedings of 2001 ASCE Fluid Engineering Division Summer Meeting, Fourth International Symposium on Pumping Machinery, New Orleans, 2001:20-25
    10 江帆,陈维平.润滑用齿轮泵内部流场的动态模拟.现代制造工程,2007,6:116-117
    11 杨立勤,温济全.齿轮式液压分流器同步精度的理论分析.液压气动与密封.1996,3:7-8
    12 陈义昌,汪建一.齿轮式液压分流器的结构特点与精度分析.煤矿机械,1987,3:25-27
    13 高殿荣,王有杰,陆向辉,等.基于CFD技术的新型轴向柱塞液压电机泵流场计算与分析.机床与液压,2010,38(5):5-6
    14 陈英,荆宝德.外啮合齿轮泵内泄露理论模型的建立及参数优化.机床与液压,2007,35(10):109-110
    15 聂松林,贾国涛,吴正江,等.水压圆周缝隙流动特性的仿真研究.机床与液压,2005,8:57-58
    16 许贤良,朱兵,张军,等.同心环形缝隙理论研究.安徽理工大学学报(自然科学版),2004,24(3):40-42
    17 张冬泉.旋转对称密封缝隙流场的有限元分析.北方工业大学学报,1999,11(1):62-66
    18 顾宏韬,张军.行星齿轮泵泄漏的流场分析.润滑与密封,2010,35(6):90-110
    19 王强,姜继海,袁俊超.利用流场仿真技术计算水压外啮合齿轮泵内液压径向力.流体机械,2008,36(6):39-42
    20 李士华,欧阳洁.聚合物熔体前沿追踪的Level set方法研究.科学技术与工程,2007,7(9):1831-1832
    21 唐亦农,陈文芳.非牛顿流体在Hele-Shaw模型中的流动,北京大学力学系,1987:26-29
    22 Xu Binggui, Zhang Yanping, W ang Hui, et al. Application of numerical simulation of lulmerical simulation in the solid expandable tubular repair for casing damaged wells [J]. Petroleum Exploration and Development,2009,36(5):651-657.
    23 Avraham I K. Efim G E, Gerd W, et al. Coaxial tubular solar collector constructed from polymeric materials polymeric materials:an experimental and transient simulation study[J]. Energy Convemion and Management,2003,44(16):2549-2566
    24 裘祖干.微极流体的Hele-Shaw流动.复旦大学学报,1990,29(2):130-134
    25 朱红钧,林元华,谢龙汉.流体分析及仿真实用教程.北京:人民邮电出版社,2010:2-388
    26 Goto A. Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD and Inverse Design Method. In Proceedings of 2001 ASCE Fluid Engineering Division Summer Meeting, Fourth International Symposium on Pumping Machinery, New Orleans, 2001:50-100
    27 Bert Blocken, Ted Stathopoulos, Jan Carmeliet.CFD simulation of the atmospheric boundary layer:wall function problems [J]. Atmospheric Envuronment,2007, 41(2):238-252
    28 A.H. Ahmadi Motlagh, S.H. Hashemabadi.3D CFD simulation and experimental validation of particle-to-fluid heat transfer in a randomly packed bed of cylindrical particles[J]. International Communications in Heat and Mass Transfer,2008, 35(9):1183-1189
    29 李进良,李承曦,胡仁喜,等编著.北京:化学工业出版社,2010:2-50
    30 温正,石良臣,任毅如编著.FLUENT流体计算应用教程,北京:清华大学出版社,2009:2-12
    31 江帆,黄鹏编著.《 Fluent高级应用与实例分析》,北京:清华大学出版社,2008:2-100
    32 韩占忠,王敬,王小兰编.FLUENT:流体工程计算实例与应用,北京:北京理工大学出版社,2004:2-80
    33 张凯,王瑞金,王刚编著.Fluent技术基础与应用实例,北京:清华大学出版社,2010:50-150
    34 Zhang Zheng. Numerical simulation of the inner flow of centrifugal pump in FLUENT [J]. Scientific and Technical Information,2008(26):93-94
    35 尹会迎,王爱玲,孙旭东.基于FLUENT微坑环形表面间隙流场分析.机械管理开发,2010,25(2):15-16
    36 杨建明,吴建华.动网格技术数值模拟挑流冲刷过程.水动力学研究与进展,2001,16(2):158-161
    37 李红英.齿轮模数的现场测绘.山西大同大学学报,2010,26(1):76-78
    38 郭攀成.用公法线长度测绘法确定齿轮模数的简易方法.机械研究与应用,2004,17(3):26-27
    39 朱理.机械原理.北京:高等教育出版社,2004:155-197
    40 濮良贵,纪名纲主编.机械设计(第六版).北京:高等教育出版社,1996:100-130
    41 王少怀.机械设计师手册,北京:电子工业出版社,2006:118-160
    42 刘隽哲,邹登纪,张华,等.基于中心距约束条件下啮合齿轮变位系数的选取.《装备制造技术》,2010,4:22-23
    43 张伟,侯克青,徐荣.齿轮变位系数与齿轮各系数和尺寸之间变化关系探讨.机械传动,2009,33(5):55-59
    44 梁华琪.直齿圆柱齿轮变位系数的优化选择.机械传动,2004,28(5):26-28
    45 马振新.圆柱齿轮的优化设计.农业科技与装备,2009,6:39-40
    46 黄锦辉.齿轮轴的齿轮和内花键测绘后的参数推算.研究开发,2010:93-95
    47 John D. Anderson,JR. Computational Fluid Dynamics The Basics with Applications. McGraw-Hill,2003:39-121
    48 Shi Depan, Luo Zhenghong, Zheng Zuwei. Numerical simulation of liquid·-solid two--phase flow in a tubular loop polymerization reactor[J]. Powder Technology,2010, 198(1):135-143
    49 Avraham I K. Efim G E, Gerd W, et al. Coaxial tubular solar collector constructed from polymeric materials polymeric materials:an experimental and transient simulation study[J]. Energy Convemion and Management,2003,44(16):2549-2566
    50 高殿荣,吴晓明编著.工程流体力学,北京:机械工业出版社,1999:115-118
    51 许福玲,陈晓明主编.液压与气压传动,北京:机械工业出版社,2004:100-112
    52 李壮云主编.液压元件与系统,北京:机械工业出版社,2005:22-28
    53 沈宗沼,杨定军,刘爱圆.液固两相流泵叶轮内流场数值分析与实验研究[J].煤矿机械,2010,31(1):56-59
    54 廖伟丽,覃延春,柴胜凯,等.考虑缝隙流模型的轴流泵叶轮内部三维流动.西安理工大学,2003:235-239
    55 R.Payri, F.J Salvador J.Gimeno, J.dela Morena. Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber[J]. International Journal of Heat and Fluid Flow August.2009,3(4):768-777
    56 曹京.FLUENT高性能计算,高性能计算发展与应用.2005,13(4):19-23
    57 Guo Q P, Yakup p. Concurrent Communication and Granularity Assessment for a Transputer-based Multiprocessor system[J]. Journal of Computer systems Science & Engineering,1990,5(1):18-20
    58 Jiang Fan, Chen Wei ping, Ma Ming ren,.Numerical simulation on water and sediments two-phase flows in river. Progress in Safety Science and Technology,2005, (11):1634-1639
    59 Potter M C, W iggert D C. Mechanics of fluids China Machine Press.2003, (6):753-797
    60 江帆.悬浮载体材质-结构的生物特性及新型转笼生物反应器.华南理工大学,2006(6):42-46
    61 E. John Finnemore, Joseph B. Franzini. Fluid mechanics with engineering applications,北京:清华大学出版社,2003:50-56
    62 Cheng Li, Liu Chao, Tang Fangping, et al. Shaft tubular pump system with symmetric aerofoil blade[J]. Drainage and Irrigation Machinery,2008,26(5):50-53.
    63 Hideyuki Horisawa, Fujimi Sawada, Kosuke Onodera, et.al. Numerical simulation of micro-nozzle and micro-nozzle-array flowfield characteristics[J].Vacuum,4 September. 2008,83(1):52-56
    64 李玉龙.外啮合齿轮泵困油机理、模型及实验研究.[合肥工业大学博士学位论文].2009:5-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700