牙鲆(Paralichthys olivaceus)抗鳗弧菌病和淋巴囊肿病家系及相关分子标记的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙鲆是中国、日本和韩国等国家的重要海水经济养殖鱼类之一,随着第四次海水养殖浪潮的到来,牙鲆养殖业蓬勃发展起来。近些年来,病害频发严重阻碍了牙鲆养殖业的发展,培育具有抗病力强和养殖存活率高等优良性状的牙鲆新品种是解决这一问题的重要途径之一。从培育抗病新品种的实际需求出发,主要对以下4个方面进行了探讨:1、牙鲆抗淋巴囊肿病和高养殖成活率家系的筛选与分析;2、连续三代牙鲆抗鳗弧菌病家系的筛选与分析;3、牙鲆抗鳗弧菌病和淋巴囊肿病相关分子标记的筛选;4、牙鲆连续两代雌核发育及F1近交家系的遗传分析。主要研究结果如下:
     1、牙鲆抗淋巴囊肿病和高养殖存活率家系的筛选与分析
     2009年的牙鲆家系在2010年爆发了淋巴囊肿病,对16个家系及对照组的发病率进行了评估,得到4个发病率低于40%的家系,其中有一个家系F0939完全没有发病;2011年,在2009年牙鲆家系长到580日龄时,统计了各个家系的养殖存活率和生长情况,发现养殖存活率超过55%的7个家系中有6个家系的至少一个亲本家系F0750,说明以F0750做亲本可以有效的提高家系的养殖存活率;相关分析表明,牙鲆淋巴囊肿病的发病率与感染时的生长和580日龄的生长呈极显著负相关(r=-0.790);另外,牙鲆鳗弧菌感染存活率与养殖存活率呈低度正相关(r=0.371)。
     2、牙鲆连续三代抗鳗弧菌病家系的筛选与分析
     2012年,为了继续稳定抗病家系的抗病性状,同时筛选新的抗鳗弧菌病家系,以实验室多年建立的牙鲆育种群体和家系为基础,共建立牙鲆家系65个,选取其中43个家系进行鳗弧菌感染实验,共筛选出8个抗病力强的家系,其中1个家系极显著高于对照组(P<0.01),其他7个家系显著高于对照组(P<0.05),这8个家系包括4个F1代家系、2个F2代价系、1个F3家系和1个雌核发育二代家系。同时对连续三代16个抗病力强的家系进行分析,发现其中14个家系与抗病基础群体有关,说明牙鲆抗鳗弧菌病性能能够遗传给后代。
     3、牙鲆抗鳗弧菌病和抗淋巴囊肿病相关分子标记的筛选
     (1)牙鲆抗鳗弧菌病QTL的定位
     为了加快抗鳗弧菌病的选育进程,以抗病家系F0750和易感家系F0743的杂交F1代家系F0975为资源家系,采用混合分群分析(BSA)和QTL定位相结合的方法从高密度遗传连锁图谱上每10cM左右筛选1个标记共178个标记对感染材料进行分析,利用2种模型对表型性状进行定义,通过这两种模型分别定位了1个(qVT-0)和3个(qVT-1, qVT-2, qVT-3)QTL位点,这些QTL区域的可解释变异率超过60%。同时,qVT-0和qVT-2定位区域重合,这个重合的QTL区域有可能是牙鲆抗鳗弧菌病的最主要的区域。
     (2)牙鲆抗鳗弧菌病家系相关分子标记的筛选
     由于QTL定位是基于家系的,因此很少具有广泛的适用性,为了筛选具有较广泛适用性的抗病相关标记,利用本实验室从牙鲆的表达序列标签中筛选到46对多态的微卫星标记(EST-SSR)对2009年感染的30个家系进行了抗病标记筛选,最终得到3个与抗病显著相关(P<0.01)的分子标记。
     (3)牙鲆抗淋巴囊肿病相关分子标记的初步筛选
     在牙鲆抗淋巴囊肿病相关分子标记筛选方面,本文以一个发病率接近50%的家系为材料,首先从高密度连锁图谱上筛选178个微卫星标记,通过BSA法进行初步筛选,然后用来自3个家系的52个个体进行验证,最后筛选到1个与抗淋巴囊肿病相关的分子标记。
     4、牙鲆连续两代雌核发育家系和全同胞近交家系的遗传分析
     全同胞近交和雌核发育是鱼类育种中经常用来纯合基因和稳定性状的方法,为了准确评估这两种方法的遗传纯合效果,本研究利用来自于高密度遗传连锁图谱上的30个微卫星对牙鲆全同胞近交F1代家系、雌核发育一代、二代家系及其亲本家系进行了分析,发现牙鲆减数分裂雌核发育可以快速降低后代的遗传多态性,提高后代个体间的遗传相似度,但由于一些位点的重组率很高,很难通过简单的多次减数分裂雌核发育来得到牙鲆纯系,而全同胞近交方式不受重组率高低的影响,可以将两者结合起来培育纯系;同时发现雌核发育及近交后代的纯合性与其亲本的纯合度密切相关,因此在牙鲆育种中,对符合目标性状的个体进行纯合性分析,选出纯合性较高的个体再进行近交或雌核发育可以大大加快纯系培育的进程。这些研究为最终培育出具有多种优良性状于一体的牙鲆新品种奠定了基础。
Japanese flounder (Paralichthys olivaceus) is an important economical fish inChina, Japan, Korea and so on. In recent years, the development of flounderaquaculture has been seriously interfered with bacterial and viral diseases. Toprevent or at least diminish the devastating effects of these diseases, one usefulmethod is to cultivate families or strains with good characters such as fast growth,strong disease resistance, high breeding survival rate(BSR) and so on. To achievethis purpose, four studies have been carried out as follows: firstly, lymphocystisdisease(LD) resistance families and high BSR families were analyzed; secondly,the families of three successive generations with strong resistant to Vibrioanguillarum were screened and analyzed; thirdly, the molecular markers associatedwith resistant to the V. anguillarum and LD were screened; fourthly, two successivegenerations in meiotic gynogenesis families and inbreeding(brother sister mating)strain of the first finial generation(F1) family have been genetically analyzed. Themain results are as followings:
     1. Comparative analysis of resistant to LD and BSR among flounder families
     In2010, LD outbreak in some families established in2009. After evaluating thehealth rate of16families and a control group,four families with incidence below40%were selected and one of the four families with0%incidence was F0939.Around580days after hatching (DAHS) in2011, BSR and body mass (BM) weremeasured and seven families were discovered with BSR above55%. At least one parent of the above six families derived from F0750. It indicates that a family with aparent from F0750may effectively improve the BSR. Correlation analysis showedthat it was significantly negative correlation between the incidence of LD and bodymass at the time of infection (r=-0.790). In the mean time, the survival rate afterinfection with V. anguillarum (VSR) was relatively positive correlation with BSR(r=0.371).
     2. Comparative analysis of disease resistance among flounder families of threesuccessive generations
     In order to enhance V. anguillarum disease resistance and screen new familieswith high resistance to V. anguillarum disease, sixty-five families of flounder wereestablished in2012. Forty-three families were selected as candidate materialschallenged with V. anguillarum using intraperitoneal injection. After infection,different families exhibited variable abilities of disease resistance and8families withstrong disease resistance were discovered. In contrast with the control family, thesurvival of one family was very significantly higher (P<0.01) and seven weresignificantly higher(P<0.05)which contained an F3family and a second generationof gynogenesis family. In the mean time, sixteen families with strong resistance to V.anguillarum from the last few years were analyzed. Fourteen of these families wererelated with Chinese resistance stock (selection by spontaneous challenge andintraperitoneal injection of Vibrio anguillarum). This indicated that the ability ofresistance to Vibrio anguillarum in flounder could inherit to their offsprings.
     3. Screening of molecular markers associated with resistant to the V. anguillarumand LD
     (1) A genome scan for quantitative trait loci (QTLs) associated with V. anguillaruminfection resistance in flounder by bulked segregant analysis
     In order to speed up the process of disease resistance breeding, it is necessary toscreen some molecular markers associated with V. anguillarum disease resistance. Inorder to map QTLs, a high-density genetic linkage map was employed to detectedQTLs. F1population was established by crossing of F0750and F0743andchallenged with V. anguillarum in2009. A total of178simple sequence repeat (SSRs) markers were selected around every10cM from genetic map. To screeneffectively, bulked segregant analysis (BSA) and QTL mapping were combined todetect association with this disease. One (qVT-0) and three (qVT-1, qVT-2, qVT-3)QTLs which explained more than60%phenotypic variance in the two models werelocated in a new map, respectively. At the same time, qVT-0and qVT-2were at thesame region. The common QTL maybe a major candidate region for disease resistantto V. anguillarum infection.
     (2) Screening of EST-SSR markers associated with high VSR families in flounder
     As most of QTLs were detected from special families, only a few QTLs wereuniversal. In order to filter out some molecular markers associated with V.anguillarum disease resistance witch suited the entire breeding populations, a total offorty-six simple sequence repeats (SSRs) derived from expressed sequence tags(EST)were used to genotype individuals in thirty infected families. In the end, three SSRswere verified to significantly association (P<0.01) with disease resistance.
     (3) Initial screening of SSR markers associated with LD resistance in flounder
     To screen SSR markers associated with resistant to LD, a family of which theincidence of LD was nearly50%was employed as a resource family. In initialscreening, a total of178simple sequence repeat (SSR) markers were selected aroundevery10cM from a high-density genetic linkage map to be used in BSA. Fifty-twoindividuals derived from three families were selected to confirm the associationbetween markers and LD and one SSR(scaffold185_597)was verified in the end.
     4. Genetic analysis of two successive generations in meiogynogenetic family and F1family
     Full-sib inbred and gynogenesis are two common methods to make genehomozygous and traits stable. To accurately assess the impact of the two methods,thirty SSRs were employed to analyze the families of F1, the first-generation diploidgynogenesis, the second-generation diploid gynogenesis and the family from whichthe parents of F1came. The results indicated that meiotic gynogenesis of floundercould rapidly reduce the offspring’s genetic polymorphism and increase the genetic similarity between offsprings. As high recombination rate in some loci, it’s difficultto get pure line following simple repeatedly meiotic gynogenesis. But full-sibinbreeding is free from the influence of recombination, it’s necessary to combine thetwo methods to cultivate pure line. In the mean time, parental homozygosity isclosely related with their offspring in meiotic gynogenesis. As a result, selectingindividuals with high homozygosity could rapidly improve breeding program offlounder combining inbreeding with gynogenesis. All these studies laid thefoundation of cultivating a new breed with several good traits.
引文
[1]楼允东.鱼类育种学.北京市:中国农业出版社,2009.
    [2] Gjedrem T. Selective breeding to improve aquaculture production. Journal of WorldAquaculture Society,1997,28(1):33-45.
    [3]全国水产技术推广总站.2010水产新品种推广指南.北京市:中国农业出版社,2011.
    [4]朱华平,卢迈新,黄樟翰,等.鱼类遗传改良研究综述.中国水产科学,2010,17(1):168-181.
    [5] Embody G C, Hyford C D. The advantage of rearing brook trout fingerlings from selectedbreeders. Transactions of the American Fisheries Society,1925,55(1):135-148.
    [6] Donaldson L R, Olson P R. Development of rainbow trout broodstock by selectivebreeding. Transactions of the American Fisheries Society,85(1):93-101.
    [7] Parsons J. Status of genetic improvement in commercially reared stocks of rainbow trout.World Aquaculture,1998,29:44-47.
    [8] Myers J M, Heggelund P O, Hudson G, et al. Genetics and broodstock management ofcoho salmon. Aquaculture,2001,197(1-4):43-62.
    [9] Gjerde B. Growth and reproduction in fish and shellfish. Aquaculture,1986,57(1-4):37-55.
    [10]桂建芳.鱼类性别和生殖的遗传基础及其人工控制.北京:科学出版社,2007.
    [11] Longalong F M, Eknath A A, Bentsen H B. Response to bidirectional selection forfrequency of early maturing females in Nile tilapia(Oreochromis niloticus). Aquaculture,1999,178:13-25.
    [12] Ponzoni R W, Hamzahb A, Tan S, et al. Genetic parameters and response to selection forfive weight in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture,2005,247(1-4):203-210.
    [13] Dunham R A, Brummett R E. Response of two generations of selection to increased bodyweight in channel catfish, Ictalurus punctatus, compared to hybridization with blue catfish,I. furcatus, males. Journal of Applied Aquaculture,1999,9(3):37-45.
    [14] Zak T, Perelberg A, Magen I, et al. Heterosis in the growth rate of Hungarian-Israelicommon carp crossbreeds and evaluation of their sensitivity to koi herpes virus (KHV)disease. Israeli Journal of Aquaculture,2007,59(2):63-72.
    [15] Hulata G. A review of genetic improvement of the common carp (Cyprinus carpio L.) andother cyprinids by crossbreeding, hybridization and selection. Aquaculture,1995,129(1-4):143-155.
    [16] Sumantadinata K. Present state of common carp (Cyprinus carpio L.) stocks in Indonesia.Aquaculture,1995,129(1-4):205-209.
    [17] Refstie T. Hybrids between salmonids species. Growth rate and survival in seawater.Aquaculture,1983,33(1-4):281-285.
    [18] Bakos J, Krasznai Z, Marian T. Cross-breeding experiments with carp, tench and Asianphytophagous Cyprinids. Aquacultura Hungarica,1978,1:51-57.
    [19] Lawrence C S, Morrissey N M, Vercoe P E, et al. Hybridization in Australian freshwatercrayfish-Production of all-male progeny. Journal of the World Aquaculture Society,2000,31(4):651-658.
    [20] Gao F F, Dabbs D J, Bhargava R. The ventana inform her2dual in situ hybridization (dish)DNA probe cocktail assay versus fluorescence in situ hybridization (fish): focussed studyof immunohistochemical2+cases. Laboratory Investigation,2013,93:493A.
    [21] Harrell R M. Genetics of striped bass and other Morone. World Aquaculture Society,1998,29:56-59.
    [22] Van Olst J C, Carlberg J M. Commercial culture of hybrid striped bass: status andpotential. Aquaculture Magazine,1990,16(1):49-59.
    [23]廖国璋.鱼类种间杂交的研究现状与展望.广东科技,1999,11:4-6.
    [24]卢迈新,黄樟翰.罗非鱼遗传育种研究.上海水产大学学报,2005,14(2):186-191.
    [25] Donaldson E M. Manipulation of reproduction in farmed fish. Animal ReproductionScience,1996,42(1-4):381-392.
    [26] Beardmore J A, Mair G C, Lewis R I. Monosex male production in finfish as exemplifiedby tilapia: applications, problems, and prospects. Aquaculture,2001,197(1-4):283-301.
    [27] Rothbard S, Shelton W L, Kulikovsky Z, et al. Chromosome set manipulations in theblack carp. Aquaculture International,1997,5(1):51-64.
    [28] Liu H, Guan B, Xu J, et al. Genetic manipulation of sex ratio for the large-scale breedingof YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)).Marine Biotechnology,2013,15(3):321-328.
    [29]北中.“牙鲆全雌化育苗技术研究”通过鉴定.齐鲁渔业,2005,22(6):51-51.
    [30]李璟.牙鲆全雌化技术为渔民致富提供科技支撑.中国水产,2009,(11):69-69.
    [31]陈立法.全雄黄颡鱼有望占半壁江山:专访水利部、中科院水工程生态研究所刘汉勤研究员.海洋与渔业:水产前沿,2011,(5):25-27.
    [32]叶玉珍,吴清江,陈荣德.鲤鱼雌核单倍体育种技术及其应用前景.水利渔业,1987,3:44-46.
    [33]吴萍.我国鱼类雌核发育研究的进展及前景.上海水产大学学报,2004,13(3):255-260.
    [34] Komen H, Thorgaard G H. Androgenesis, gynogenesis and the production of clones infishes: A review. Aquaculture,2007,269(1-4):150-173.
    [35]吴清江,陈荣德,叶玉珍,等.鲤鱼人工雌核发育及其作为建立近交系新途径的研究.遗传学报,1981,1:50-55.
    [36]杨书婷,桂建芳.两个雌核发育白鲢群体同工酶分析遗传标记的确定.水生生物学报,1999,23(3):264-268.
    [37]罗琛,刘筠.人工诱导草鱼和鲫鱼雌核发育的研究.湖南师范大学学报,1991,14(2):154-159.
    [38]朱晓琛,刘海金,孙效文,等.微卫星评价牙鲆雌核发育二倍体纯合性.动物学研究,2006,27(1):63-67.
    [39] Ji X S, Tian Y S, Yang J F, et al. Artificial gynogenesis in Cynoglossus semilaevis withhomologous sperm and its verification using microsatellite markers. Aquaculture Research,2010,41(6):913-920.
    [40]王晓清,王志勇,柳小春,等.大黄鱼人工诱导雌核发育后代的微卫星标记分析.遗传,2006,28(7):831-838.
    [41]杨永铨,张中英,林克宏,等.应用三系配套途径产生遗传上全雄莫桑比克罗非鱼.遗传学报,1980,7(3):241-246.
    [42] Mair G C, Abucay J S, Beardmore J A, et al. Growth performance trials of geneticallymale tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: On stationcomparisons with mixed sex and sex reversed male populations. Aquaculture,1995,137(1-4):313-323.
    [43] Tuan P A, Mair G C, Little D C, et al. Sex determination and the feasibility of geneticallymale tilapia production in the Thai-Chitralada strain of Oreochromis niloticus (L.).Aquaculture,1999,173(1-4):257-269.
    [44] Makino S, Ozima Y. Formation of the diploid egg nucleus due to suppression of thesecond maturation division, induced by refrigeration of fertilized eggs of the carp,Cyprinus carpio. Cytologia,1943,13(1):55-60.
    [45] Swarup H. Production of triploidy in Gasterosteus aculeatus (L). Journal of Genetics,1959,56(2):129-142.
    [46]楼允东.国外对鱼类多倍体育种的研究.水产学报,1984,8(4):343-356.
    [47] Maxime V. The physiology of triploid fish: current knowledge and comparisons withdiploid fish. Fish and Fisheries,2008,9(1):67-78.
    [48]杨兴棋,陈敏容,俞小牧,等.三倍体白鲫的生物学特性.水生生物学报,1994,18(2):156-163.
    [49] Chourrout D, Chevassu B, Krieg F, et al. Production of second generation triploid andtetraploid rainbow trout by mating tetraploid males and diploid females-potential oftetraploid fish. Theoretical and Applied Genetics,1986,72(2):193-206.
    [50]尹洪滨,潘伟志,孙中武.三倍体鲶鱼的形态学性状及生长.水产学杂志,1996,9(2):23-26.
    [51] Johnson O W, Dickhoff W W, Utter F M. Comparative growth and development ofdiploid and triploid coho salmon, Oncorhynchus kisutch. Aquaculture,1986,57(1-4):329-336.
    [52] Kim D S, Jo J Y, Lee T Y. Induction of triploidy in mud loach(Misgumus mizolepis) andits effect on gonad development and growth. Aquaculture,1994,120(3-4):263-270.
    [53] Kerby J H, Everson J M, Harrell R M, et al. Performance comparisons between diploidand triploid sunshine bass in fresh water ponds. Aquaculture,2002,211(1-4):91-108.
    [54] Briggs R, King T J. Transplantation of living nuclei from blastula cells into enucleatedfrogs' eggs. Proceedings of National Academy Sciences,1952,38(5):455-463.
    [55]吴尚懃.细胞核的移植.细胞生物学杂志,1980,2(2):37-42.
    [56]童第周,叶毓芬,陆德裕,等.鱼类不同亚科间的细胞核移植.动物学报,1973,19(3):201-212.
    [57]童第周,牛满江.核酸诱导金鱼性状的变异.中国科学A辑,1973,4:389-394.
    [58]严绍颐,陆德裕,杜淼,等.硬骨鱼类的细胞核移植—鲤细胞核和鲫细胞质配合的杂种鱼.中国科学B辑,1984,(8):729-732.
    [59]潘光碧,唐钢胜,杜森英,等.鲤鲫移核鱼与散鳞镜鲤杂交优势遗传性状的研究.水产学报,1989,13(3):230-238.
    [60]郑瑞珍,杜淼,高晓虹,等.鱼类染色体转移--仙台病毒融合胚胎细胞核移植的初步研究.遗传,1986,8(3):28-30.
    [61]童第周.融合细胞.动物学报,1973,19(1):76-76.
    [62]易詠兰,刘沛霖,刘汉勤,等.鱼类囊胚细胞和卵的电融合.水生生物学报,1988,12(2):189-192.
    [63]阎康,陈敏容,陈宏溪.鱼类细胞融合的初步研究.遗传,1984,6(6):19-21.
    [64] Zhu Z, Li G, He L, et al. Novel gene transfer into the fertilized eggs for goldfish(Carassium auratus L.1785). Zeitschrift Angew Ichthyol,1985,1(1):31-34.
    [65]王伟,汪亚平,朱作言.鱼类生长激素基因工程研究.自然科学进展,2002,12(5):456-460.
    [66] Du S J, Gong Z, Fletcher G L, et al. Growth enhancement in transgenic Atlantic salmon bythe use of an “all fish” chimeric growth hormone gene construct. Nature Biotechnology,1992,10(2):176-181.
    [67] Rahman M A, Maclean N. Growth performance of transgenic tilapia containing anexogenous piscine growth hormone gene. Aquaculture,1999,173(1-4):333-346.
    [68]朱新平,夏仕玲,张跃,等.转抗冻蛋白基因鲮鱼的初步研究.中国水产科学,1997,4(2):79-86.
    [69]曹运长,李文笙,叶卫,等.外源生长激素基因在蓝太阳鱼中的整合、表达和遗传.动物学报,2005,51(2):299-307.
    [70]简清,白俊杰,叶星,等.斑马鱼Mylz2启动子的克隆与转绿色荧光蛋白基因鱼的构建.中国水产科学,2004,11(5):391-395.
    [71] Maclean N, Laight R J. Transgenic fish: an evaluation of benefits and risks. Fish andFisheries,2000,1(2):146-172.
    [72]朱作言,许克圣,谢岳峰,等.转基因鱼模型的建立.中国科学(B辑),1989,(2):147-156.
    [73]胡炜,汪亚平,朱作言.转基因鱼生态风险评价及其对策研究进展.中国科学(C辑),2007,37(4):377-381.
    [74]冯浩,曾志强,刘少军,等.转基因异源四倍体鲫鲤F1的研究.遗传学报,2002,29(5):434-437.
    [75]陈浩,杨健,王跃祥,等.卵黄蛋白原1(vtg1)启动子调控绿色荧光蛋白表达的转基因斑马鱼的构建.生物化学与生物物理进展,2006,33(10):965-970.
    [76]王海英,叶星,白俊杰,等.唐鱼β-肌动蛋白基因启动子的分离及其驱动活性的检测.中国水产科学,2008,15(1):47-54.
    [77] Entis E. Aquabiotech:a blue revolution?. Journal of World Aquaculture Society,1997,8(1):12-15.
    [78]朱作言,曾志强.转基因鱼离市场还有多远.生物技术通报,2000,1(1):1-6.
    [79] Gjedrem T, Baranski M. Selective breeding in aquaculture: An introduction. New York:Springer,2009.
    [80] Liu Z J. Next Generation Sequencing and Whole Genome Selection in Aquaculture. NewYork: Wiley-Blackwell,2011.
    [81] Kocher T D, Lee W J, Sobolewska H, et al. A genetic linkage map of a cichlid fish, thetilapia (Oreochromis niloticus). Genetics,1998,148(3):1225-1232.
    [82] Sonesson A K, Meuwissen T H. Testing strategies for genomic selection in aquaculturebreeding programs. Genetics Selection Evolution,2009,41:37.
    [83] Weber J L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics,1990,7(4):524-530.
    [84] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotypingof single-nucleotide polymorphisms in the human genome. Science,1998,280(5366):1077-1082.
    [85] Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the humangenome. Science,2004,305(5683):525-528.
    [86] Shirak A, Golik M, Lee B Y, et al. Copy number variation of lipocalin family genes formale-specific proteins in tilapia and its association with gender. Heredity,2008,101(5):405-415.
    [87] Bai Z Y, Yuan Y M, Yue G H, et al. Molecular cloning and copy number variation of aferritin subunit (Fth1) and its association with growth in freshwater pearl mussel Hyriopsiscumingii. PLos One,2011,6(7):(e228867).
    [88] Metzker M L. Sequencing technologies the next genetation. Nature Reviews Genetics,2009,11(1):31-46.
    [89] Volfovsky N, Haas B J, Salzberg S L. A clustering method for repeat analysis in DNAsequences. Genome Biology,2001,2(8):0027.1-0027.11.
    [90] Kofler R, Schl tterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellitesearch and investigation. Bioinformatics,2007,23(13):1683-1685.
    [91] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequencevariation containing1.42million single nucleotide polymorphisms. Nature,2001,409(6822):928-933.
    [92] Le Bras Y, Dechamp N, Krieg F, et al. Detection of QTL with effects on osmoregulationcapacities in the rainbow trout (Oncorhynchus mykiss). BMC Genetics,2011,12:46.
    [93] Perkel J. SNP genotyping: six technologies that keyed a revolution. Nature Methods,2008,5(5):447-453.
    [94] Mills R E, Walter K, Stewart C, et al. Mapping copy number variation by population-scalegenome sequencing. Nature,2011,470(7332):59-65.
    [95] Komura D, Shen F, Ishikawa S, et al. Genome-wide detection of human copy numbervariations using high-density DNA oligonucleotide arrays. Genome research,2006,16(12):1575-1584.
    [96] Wang C M, Zhu Z Y, Lo L C, et al. A microsatellite linkage map of Barramundi, Latescalcarifer. Genetics,2007,175(2):907-915.
    [97] Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp(Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genetics,2010,11:135.
    [98] Kocher T D, Kole C. Genome mapping and genomics in fishes and aquatic animals. NewYork: Springer,2008.
    [99] Lee B Y, Lee W J, Streelman J T, et al. A second-generation genetic linkage map oftilapia (Oreochromis spp.). Genetics,2005,170(1):237-244.
    [100] Guyon R, Rakotomanga M, Azzouzi N, et al. A high-resolution map of the Nile tilapiagenome: a resource for studying cichlids and other percomorphs. BMC Genetics,2012,13(1):222.
    [101] Kucuktas H, Wang S, Li P, et al. Construction of Genetic Linkage Maps and ComparativeGenome Analysis of Catfish Using Gene-Associated Markers. Genetics,2009,181(4):1649-1660.
    [102] Casta o-Sánchez C, Fuji K, Ozaki A, et al. A second generation genetic linkage map ofJapanese flounder (Paralichthys olivaceus). BMC genomics,2010,11:554.
    [103] Song W, Pang R, Niu Y, et al. Construction of high-density genetic linkage maps andmapping of growth-related quantitative trait loci in the Japanese flounder (Paralichthysolivaceus). PLos One,2012,7:(e5040411).
    [104] Volckaert F, Batargias C, Chatziplis D, et al. A second generation linkage map ofEuropean sea bass. Aquaculture,2007,2721: S316-S316.
    [105] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlantic salmon(Salmo salar) reveals extended chromosome homeologies and striking differences insex-specific recombination patterns. BMC Genetics,2011,12:615.
    [106] Rexroad C E, Palti Y, Gahr S A, et al. A second generation genetic map for rainbow trout(Oncorhynchus mykiss). BMC Genetics,2008,9:74.
    [107] Palti Y, Genet C, Gao G T, et al. A second generation integrated map of the rainbow trout(Oncorhynchus mykiss) genome: analysis of conserved synteny with model fish genomes.Marine Biotechnology,2012,14(3):343-357.
    [108] Palti Y, Genet C, Luo M C, et al. A first generation integrated map of the rainbow troutgenome. BMC Genomics,2011,12:180.
    [109] Guyomard R, Boussaha M, Krieg F, et al. A synthetic rainbow trout linkage map providesnew insights into the salmonid whole genome duplication and the conservation of syntenyamong teleosts. BMC Genetics,2012,13:15.
    [110] Geldermann H. Investigations on inheritance of quantitative characters in animals by genemarkers I. Methods. Theoretical and Applied Genetics,1975,46(7):319-330.
    [111] Naish K A, Hard J J. Bridging the gap between the genotype and the phenotype: linkinggenetic variation, selection and adaptation in fishes. Fish and Fisheries,2008,9(4):396-422.
    [112] Wang C M, Lo L C, Zhu Z Y, et al. A genome scan for quantitative trait loci affectinggrowth-related traits in an F1family of Asian seabass (Lates calcarifer). BMC Genomics,2006,7:274.
    [113] Wang C M, Lo L C, Feng F, et al. Identification and verification of QTL associated withgrowth traits in two genetic backgrounds of Barramundi (Lates calcarifer). AnimalGenetics,2008,39(1):34-39.
    [114] Wringe B F, Devlin R H, Ferguson M M, et al. Growth-related quantitative trait loci indomestic and wild rainbow trout (Oncorhynchus mykiss). BMC Genetics,2010,11:63.
    [115] Cnaani A, Hallerman E M, Ron M, et al. Detection of a chromosomal region with twoquantitative trait loci, affecting cold tolerance and fish size, in an F2tilapia hybrid.Aquaculture,2003,223(1-4):117-128.
    [116] Derayat A, Houston R D, Guy D R, et al. Mapping QTL affecting body lipid percentage inAtlantic salmon (Salmo salar). Aquaculture,2007,2721: S250-S251.
    [117] Baranski M, Moen T, V ge D I. Mapping of quantitative trait loci for flesh colour andgrowth traits in Atlantic salmon (Salmo salar). Genetics Selection Evolution,2010,42:17.
    [118] Eshel O, Shirak A, Weller J I, et al. Linkage and Physical Mapping of Sex Region onLG23of Nile Tilapia (Oreochromis niloticus). G3: Genes, Genomes, Genetics,2012,2(1):35-42.
    [119] Sun X, Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) Andmapping of a locus associated with cold tolerance. Aquaculture,2004,238(1-4):165-172.
    [120] Song W, Li Y, Zhao Y, et al. Construction of a high-density microsatellite genetic linkagemap and mapping of sexual and growth-related traits in half-smooth tongue sole(Cynoglossus semilaevis). PLos One,2012,8(5):e52097.
    [121] Lee B Y, Hulata G, Kocher T D. Two unlinked loci controlling the sex of blue tilapia(Oreochromis aureus). Heredity,2004,92(6):543-549.
    [122] Davidson W S, Huang T K, Fujiki K, et al. The sex determining loci and sexchromosomes in the family salmonidae. Sexual Development,2009,3(2-3):78-87.
    [123] Alfaqih M, Brunelli J, Drew R, et al. Mapping of five candidate sex-determining loci inrainbow trout (Oncorhynchus mykiss). BMC Genetics,2009,10:2.
    [124] Ozaki A, Sakamoto T, Khoo S, et al. Quantitative trait loci (QTLs) associated withresistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout(Oncorhynchus mykiss). Molecular Genetics and Genomics,2001,265(1):23-31.
    [125] Khoo S K, Ozaki A, Nakamura F, et al. Identification of a novel chromosomal regionassociated with infectious hematopoietic necrosis (IHN) resistance in rainbow troutOncorhynchus mykiss. Fish Pathology,2004,39(2):95-101.
    [126] Moen T, Fjalestad K T, Munck H, et al. A multistage testing strategy for detection ofquantitative trait loci affecting disease resistance in Atlantic salmon. Genetics,2004,167(2):851-858.
    [127] Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locuscontrolling the resistance to lymphocystis disease in Japanese flounder (Paralichthysolivaceus). Aquaculture,2006,254(1-4):203-210.
    [128] Gilbey J, Verspoor E, Mo T A, et al. Identification of genetic markers associated withGyrodactylus salaris resistance in Atlantic salmon (Salmo salar). Diseases of aquaticorganisms,2006,71(2):119-129.
    [129] Houston R D, Haley C S, Hamilton A, et al. Major quantitative trait loci affect resistanceto infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics,2008,178(2):1109-1115.
    [130] Rengmark A H, Slettan A, Lee W J, et al. Identification and mapping of genes associatedwith salt tolerance in tilapia. Journal of Fish Biology,2007,71:409-422.
    [131] Bai Z Y, Zhu Z Y, Wang C M, et al. Cloning and characterization of the calreticulin genein Asian seabass (Lates calcarifer). Animal,2012,6(6):887-893.
    [132] Danzmann R G, Jackson T R, M. Ferguson M. Epistasis in allelic expression at uppertemperature tolerance QTL in rainbow trout. Aquaculture,1999,173(1-4):45-58.
    [133] Somorjai I, Danzmann R G, Ferguson M M. Distribution of temperature tolerancequantitative vtrait loci in Arctic charr (Salvelinus alpinus) and inferred homologies inrainbow trout (Oncorhynchus mykiss). Genetics,2003,165(3):1443-1456.
    [134] Norman J D, Danzmann R G, Glebe B, et al. The genetic basis of salinity tolerance traitsin Arctic charr (Salvelinus alpinus). BMC Genetics,2011,12:81.
    [135] Guo X, Li Q, Wang Q Z, et al. Genetic Mapping and QTL Analysis of Growth-RelatedTraits in the Pacific Oyster. Marine Biotechnology,2012,14(2):218-226.
    [136] Broman K W. Review of statistical methods for QTL mapping in experimental crosses.Lab Animal,2001,30(7):44-52.
    [137] Flint J, Mott R. Finding the molecular basis of quantitative traits: Successes and pitfalls.Nature Reviews Genetics,2001,2(6):437-445.
    [138] Doerge R W. Mapping and analysis of quantitative trait loci in experimental populations.Nature Reviews Genetics,2002,3(1):43-52.
    [139] Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations ofquantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action.Genetics,1987,116(1):113-125.
    [140] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits usingRFLP linkage maps. Genetics,1989,121(1):185-199.
    [141] Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci inline crosses using flanking markers. Heredity,1992,69(4):315-324.
    [142] Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics,1993,135(1):205-211.
    [143] Korol A, Frenkel Z, Orion O, et al. Some ways to improve QTL mapping accuracy.Animal Genetics,2012,431:36-44.
    [144] Robison B D, Wheeler P A, Sundin K, et al. Composite interval mapping reveals a majorlocus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss).Journal of Heredity,2001,92(1):16-22.
    [145] Zimmerman A M, Wheeler P A, Ristow S S, et al. Composite interval mapping revealsthree QTL associated with pyloric caeca number in rainbow trout, Oncorhynchus mykiss.Aquaculture,2005,247(1-4):85-95.
    [146] Drew R E, Schwabl H, Wheeler P A, et al. Detection of QTL influencing cortisol levels inrainbow trout (Oncorhynchus mykiss). Aquaculture,2007,272: S183-S194.
    [147] Jin S B, Zhang X F, Jia Z Y, et al. Genetic linkage mapping and genetic analysis of QTLrelated to eye cross and eye diameter in common carp (Cyprinus carpio L.) usingmicrosatellites and SNPs. Aquaculture,2012,358:176-182.
    [148] Manly K F, Cudmore R H, Meer J M. Map manager QTX, cross-platform software forgenetic mapping. Mammalian Genome,2001,12(12):930-932.
    [149] Seaton G, Haley C S, Knott S A, et al. QTL Express: mapping quantitative trait loci in ofsimple and complex pedigrees. Bioinformatics,2002,18(2):339-340.
    [150] Ooien J W, Boer M, Jansen R, et al. MapQTL4.0. Software for the calculation of QTLpositions on genetic maps.Order,1996,501:6204.
    [151] Hackett C A, Broadfoot L B. Effects of genotyping errors, missing values and segregationdistortion in molecular marker data on the construction of linkage maps. Heredity,2003,90(1):33-38.
    [152] Gates H, Mallon A M, Brown S D M. High-throughput mouse phenotyping. Methods,2011,53(4):394-404.
    [153] Iyer-Pascuzzi A S, Symonova O, Mileyko Y, et al. Imaging and analysis platform forautomatic phenotyping and trait ranking of plant root systems. Plant Physiology,2010,152(3):1148-1157.
    [154] Moen T, Baranski M, Sonesson A K, et al. Confirmation and fine-mapping of a majorQTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar):population-level associations between markers and trait. BMC Genomics,2009,10:368.
    [155] Houston R D, Haley C S, Hamilton A, et al. Major quantitative trait loci affect resistanceto infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics,2008,178(2):1109-1115.
    [156] Storset A, Strand C, Wetten M, et al. Response to selection for resistance againstinfectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture,2007,272(s1):S62-S68.
    [157] Houston R D, Bishop S C, Hamilton A, et al. Detection of QTL affecting harvest traits in acommercial Atlantic salmon population. Animal Genetics,2009,40(5):753-755.
    [158] Gheyas A A, Haley C S, Guy D R, et al. Effect of a major QTL affecting IPN resistanceon production traits in Atlantic salmon. Animal Genetics,2010,41(6):666-668.
    [159] Houston R D, Haley C S, Hamilton A, et al. The susceptibility of Atlantic salmon fry tofreshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity,2009,105(3):318-327.
    [160] Coimbra M R, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japaneseflounder, Paralichthys olivaceus. Aquaculture,2003,220(1-4):203-218.
    [161] Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystisdisease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture,2007,272(1-4):291-295.
    [162] Sonesson A K. Within-family marker-assisted selection for aquaculture species. GeneticsSelection Evolution,2007,39(3):301-317.
    [163] Hirschhorn J N, Daly M J. Genome-wide association studies for common diseases andcomplex traits. Nature Reviews Genetics,2005,6(2):95-108.
    [164] McCarthy M I, Abecasis G R, Cardon L R, et al. Genome-wide association studies forcomplex traits: consensus, uncertainty and challenges. Nature Reviews Genetics,2008,9(5):356-369.
    [165] Thumma B R, Nolan M R, Evans R, et al. Polymorphisms in Cinnamoyl CoA Reductase(CCR) are associated with variation in microfibril angle in Eucalyptus spp.. Genetics,2005,171(3):1257-1265.
    [166] Kang J H, Kim W J, Lee W J. Genetic linkage map of olive flounder, Paralichthysolivaceus.International Journal of Biological Sciences,2008,4(3):143-149.
    [167]尤锋,王可玲,相建海,等.山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传变异的比较析.海洋与湖沼,2001,32(5):512-518.
    [168]刘海金,朱晓琛,孙效文,等.牙鲆5个养殖群体的遗传多样性分析.中国水产科学,2008,15(1):30-37.
    [169]邵长伟,廖小林,田永胜,等.牙鲆3个养殖群体遗传结构的微卫星分析.渔业科学进展,2009,30(1):41-46.
    [170]刘永新,王桂兴,王玉芬,等.基于双单倍体牙鲆挖掘与生长性状连锁的微卫星标记.东北农业大学学报,2011,42(9):104-110.
    [171] Ozaki A, Okamoto H, Yamada T, et al. Linkage analysis of resistance to Streptococcusiniae infection in Japanese flounder (Paralichthys olivaceus). Aquaculture,2010,308:S62-S67.
    [172]王伟,尤锋,高天翔,等.人工诱导牙鲆异质雌核发育群体的微卫星标记分析.高技术通讯,2005(7):107-110.
    [173] Liu Y, Wang G, Liu Y, et al. Genetic verification of doubled haploid Japanese flounder,Paralichthys olivaceus by genotyping telomeric microsatellite loci. Aquaculture,2012,324–325:60-63.
    [174]李振龙.第四届全国水产原种和良种审定委员会第四次会议审定通过品种简介.中国水产,2012,(6):54-55.
    [175]周丽,宫庆礼,俞开康.牙鲆的疾病.青岛海洋大学学报,1997,27(2):173-180.
    [176]陈松林,杜民,杨景峰,等.半滑舌鳎家系建立及其生长和抗病性能测定.水产学报,2010,34(12):1789-1794.
    [177]徐田军,陈松林,田永胜,等.牙鲆抗鳗弧菌病家系筛选及其分析.中国水产科学,2010,17(1):59-68.
    [178] Xu T, Chen S, Ji X, et al. MHC polymorphism and disease resistance to Vibrioanguillarum in12selective Japanese flounder (Paralichthys olivaceus) families. Fish&Shellfish Immunology,2008,25(3):213-221.
    [179] Du M, Chen S, Liang Y, et al. Polymorphism and balancing selection of MHC Class IIDAB gene in7selective flounder (Paralichthys olivaceus) families. Evidence-BasedComplementary Alternative Medicine,2011,2011:613-629.
    [180]王磊.牙鲆(Paralichthys olivaceus)抗病家系的选育及抗病相关微卫星标记筛选:[硕士学位论文].上海:上海海洋大学水产与生命学院,2010.
    [181]陈松林,田永胜,徐田军,等.牙鲆抗病群体和家系的建立及其生长和抗病性能初步测定.水产学报,2008,32(5):665-673.
    [182]马悦,张元兴,孙修勤,等.海洋鱼类弧菌病疫苗的制备—新型简易鳗弧菌(Vibrioanguillarum)培养基优化.高技术通讯,2001,11(7):1-5.
    [183]刘彦,李健,王群,等.达氟沙星在抗病和鳗弧菌感染牙鲆体内的药物代谢动力学比较.水产学报,2006,30(4):509-514.
    [184]张成松,李富花,于奎杰,等.病原感染条件下中国对虾二倍体和三倍体血液学变化.水产学报,2004,28(5):535-540.
    [185]杨少丽,王印庚,董树刚.海水养殖鱼类弧菌病的研究进展.海洋水产研究,2005,26(4):75-83.
    [186]陈吉祥,刘斌,池政豪,等.环境因子对鳗弧菌生长和胞外蛋白酶表达的影响.海洋科学,2009,33(1):54-57.
    [187] Yue G H. Recent advances of genome mapping and marker-assisted selection inaquaculture. Fish and Fisheries,2013, DOI:10.1111/faf.12020.
    [188] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked todisease-resistance genes by bulked segregant analysis: a rapid method to detect markers inspecific genomic regions by using segregating populations. Proceedings of NationalAcademy Sciences U S A,1991,88(21):9828-9832.
    [189] Giovannoni J J, Wing R A, Ganal M W, et al. Isolation of molecular markers from specificchromosomal intervals using DNA pools from existing mapping populations. NucleicAcids Research,1991,19(23):6553-6568.
    [190] Wang G L, Paterson A H. Assessment of DNA pooling strategies for mapping of QTLs.Theoretical and Applied Genetics,1994,88(3-4):355-361.
    [191] Mackay I J, Caligari P D S. Efficiencies of F2and backcross generations for bulkedsegregant analysis using dominant markers. Crop Science,2000,40(3):626-630.
    [192] Xu T, Chen S, Zhang Y. MHC class IIα gene polymorphism and its association withresistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthysolivaceus). Developmental&Comparative Immunology2010,34(10):1042-1050.
    [193] Zhang Y X, Chen S L, Liu Y G, et al. Major Histocompatibility complex class IIB cllelepolymorphism and its association with resistance/susceptibility to Vibrio anguillarum inJapanese flounder (Paralichthys olivaceu). Marine Biotechnology,2006,8(6):600-610.
    [194] Shoba D, Manivannan N, Vindhiyavarman P, et al. SSR markers associated for late leafspot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.).Euphytica,2012,188(2):265-272.
    [195] Wang C M, Lo L C, Zhu Z Y, et al. Mapping QTL for an adaptive trait: the length ofcaudal fin in Lates calcarifer. Marine Biotechnology,2011,13(1):74-82.
    [196] Ezaz M T, Harvey S C, Boonphakdee C, et al. Isolation and physical mapping ofsex-linked AFLP markers in nile tilapia (Oreochromis niloticus L.). Marine Biotechnology,2004,6(5):435-445.
    [197] Wang D, Mao H L, Chen H X, et al. Isolation of Y-and X-linked SCAR markers inyellow catfish and application in the production of all-male populations. Animal Genetics,2009,40(6):978-981.
    [198] Keyvanshokooh S, Pourkazemi M, Kalbassi M R. The RAPD technique failed to identifysex-specific sequences in beluga (Huso huso). Journal of Applied Ichthyology,2007,23(1):1-2.
    [199] Wang D, Mao H L, Peng J X, et al. Discovery of a male-biased mutant family andidentification of a male-specific SCAR marker in gynogenetic gibel carp Carassiusauratus gibelio. Progress in Natural Science,2009,19(11):1537-1544.
    [200] Yu Z, Guo X. Identification and mapping of disease-resistance QTLs in the eastern oyster,Crassostrea virginica Gmelin. Aquaculture,2006,254(1-4):160-170.
    [201]卢钟磊,池信才,王义权,等.褐牙鲆耐热性状相关的微卫星分子标记筛选.厦门大学学报(自然科学版),2007,46(3):396-402.
    [202]池信才,王军,宋思扬,等.耐温牙鲆分子标记辅助选育研究.厦门大学学报(自然科学版),2007,46(5):693-696.
    [203] Francescon A, Barbaro A, Bertotto D, et al. Assessment of homozygosity and fertility inmeiotic gynogens of the European sea bass (Dicentrarchus labrax L.). Aquaculture,2005,243(1-4):93-102.
    [204] Nagy A, Csányi V. Changes of genetic parameters in successive gynogenetic generationsand some calculations for carp gynogenesis. Theoretical and Applied Genetics,1982,63(2):105-110.
    [205] Castro J, Bouza C, Sánchez L, et al. Gynogenesis assessment using microsatellite geneticmarkers in turbot (Scophthalmus maximus). Marine Biotechnology,2003,5(6):584-592.
    [206] Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploidzebra fish(Brachydanio rerio). Nature,1981,291(5813):293-296.
    [207] Tariq Ezaz M, Sayeed S, McAndrew B J, et al. Use of microsatellite loci and AFLPmarkers to verify gynogenesis and clonal lines in Nile tilapia Oreochromis niloticus L..Aquaculture Research,2004,35(15):1472-1481.
    [208]刘静霞,周莉,魏丽华,等.红白锦鲤人工雌核发育纯系的微卫星标记分析.水生生物学报,2003,27(6):557-562.
    [209]刘静霞,周莉,赵振山,等.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23(2):97-105.
    [210]程汉良,潘黔生,马国文,等.热休克诱导鲫鱼纯合雌核发育二倍体的研究.水利渔业,2005,25(3):25-27.
    [211] Quillet E, Dorson M, Le Guillou S, et al. Wide range of susceptibility to rhabdoviruses inhomozygous clones of rainbow trout. Fish&Shellfish Immunology,2007,22(5):510-519.
    [212] Waldbieser G C, Bosworth B G, Quiniou S M A. Production of viable homozygous,doubled haploid channel catfish (Ictalurus punctatus). Marine Biotechnology,2010,12(4):380-385.
    [213]王桂兴,刘海金,张晓彦,等.牙鲆连续两代减数分裂雌核发育家系的遗传特征.中国水产科学,2012,19(3):381-389.
    [214] Morishima K, Nakayama I, Arai K. Microsatellite-centromere mapping in the loach,Misgurnus anguillicaudatus. Genetica,2001,111(1-3):59-69.
    [215]张新辉,夏新民,罗伟,等.团头鲂雌核发育后代的微卫星标记分析.华中农业大学学报,2012,31(6):737-743.
    [216]刘海金,陆桂,王晓梅,等.有丝分裂雌核发育牙鲆的微卫星鉴定.中国水产科学,2010,17(5):889-894.
    [217]田永胜,汪娣,王磊,等.牙鲆F1代近交系、雌核发育系的建立及遗传检测.海洋学报,2011,33(3):114-123.
    [218]刘海金,侯吉伦,常玉梅,等.真鲷精子诱导牙鲆减数分裂雌核发育.水产学报,2010,34(4):508-514.
    [219] Thorgaard G H, Allendorf F W, Knudsen K L. Gene-centromere mapping in rainbow trout:high interference over long map distances. Genetics,1983,103(4):771-783.
    [220] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms.. American Journal of Human Genetics,1980,32(3):314-331.
    [221] Nei M. Estimation of average heterozygosity and genetic distance from a small number ofindividuals. Genetics,1978,89(3):583-590.
    [222] Taniguchi N, Kijima A, Tamura T, et al. Color, growth and maturation inploidy-manipulated fancy carp. Aquaculture,1986,57(1-4):321-328.
    [223]叶小军,王志勇,刘贤德,等.大黄鱼连续两代雌核发育群体的微卫星标记分析.水生生物学报,2010,34(1):144-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700