新型二冲程柴油机性能研发关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对置活塞对置气缸二冲程发动机(opposed piston and opposed cylinder two stroke engine,简称OPOC发动机)是一种结构新颖的新型发动机,因其功率密度大、油耗低、相对传统二冲程发动机的排放有很大的改善,引起了国内外内燃机领域的密切关注。
     论文介绍了OPOC发动机独特的结构特点及性能优势,重点对OPOC发动机性能研发的关键技术进行了研究:系统地推导了活塞运动规律及其与气口定时的内在联系;以台架试验与仿真相结合的手段,着重对OPOC发动机的一维性能、扫气性能、缸内喷雾与燃烧进行了研究。
     活塞运动规律是其它相关研究的前提与基础。首次提出了OPOC发动机普遍适用的活塞运动规律公式,得出结论:①上止点与下止点的相位相差并不一定是180o曲轴转角,而是在该值附近;③进排气口高度越大,气口开启的最大面积越大、气口开启时刻越早、关闭时刻越晚、有效压缩比与有效膨胀比也越小。
     对OPOC发动机的一维性能的增压匹配、气口高度两个主要内容进行了研究。增压的独特之处为:①进气口压力一定要大于排气口压力,以便形成正的扫气压差进行扫气,保证发动机的正常运行;②引进ECT(电力辅助增压装置)对压气机进行助力,以保证一定的正值扫气压差。基于发动机动力性能目标,提出了一级涡轮增压、两级涡轮增压的预匹配数学模型,依据模型建立了发动机与增压器预匹配软件V2.0,并应用该软件对无外部EGR时一级涡轮增压方式与大量外部EGR时两级涡轮增压方式的增压器进行预选,然后对预选出的增压器再通过台架进行试验验证,试验表明:所提出的一级与两级涡轮增压预匹配模型具有可靠性与实用性,即增压器预匹配软件V2.0具有较高的工程应用价值。分别对进排气口高度进行了仿真优化,结果表明:当进气口高度一定时,排气口越长,发动机的高速性能越好,而低速性能则越差;当排气口高度一定时,进气口越长,发动机低速性能越好,而高速性能则越差。
     基于发动机台架试验数据,首先对外特性上及2000r·min-1负荷特性上的扫气性能进行了仿真分析,得出结论:①在发动机结构确定后,扫气效率取决于扫气压差与扫气绝对时间。扫气压差大,扫气效果好;扫气绝对时间长,则扫气效率高。其次,在3500r·min-1全负荷工况时对切向进气口倾角进行了仿真分析,得出结论:①随着进气口倾角的增大,扫气效率先增加后减小;缸内新鲜充量随进气口倾角变化的趋势与扫气效率随进气口倾角变化的趋势一致,而残余废气系数随进气口倾角变化的趋势却与此相反;给气比随着倾角的增加不断减小;捕获率随倾角加大而提高。②对扫气效率与新鲜充量而言,切向扫气口倾角最值佳角度为30o。
     说明了OPOC发动机独特的喷油嘴布置方式与燃烧室形状;对当量有效膨胀比(E.E.R)模型进行了修正与试验验证,运用该模型计算E.E.R值对后续研究的喷雾与燃烧进行分析评价;研究了喷孔数、喷油提前角、喷油规律、油束夹角等因素对缸内喷雾和燃烧的影响,得到如下结论:①喷孔总有效面积不变时,喷孔越数多,则喷孔直径越小,雾化效果越好,索特直径越小,雾化质量越好(在油束不发生相互干涉的情况下),扩散燃烧阶段的放热速率越快,缸内平均压力越大,温度越高,NOx排放越多, Soot最终生成量越少,燃油经济性越好。②喷油提前角越大,燃油雾化越快、滞燃期内的可燃预混气越多,缸内压升率、最高爆发压力等越高,缸内温度也越高,NOX排放量越多,Soot最终生成量越少;喷油提前角在某一合理角度时,燃油经济性最好。③预喷-主喷两阶段喷油规律对喷雾与燃烧的影响:在其它参数不变的情况下,随着预喷量的增加, NOX生成量先减少至最小值,然后不断增加;同时,随着预喷量的增加,由于压缩冲程内消耗的功太多,E.E.R值越来越小,燃油经济性越来越差。④比较不同油束夹角50o、60o、70o、80o和90o对喷雾与燃烧的影响,结果表明:油束夹角越大,喷油中期油束喷至活塞顶面的时间越早,积聚在活塞顶面的油量也越多,雾化越慢;喷油中期扩散燃烧较慢,维持缸内压力、温度降低的趋势,则NOX生成量越小,经济性能越差,这种现象与传统发动机完全不同。
Opposed piston and opposed cylinder two stroke engine (OPOC engine) is a new type of engine. The idea was not new but many innovative ideas were derived in the last decade and now it becomes a hot spot of interest both overseas and domestic because its large power density, low fuel consumption and great potential for improvement to the traditional two stroke engine.
     In this thesis paper the special structural features and performance advantage s of the OPOC engine is introduced, then it is focused on the study of the key technologies of the OPOC engine: the inner relationship between the piston motion profile and the port opening area/timing is derived; The engine performance,scavenging process, fuel spray and the in-cylinder combustion process, are systematically studied via both numerical computation and bench testing.
     The piston movement profile is the premise and foundation of other study. The study demonstrates that:①TDC is not located at the maximum position of either the inner or the outer piston, because the inner and outer piston do not reach the extreme position of their displacement at the same time.②Phase difference between the TDC and BDC is not, although close to, necessarily180crankshaft angle.③The larger the intake and exhaust port heights are, the greater the maximum opening area is,the earlier the ports are opened, the later they are closed, and the smaller the effective compression ratio and the effective expansion ratio are. The OPOC engine performance is closely related to the boost level, port heights and other parameters. The turbocharged OPOC engine has its own unique
     characteristics:①The inlet pressure at the intake ports must be greater than the that at the exhaust ports to form a pressure difference for positive scavenging, to ensure the normal operation of the engine;②Introducing ECT (Electrically Controlled Turbocharger) provides assistance for the compressor to guarantee a pressure difference for positive scavenging. For the matching between the OPOC engine with the turbocharger, this research revealed the inner-relationship between the engine performance goals with the required boost pressure level, derived the mathematical models for pre-matching of turbochargers of both one and two-stage turbocharging systems, and developed a engine/turbocharger pre-matching software V2.0. One-stage turbocharger without external EGR and two-stage turbochargers with large scale external EGR (up to40%by mass) are preselected and identified by application of the software, and verified by engine dyno tests. It is proven that the proposed pre-matching models with both one and two-stage turbochargers are reliable and the turbocharger pre-matching software V2.0has a high value in engineering. In addition, analysis results of the intake/exhaust port heights indicate that: with fixed intake port heights, the longer the exhaust ports are, the better the engine performance is at high speeds, but the worse at low speeds; Other the other hands, with fixed exhaust port heights, the longer the intake port is, the better the engine performance is at low speeds while the performance at high speeds get worse. Scavenging performance directly affects engine power, fuel economy and
     emissions performance of the engine. The article details the main evaluation indicators of scavenging performance: scavenging efficiency, delivery ratio, capture rate. Based on the engine bench test data, firstly focusing on the simulation calculation and analysis of the scavenging performance of the external characteristics, It comes to a conclusion that:①When the engine structure is determined, the scavenging efficiency depends on the different pressure and absolute time of scavenging.When pressure difference is large, the scavenging effect is better; When scavenging absolute time is long, the scavenging efficiency is higher.②The scavenging efficiency and delivery ratio are good, but the trapping ratio is low at low speed;the delivery ratio is moderate and the scavenging effect is good, but trapping ratio is low in middle speed;the delivery ratio is too small (less than1) and scavenging efficiency is poor, but the trapping ratio is high in high speed. Secondly, in full-load conditions at3500r·min-1,analyzing and simulated calculating the tangential angle of intake port, concluding that:①With the tangential angle is increasing, scavenging efficiency increases first and then decreases; the trends of fresh air changing with tangential angle increasing in cylinder is the same with scavenging efficiency when the intake port angle changes, but residual burned mass fraction shows just the opposite; delivering ratio decreases as the inclination angle increases (due to increasing angle, the intake port resistance increases and the flow coefficient will decrease, resulting in reduction of the intake port air mass flow in a equal time); Trapping ratio continues to increase with increasing inclination.②For the scavenging efficiency and fresh charge, the best value of the opening angle of the tangential scavenging is30o. The power, economy, emissions performance of the OPOC are directly
     determined by spray and combustion in cylinder. This paper introduces a relatively new parameters of evaluating thermal-power conversion process: equivalent effective expansion ratio (E.E.R), and it is revised and test validated, then appling to the analysis and evaluating combustion in cylinder; and making unique nozzle arrangement and the shape of the chamber about the OPOC engine, and studying the influence of the main parameters of the fuel injection system such as the number of nozzles, fuel injection timing, injection characteristics on the processes of spray and combustion, the following conclusions can be drawn:
     ①The larger the number of nozzle holes is utilized, the smaller the nozzle hole diameter becomes, the smaller the spray Sauter diameter is, the better is the atomization quality (also the interferences between the fuel sprays can be avoided); the larger the number of nozzle holes is, the faster the burning rate is, the higher the cylinder pressure and temperature are; the larger the number of nozzle holes is, the higher the raw NOx emission is; as for the soot formation, because the speed of the post-oxidation is much faster with larger number of nozzle holes, the emission would become better; Lastly, the larger the number of nozzle holes is, the better the fuel economy is. The reason behind is that the atomizing effect and the combustion process are both improved with larger number of nozzles holes, producing a faster and more complete combustion and heat release process.
     ②The larger the injection advance angle is, the sooner the fuel atomization happens, and the more combustible premixed gas is generated during the ignition delay period, the higher the cylinder pressure rise rate is, so is the higher peak cylinder pressure, the higher cylinder temperature, with much more raw NOX emissions and much lower Soot emissions. If the injection timing is reasonable, the combustion heat release curve would be ideal, the best E.E.R value can be achieved, with the best fuel economy.
     ③The effects of pre-injection and main injection period: with increased pre-injection quantity, NOX formation decreases at the beginning but then increases in the end; since more compression power is consumed in the compression stroke, the economy is getting worse with too much pre-injection quantity.
     ④Comparing between the different fuel spray angles, i.e.50,60,70,80and90degrees, indicates that when the beam angle is at60o, the mount of Soot will be the minimum, mainly because of the lower rate of Soot generates and the higher rate of oxidation. This phenomenon is different from conventional engines, mainly due to higher fuel beam angle, the amount of fuel which hits the piston top is reduced, this changed the law that the fuel spray speed increases with the spray beam angle in a conventional engine.
引文
[1]张正智.中国柴油乘用车发展现状[J].汽车工业研究,2008,9(9):11-14.
    [2]韩志玉,陈征,刘敬平.等.现代乘用车柴油机技术[J].中国工程科学,2009,11(011):30-36.
    [3]全球汽车保有量与中国汽车保有量. http://wenku.baidu.com/view/8f28eb210722192e4536f643.html.
    [4]我国汽车保有量情况探讨.http://www.chinairn.com/news/20130306/153409357.html.
    [5]刘世锦,冯飞.汽车产业全球化趋势及其对中国汽车产业发展的影响[J].中国工业经济,2002,6(06):5-12.
    [6]何娘.石油与中东的贸易和金融[J].经济纵横,2012,12(6):36-39.
    [7]张瑜.重新评估气候变化和石油枯竭的风险[J].观察,2012,11(11):32-37.
    [8]张抗.从石油峰值论到石油枯竭论[J].石油学报,2009,6(2):153-157.
    [9]赵林.“石油枯竭论”再析[J].理念新知,2004.10(5):53-56.
    [10]比罗尔.全球石油枯竭速度超出预期[J].中国石油与石化,2009.09(9):70-71.
    [11]张抗.从石油峰值的方法论剖析石油枯竭说[J].中外能源,2008,13(5):8-12.
    [12]王思聪,冯连勇,赵林等.石油峰值问题及油气田生命周期理论研究——中外石油专家石油峰值理论要论评析[J].石油科技论坛,2006,25(2):27-32.
    [13]陈昊.车用替代能源综合评价与发展策略[J].研究探讨,2013.01(1):31-35.
    [14]李晓丹.新能源汽车发展现状及应用前景[J].中国能源,2009,31(8):43-45.
    [15]彭涛,陈全世,田光宇,等.并联混合动力电动汽车动力系统的参数匹配[J].机械工程学报,2003,39(2):69-73.
    [16]任东明,中国新能源产业的发展和制度创新[J].中外能源,2011,16(001):31-36.
    [17]葛蕴珊,信建民,吴思进,等.增压柴油机燃用生物柴油的排放特性[J].燃烧科学与技术,2004,10(2):125-129.
    [18]张荣贵.我国电动汽车发展前景[J].机电技术,2008,4(2):81-84.
    [19]赵英,中国汽车工业的发展趋势及对策[J].中国工业经济,2003,4:18-24.
    [20]美国制定出2011年轻型车平均燃油经济性指标.http://www.cnki.com.cn/Article/CJFDTotal-RHYD200904019.htm.
    [21]于永初.欧洲排放法规解读[J].现代零部件,2008,4:004.
    [22] C. Arcoumanis, Mixture Formation and Combustion in the DI DieselEngine.in:SAE.Detroit,1997,326-326.
    [23]夏孝朗,刘敬平,唐琦军.等.基于实测数据的汽油机无进气节流损失的节油潜力研究[J].中南大学学报,2012,12(43):4707-4712.
    [24]蔡博峰.中国城市二氧化碳排放研究[J].研究与探讨,2011.33(6):28-32.
    [25] O'Neill BC, Dalton M, Fuchs R,et al. Global demographictrends and futurecarbon emissions[J]. Proceedings of the National Academy of Sciences,2010,107(41):17521-17526.
    [26]从欧1到欧6标准细数欧洲排放法规进化史. http://auto.sohu.com/20120413/n340464634.shtml.
    [27] Hofbauer P. Internal continuous combustion engine system[P]:U.S.PatentApplication.12/321,163,2009-1-16.
    [28]高效、节能双对置柴油机技术.http://zgfilterindustry.com/admin/pic/uploadfile/2011011247945829.pdf.
    [29]刘敬平.OPOC发动机的特点及优势,湖南大学学术讲坐,2011,10.
    [30] Pirault, J.-P. and Flint, M., Opposed Piston Engines: Evolution, Use, and FutureApplications[M]. Detroit:SAE International Warrendale, PA,2009,161-170.
    [31] Junkers,H.,Cylinder of Internal-Combustion Engines and Other SimilarMachines[P].U.S. Patent.1231903,1917,07,03.
    [32] Junkers, H., Engine, U.S. Patent2031318,1936,02,18.
    [33]对置活塞发动机为燃油效率设立新标杆.http://wenku.baidu.com/view/0d8e612fbd64783e09122b37.html.
    [34]高效、节能双对置柴油机技术.http://zgfilterindustry.com/admin/pic/uploadfile/2011011247945829.pdf.
    [35]赵晓,辉张翼,许俊峰. OPOC发动机研究综述[J].内燃机与配,2012,11(06):24-26.
    [36] Hofbauer P, Tusinean A N.OPOC engine[P]: U.S.Patent Application.11/998641,2007,11,29.
    [37]黄海燕,肖建华,阎东林.汽车发动机试验学教程[M].北京:清华大学出版社,2009,36-40.
    [38] Hofbauer P. Opposed piston opposed cylinder (opoc) engine for military groundvehicles[J]. SAE transactions,2005,114(3):1088-1128.
    [39]王建平,霍平.OPOC发动机自平衡特性分析[J].小型内燃机,2012.06(3):20-24.
    [40] James kalkstein, Wulf Rover, Brian Campbell,et al.Opposd Piston OpposedCylinder (OPOCTM)5/10kW Heavy Fuel Engine for UAVs and APUs[C].In:SAE. Detroit,2006,278-286.
    [41]余红胜,刘长振,李建新.OPOC二冲程柴油机进气管道优化设计过程[J].机械/仪表,2012,4(2):30-35.
    [42] Michael Franke, Hua Huang, Jing Ping Liu,et al. Opposd Piston OpposedCylinder (OPOCTM)450hp Engine: Performance Development by CAESimulations and Testing [C]. In:SAE.Detroit,2006,277-290.
    [43]王军,苏铁熊,张俊跃.车用柴油机增压匹配数值模拟研究[J].内燃机工程,2007,28(5):48-51.
    [44] Jingping L, Xiaolang X, Shuqing W, et al. Challenges facing the lowtemperature diesel combustion boosting system[C].IN:Electric Information andControl Engineering (ICEICE),2011International Conference on. IEEE,2011:5744-5747.
    [45]周龙保.内燃机学[M].北京:机械工业出版社,2005,40-60
    [46]傅秦生.热工基础与应用(第2版)[M].北京:机械工业出版社,2007,8-36
    [47] Canakci M, Van Gerpen J H. Comparison of engine performance and emissionsfor petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel[J].Transactions of the ASAE,2003,46(4):937-944.
    [48] Parlak A, Yasar H, Eldogan O.The effect of thermal barrier coating on aturbo-charged Diesel engine performance and exergy potential of the exhaustgas[J]. Energy Conversion and Management,2005,46(3):489-499.
    [49]朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社,1992,72-90.
    [50] Can, Celikten I, Usta N. Effects of ethanol addition on performance andemissions of a turbocharged indirect injection Diesel engine running at differentinjection pressures[J].Energy Conversion and Management,2004,45(15):2429-2440.
    [51] Fu JQ, Liu JP, Yang YP,etal. A new approach for exhaust energy recovery of internal combustion engine: Steam turbocharging. Applied thermal engineering,2013,52(40):150-159.
    [52]魏名山,张志,方金莉,等.带有放气阀的二级增压系统的设计与试验[J].内燃机学报,2009,27(2):166-170.
    [53] Fu JQ, Liu JP, Yang YP,etal. A new approach for exhaust energy recovery of internal combustion engine: Steam turbocharging. Applied thermal engineering,2013,52(1):150-159.
    [54]刘敬平,付建勤,任承钦.等.增压直喷汽油机热平衡和火用平衡试验对比.内燃机学报,2013,31(1):65-71.
    [55]刘敬平,付建勤,冯康.等.发动机废气涡轮增压系统能量流研究.湖南大学学报(自然科学版),2011,38(5):48-53.
    [56]张俊红,马正颖,张桂昌.等.汽车发动机动力性和经济性的优化匹配术[J].农业机械学报,2010,06:38-41.
    [57] Canova M, Chiara F, Rizzoni G, et al. Design and validation of acontrol-oriented model of a diesel engine with two-stage turbocharger[J]. SAEInternational Journal of Fuels and Lubricants,2010,2(2):387-397.
    [58] Serrano J R, Arnau F J, Dolz V, et al. Analysis of the capabilities of a two-stageturbocharging system to fulfil the US2007anti-pollution directive for heavyduty diesel engines[J]. International Journal of Automotive Technology,2008,9(3):277-288.
    [59]朱大鑫.车用发动机增压技术的发展天津[J].内燃机学报,1987.06:30-36
    [60]陈志鹏,袁新.全工况优化在压气机多级环境中的应用[J].工程热物理学学报,2008,06:0253-0261.
    [61] James kalkstein, Wulf Rover, Brian Campbell,et al.Opposd Piston OpposedCylinder (OPOCTM)5/10kW Heavy Fuel Engine for UAVs and APUs [C]. InSAE.Detroit,2006,279-288.
    [62] Diesel engine development in view of reduced emission standards[J]. Energy,2008,33(2):264-271.
    [63] Kesgin U. Efficiency improvement and NOx emission reduction potentials oftwo‐stage turbocharged Miller cycle for stationary natural gas engines[J].International journal of energy research,2005,29(3):189-216.
    [64] Ohlmann D, Reynolds S. Development of a Novel Uniflow-ScavengedTwo-Stroke GDI Engine[J]. In SAE.Detroit,2006,1034-1050.
    [65]蒋炎坤,钟毅芳,罗马吉.等.二冲程发动机扫气过程数理模型研究的现状与发展[J].小型内燃机,2000,4:32-36.
    [66]杜发荣,蒋彬.气口参数对二冲程重油发动机扫气性能的影响[J].科学技术与工程,2011,11(3):528-532.
    [67]刘新海.新的二冲程发动机扫气模型[J].柴油机,1981,06:001-003.
    [68] Matthew G. McGough. Experimental Investigation of the ScavengingPerformance of a Two-Stroke Opposed-Piston Diesel Tank Engine[C]. InSAE.Detroit,2004.03:388-406.
    [69] Ciccarelli G, Reynolds S, Oliver P. Development of a novel passive top–downuniflow scavenged two-stroke GDI engine[J]. Experimental Thermal and FluidScience,2010,34(2):217-226.
    [70] Lemke J U, McHargue W B. Two-cycle, opposed-piston internal combustionengine[P]. U.S. Patent7,156,056,2007-1-2.
    [71] Herold R E, Wahl M H, Regner G, et al. Thermodynamic Benefits ofOpposed-Piston Two-Stroke Engines[J]. In SAE. Detroit,2011,01-2216.
    [72] Wallace F J. Operating characteristics of compound engine schemes for tractionpurposes based on opposed piston two-stroke engines and differential gearing[J].Proceedings of the Institution of Mechanical Engineers,1963,177(1):64-85.
    [73] Diwakar R. Multidimensional Modeling of the Gas Exchange Pr ocesses in aUniflow-Scavenged Two-Stroke Diesel Engine[C].Uzkan T. InternationalSymposium on Flows in Internal Combustion Engines-III,(Ed. Uzkan T. et al),ASME-FED,1985,28:125-134.
    [74] Diwakar R. Three-dimensional modeling of the in-cylinder gas exchangeprocesses in a uniflow-scavenged two-stroke engine[R]. General MotorsResearch Labs., Warren, MI,1987,142-160.
    [75] Sher E, Hossain I, Zhang Q, et al. Calculations and measurements in thecylinder of a two-stroke uniflow-scavenged engine under steady flowconditions[J]. Experimental thermal and flu id science,1991,4(4):418-431.
    [76] Sammons H. A Single-Cycle Test Apparatus for Studying “Loop Scavenging” ina Two-Stroke Engine[J]. Proceedings of the Institution of Mechanical Engineers,1949,161(1):233-249.
    [77] Litke B. The influence of intake port angles in intake port ports on thescavenging process in two-stroke uniflow-scavenged engine[J]. Mar Tech,1999,3(45):247-252.
    [78] Sher E. Scavenging the two-stroke engine[J]. Progress in Energy andCombustion Science,1990,16(2):95-124.
    [79]史宗庄,崔国起.二冲程内燃机气口配气相位角的计算方法[J].天津大学学报,1999,32(4):418-422.
    [80]陈石,吴春杰.二冲程柴油机设计参数对扫气过程的影响[J].小型内燃机与摩托车,2001,5:1-4.
    [81]蒋炎坤,钟毅芳,罗马吉等.发动机扫气系统三维瞬态数值模拟应用研究[J].内燃机学报,2001,6:001-005.
    [82]谷明.测量和评价二冲程发动机扫气过程的新方法[J].小型内燃机,1987,16(4):50-54.
    [83]由丽卿,高尚瑞.二冲程发动机扫气过程试验方法的研究[J].内燃机工程,1996,17(3):58-65.
    [84]顾维东,杨延相,蔡晓林.等.FAI二冲程直喷汽油机缸内流场的多维数值模拟[J].内燃机学报,2007,25(2):150-156.
    [85]陈文婷,诸葛伟林,张扬军.等.双对置二冲程柴油机扫气过程仿真研究[J].航空动力学报,2010,6(6):20-26.
    [86]赵峰.直流扫气柴油机扫气过程仿真分析及优化[D].大连海事大学,2010.
    [87]杜发荣,蒋彬.气口参数对二冲程重油发动机扫气性能的影响[J].科学技术与工程,2011,11(003):528-532.
    [88]钱孙炬,陈石.二冲程内燃机扫气流场的数值模拟[J].大连理工大学学报,1996,36(5):566-571.
    [89]赵峰,兰红安.直流扫气柴油机扫气流场分析[J].柴油机设计与制造,2012,18(3):12-16.
    [90] Zhu Y X, Savonen C, Johnson N L.Three-dimensional computations of thescavenging process in an opposed-piston engine[C].In SAE.Baltimore,1994,1-8.
    [91]苏万华.高密度-低温柴油机燃烧理论与技术的研究与进展[J].内燃机学报,2008,(S1):1-6.
    [92] Shen H, Hofbauer P. Toroidal Combustion Chamber With Side Injection[P].U.S.Patent20,130014718,2013-1-17.
    [93] XU H, SONG J, YAO C, et al. Simulation on In-Cylinder Flow on MixtureFormation and Combustion in OPOC Engine [J]. Transactions of CSIC E,2009,(5):13-19.
    [94] Heywoods J. Internal combustion engine fundamentals[M]. New York: McGraw Hill, ISBN-10:007028637x,1988:76-84.
    [95] Oliver Lang, Knut Habermann, Stefan Wedowski,Stefan Pischinger, MichaelWittler.Optimization of the Transient Characteristics of Boosted SI Engines[C].In ICE. Italy,2005,1020-1026.
    [96]刘敬平,夏孝朗,赵智超.等.内燃机燃烧放热率的典型特征参数对比以及对热-功转换效率的影响研究[J],2012,(5):26-32.
    [97] Pickett L M, Siebers D L. Non-sooting, low flame temperature mixingcontrolled DI diesel combustion[J]. SAE transactions,2004,113(4):614-630.
    [98] Takeda Y, Nakagome K, Niimura K. Emission characteristics of premixed leandiesel combustion with extremely early staged fuel injection[J]. Transactions ofthe Japan Society of Mechanical Engineers, Part B,1996,62(599):2887-2894.
    [99] Hiroyasu H, Kadota T, Arai M. Development and use of a spray combustionmodeling to predict diesel engine efficiency and pollutant emissions: Part1combustion modeling[J]. Bulletin of JSME,1983,26(214):569-575.
    [100] Tao F, Golovitchev V I, Chomiak J. A phenomenological model for theprediction of soot formation in diesel spray combustion[J]. Combustion andFlame,2004,136(3):270-282.
    [101]赵奎翰,魏建勤,张惠明等.供油提前角对直喷式柴油机喷雾,燃烧和碳粒变化历程的影响[J].内燃机学报,2000,1:17-19.
    [102]李克旭,张志东.柴油机供油提前角试验方法[J].内燃机与动力装置,2008,4:24-25.
    [103]谭丕强,陆家祥,邓康耀.等.喷油提前角对柴油机排放影响的研究[J].内燃机工程,2004,25(2):9-11.
    [104]左承基,李海海,徐天玉.等.柴油机富氧燃烧排放特性的试验研究[J].热科学与技术,2003,2(1):70-73.
    [105] Ladommatos N, Abdelhalim S, Zhao H. The effects of exhaust gas recirculationon diesel combustion and emissions[J]. International Journal of EngineResearch,2000,1(1):107-126.
    [106] Birkhold F, Meingast U, Wassermann P, et al. Analysis of the injection ofurea-water-solution for automotive SCR DeNOx-systems: modeling of two-phase flow and spray/wall-interaction[J]. Analysis,2006,1(1):643-656.
    [107] Birkhold F, Meingast U, Wassermann P, et al. Analysis of the injection ofurea-water-solution for automotive SCR DeNOx-systems: modeling oftwo-phase flow and spray/wall-interaction[J]. Analysis,2006,1(2):66-78.
    [108]韩东,吕兴才,黄震.喷射时刻对柴油和汽油/柴油混合燃料低温燃烧的影响[J].内燃机学报,2011,29(3):200-205.
    [109]范立云,文李明,田丙奇.等.电控双阀喷油系统多次喷射中的喷油量特性[J].哈尔滨工程大学学报,2012,33(6):702-708.
    [110]许锋,潘贵成,杨晓英.等.柴油机采用两段喷射实现均质预混合燃烧方式的试验研究[J].热科学与技术,2004,3(3):238-242.
    [111]刘立东,宋崇林,吕刚.等.FT柴油对电控高压共轨柴油机燃烧特性的影响[J].天津大学学报,2011,44(9):810-815.
    [112]汪海清,刘永长,贺萍.等.燃油喷射雾化机理的探讨[J].燃烧科学与技术,1995,1(3):280-285.
    [113]刘雄,纪丽伟.预喷射对柴油机NO排放生成的影响[J].现代车用动力,2005,4(11): l8-21.
    [114]解方喜,洪伟,阎朝亮.等.预喷射对增压柴油机高负荷燃烧和排放的影响[J].燃烧科学与技术,2010,16(001):69-73.
    [115] Bae C, Yu J, Kang J, et al. Effect of nozzle geometry on the common-rail dieselspray[J]. SAE SP,2002,79-92.
    [116] Park S W, Reitz R D. Optimization of fuel/air mixture formation forstoichiometric diesel combustion using a2-spray-angle group-hole nozzle[J].Fuel,2009,88(5):843-852.
    [117] Kim M Y, Lee C S. Effect of a narrow fuel spray angle and a dual injectionconfiguration on the improvement of exhaust emissions in a HCCI dieselengine[J]. Fuel,2007,86(17):2871-2880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700