自回正中心转向独立悬架研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的高速发展,人们对于汽车的操控性和舒适性的要求也越来越高。而悬架系统决定着汽车的稳定性,舒适性和安全性等。钢板弹簧非独立悬架里的钢板弹簧存在重量较重,刚度大,舒适性差,纵向尺寸较长,转向干摩擦大,KC特性不理想等缺点,主要应用在一些性能要求不高的越野车和货车、客车等商用车上。独立悬架系统的具有质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;设计的自由度大,可得到较理想的K&C特性,侧倾角刚度较大,可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性等优点,主要应用在轿车等乘用车上。从悬架性能来说独立悬架远远强于非独立悬架。但是独立悬架系统存在着结构复杂、成本高、维修不便、承载能力差等缺点,很少应用于载荷较大的商用车上(目前不少商用车的前悬架也开始采用独立悬架)。商用车的前悬架,由于非独立悬架布置的原因,主销与轮胎的相对偏距都较大,这常常会带来前轮摆振、刹车跑偏等问题。所谓“中心转向”悬架系统,是指车轮转向主销垂直穿过轮胎中心的悬架系统。这样可以避免因轮胎的不平衡力引起的前轮摆振,或出现刹车跑偏问题;但在低速行驶时,通常这种悬架系统在车轮转向时没有自动回正能力。
     为了解决上述问题,全面提升商用车的操纵性和平顺性,本文提出了一种自回正中心转向独立悬架,可以明显减小轮胎中心与主销的偏距:既可满足商用车的承载能力,同时悬架布置灵活;转向时球销摩擦阻力小,为改善回正性与转向路感打下良好基础,转向时利用弹簧横向刚度实现中心转向系统的回正性能,有希望使商用车的性能品质得到明显的提高。本文开展了以下研究工作:
     首先,对中心转向独立悬架系统以及与其匹配的转向系统进行初步设计。对多杆中心转向独立悬架的结构形式和特点进行分析,并着重对转向自回正性能的原理进行了分析。以某非独立悬架车型为例,把其前悬架升级为中心转向独立悬架,对悬架系统主要参数的设计和计算。定性的分析了中心转向独立悬架导向机构的设计方法。设计了与中心转向独立悬架系统相匹配的转向系统。以转向的转角传动比以及左、右车轮的阿克曼转角关系为优化目标,对转向系统各部件进行了优化设计。
     其次,基于合理的悬架K&C特性和阿克曼转向特性对悬架和转向系统进行优化设计。根据中心转向独立悬架的基本结构原理以及悬架系统的主要参数,建立中心转向独立悬架动力学模型。文中创新性的把弹簧模型实体化,建立了弹簧柔性体模型,并装配到独立悬架模型中。弹簧的各个方向运动,以及产生的各个方向的力都可以准确的反馈到转向节以及车身上。弹簧的横向运动产生的横向载荷,会对主销产生回正力矩。然后研究了基于合理的悬架的K&C特性的中心转向独立悬架模型的硬点优化。建立了与悬架系统匹配的转向系统模型,并基于合理的转向特性对中心转向独立悬架模型进行硬点优化。根据优化后的悬架及转向系统的硬点位置,悬架与转向系统的结构,对悬架导向杆系,转向节,弹簧支座,减振器支座进行了结构设计。建立悬架系统的三维运动模型,并进行运动校核,保证结构设计的可行性。以悬架主要承载部件转向节为例,进行强度分析,保证结构设计的安全性。
     然后,对中心转向独立悬架的回正性能进行了设计与分析。通过研究转向阻力矩产生的原因,以及转向阻力矩中的主要阻力及其测量方法,确定回正力矩的设计目标。影响转向回正性能的主要因素有弹簧横向刚度以及弹簧的布置角度。首先研究了转向回正力矩和弹簧横向刚度的关系。先分析了弹簧横向刚度与弹簧参数的关系以及弹簧横向刚度的计算方法。通过对中心转向独立悬架的转向试验仿真分析,得到转向过程中弹簧的横向位移值。根据方向盘转角为600°的弹簧下点的横向位移值结合目标回正力矩推导出弹簧横向刚度的大小。基于弹簧横向刚度对弹簧进行尺寸优化,得到满足回正力矩的弹簧模型。分析了不同弹簧横向刚度对于悬架K&C特性的影响。然后分析了不同弹簧内倾角和转向回正力矩的关系,并研究了弹簧内倾角对悬架K&C特性的影响。最后对中心转向独立悬架的回正性能仿真分析与试验的验证,得了准确的悬架模型。
     最后,建立了以中心转向独立悬架为前悬架的整车模型,对整车的平顺性试验和操纵稳定性试验进行仿真分析。在ADAMS/Car中建立了整车多体动力学模型,并对前悬架中心转向独立悬架和转向系统模型以及后悬架钢板弹簧非独立悬架模型进行K&C特性的仿真分析与试验验证。针对本文所研究的车辆进行了平顺性脉冲输入试验和随机路面输入试验和相关的仿真分析,对平顺性试验的结果分析可以得出,总加权加速度均方根值在合理范围内,中心转向独立悬架的设计可以满足整车的平顺性要求。由于本研究的重点放在前独立悬架,原车的后悬架不作改动,未对该车的平顺性作进一步的挖掘。从转向回正性试验结果可以看出方向盘转角的响应时间在正常范围内,中心转向独立悬架完全满足整车的回正性要求,可以实现自动回正。
     本文主要创新点如下:
     1、提出了一种商用车新型的多杆独立悬架结构,该型独立悬架虚拟主销在车轮中心平面内,转向阻力小,路感良好。
     2、提出了中心转向独立悬架系统从悬架结构设计,硬点优化设计,到悬架运动及强度校核的悬架正向开发流程,实现该悬架的开发。
     3、提出了中心转向独立悬架回正性能的设计方法,即把弹簧柔性体引入到悬架多体动力学模型中,根据弹簧横向刚度和弹簧布置形式进行设计,使其产生适当的绕虚拟主销的回正力矩。
With the rapid development of automobile industry, the vehicle performancerequirements in handling stability and ride comfort are also increasing. The suspensionsystem plays a vital role on the stability, comfort and security et al. The conventional leafspringtype non-independent suspension,mainly used in some hardcore off-road vehicles andcommercial vehicles, has many shortcomings such as heavy weight, high stiffness, poorcomfort et al. While the independent suspension system, mainly used in passenger cars,possess many advantages:1)Relative light weight in unsprungmass, which can reduce thebody shock and improve the traction of the wheels;2)softer spring can be used to improvethe ride comfort;3)the positionof the engine and the vehicle center of gravity can be loweredto improve the vehicle handling performance. From the view of suspension performance,the independent suspension is better than non-independent suspension. However, theindependent suspensionis rarely appliedon the larger commercial vehiclesdue to itsdrawbacks such as complex structure, high cost, inconvenience to repair and poor bearingcapacity.
     Considering the aforementioned problems, a self-aligningindependent suspension ofsteering on center is proposed in this dissertation:1)the carrying capacity of commercialvehiclescan be met, while the suspension layout is flexible;2)the turning ball bin has smallfriction;3)the self-aligning performance is realized by utilizingthe spring lateral stiffnesswhen turning. This paper is carried out by following aspects:
     1)the independent suspension system of steering on center and its matched steeringsystem are preliminary designed.Firstly, the structure and characteristics of multi-rodindependent suspension of steering on centerare analyzed, furthermore, the principle ofself-aligning performanceis analyzed.Secondly, the front suspension of a non-independentsuspension vehicle is upgradedto the independent suspension of steering on center, then thedesign and calculation of the main parameters of the suspension system,such asthe stiffness of the suspension, the offset frequency, static deflection, spring parameters, the suspensiondamping, are carried out. Thirdly the design methods of the steering mechanism areanalyzedqualitatively and the steering system matched with independent suspension ofsteering on center is designed. Finally, the length and layout of steering arm and the middlerod, the length and angle of the steering tie rod and the steering knuckle are optimizedtakingthe steering angle ratio, the relationship of left and right wheelsAckermanangle as theoptimizedtarget. on the work of the preliminary designed for the independent suspensionsystem of steering on center and its matching steering system make it easier to study theaccurate suspension and steering model.
     2)Theoptimal design for the suspension and steering systems are conducted,based onthe suspension K&C characteristics and steering characteristics.The independent suspensionsystem of steering on center dynamics model is built via the multi-body dynamics softwareMSC.Adams, based on the structure principle and the main parameters of the proposedsuspension.In conventional manner, the spring is simulated by building the spring unit andthe properties file, it only reflect the influence of the axial stiffness of the spring onsuspension kinematics. However, the self-aligning performance of the independentsuspension system of steering on center is realized by utilizing lateral stiffness of the spring,besides the vertical movement, the spring has lateralmovement, and compound movementwith vertical and lateral movement, which can’t be simulated by the conventional springunit.In this dissertation, the spring model is materialized innovatively, a flexible springmodel is establised, and then applied to the independent suspension.The movement of thespring inEach direction, and the force generated in all directions can be accurately fed intothe knuckle and the vehicle body.Lateral loads generated by the lateral movement of thespring, will produce kingpin aligning torque. Furthermore, the hard point optimizations ofthe proposed suspension are studied based on the K&C characteristics. Then the steeringsystem is builtto match the suspension system, and the hard point optimizations of theproposed suspension are studied based on the steering characteristics. In order to ensurethat the design of the proposed suspension system to meetthe reasonable suspension K&C characteristics and steering characteristics, the multi-objective optimization of frontsuspension is carried out based on the above two features.According to the optimized hardpoint locations of the suspension and steering systems, the structure of suspension andsteering system,the suspension guide bar, steering knuckles, spring bracket and the shockabsorber bearing are designed.A three-dimensional motion model of suspension system isadoptto conduct the motion check to ensure the feasibility of structural design. Taking themain load bearing component and the suspension knuckle for example, the strength analysisis carried out to ensure the safety of structural design.
     3)Aligning performance of on-center independent suspension is designed and analyzed.The design objective of aligning moment is set via studying the causes of aligning resistancemoment and the calculation method of main resistance. The main factors influencing thesteering aligning performance are the transverse stiffness of spring and arrangement angle ofspring.Firstly, the relationship between the aligning moment and the transverse stiffness isstudied. The relationship between the transverse stiffness of spring and the spring parametersis analyzed and the calculation method of the transverse stiffness of spring is obtained. Thetransverse displacement value of the spring in the process of steering is obtained accordingto the steering simulation of on–center independent suspension. The transverse stiffness ofspring is calculated based on aligning moment and transverse displacement value of thespring. Optimization of spring size was carried out based on the transverse stiffness, and thenspring model meeting aligning moment is achieved.The variation of the spring transversestiffness influencingon the suspension K&C characteristics is analyzed. The relationshipbetween spring inclination angle and aligning moment and the spring inclination angleinfluencing on the suspension K&C characteristics is studied.According to the suspensionhard point set in chapter3, the hard points of suspension guiding mechanism and steeringpart, and the design of spring size and inclination angle, all structural parameters ofon–centerindependent suspension is achieved. Finally, the accurate model of the suspension isobtained via simulation analysis and experimental verification.
     4)A vehicle model with on–center independent suspension as front suspension is built to study the vehicle ride comfort and handling stability of the proposed suspension system. Afull-car vehicle model, including the front suspension model, the rear suspension, steeringsystem model, tire model, and the body modelis buildedin ADAMS/Car. Simulation analysisand experimental verification are carried out focusing on K&C characteristics of frontsuspension, steering system model and rear suspension. UniTire tire model proposed byguo konghui academician is selected as Tire model, to obtain higher simulation accuracyunder large lateral acceleration. In order to identify parameters of UniTire tire model, the sixdegrees freedom tire testing machine developed by guo konghui academician and his team isused to test tire performance.The simulation model is verified by ride comfort test andhandling stability test. The validation results show that the simulation results fells well withexperimental results, sothe vehicle multi-body dynamics model is accurate enough todescribe the linear and nonlinear dynamic of the vehicle characteristics. Ride comfort testresults show that the total weighted acceleration root mean square value is reasonable; thedesign of on–center independent suspension can satisfy the requirement of the vehicle ridecomfort. Steering portability test results show that the steering wheel torque is small in theprocess of steering, and vehicle with on–center independent suspension as front suspensionhas light steering characteristic.
     Returnability test results shows that response time of the yaw rate is within the normalrange, meanwhile the yaw rate is reduced into the limit range. the steering testresults showthat the on–center independent suspension satisfy the requirement of aligning performanceand can realize automatic correction.Major Innovations of the Dissertation:
     (1) A new type of independent suspension with following adavantages is proposed in thispaper: the ball pin has small friction resistance and long applying time.a)smallfriction resistance in the ball pin prolong its lifespan; b)small steering resistance whilestreering led to good road feeling; c)wheel move around its center when Steering,which reducing the wear of the tire; d)due to spring load through the center ofimprinting, the roll moment of the wheel assembly is reduced;e)the layout of height ofthe two connecting rod is flexible.
     (2) A car is taken as an example, the design method of on–center independent suspension isput forward: from the basic parameters’ selection of suspension form, basic space layout,and initial design of suspension hard point to optimization of suspension hard pointbased on the suspension K&C characteristics and steering characteristics, thenmovement checking and strength calculation of the suspension is carried.
     (3) Design method on the aligning performance of on–center independent suspension is putforward, namely, based on transverse stiffness of spring and the spring inclination angel,to make its produce aligning moment around the virtual king pin; The spring as flexiblebodyassemble into the suspension dynamic model, which can accurately simulate thespring stiff influencing on the suspension kinematics and steering aligning performance.
引文
[1]郭伟.轻型汽车前独立悬架设计分析[D].江苏大学,2003.
    [2]赵品斌.轿车独立悬架轮心等效刚度计算[D].:吉林大学,2013.
    [3]金叙龙,郭万富.双横臂独立悬架运动特性分析[J].汽车技术,2001,(4).
    [4]姜立标,倪强.基于ADAMS/View的6×6越野车前独立悬架参数化设计与分析[J].北京航空航天大学学报,2008,(2).
    [5]刘斌.轻型汽车前悬架设计分析[D].:河北工业大学,2006
    [6]潘筱,刘永,杨爱军.汽车双横臂悬架运动特性分析与仿真[J].轻型汽车技术,2006,(12).
    [7]金湖庭.基于虚拟样机技术的车轮随机侧滑研究[J].拖拉机与农用运输车,2006,(3).
    [8]龙岩.双横臂悬架专家系统导向机构知识体系的建立[D].:吉林大学,2008.
    [9]景立新.基于操纵稳定性的汽车悬架稳健性设计研究[D].:吉林大学,2011.
    [10]陈连云,周孔亢.旅行车横置钢板弹簧独立悬架运动特性的研究[J].机械设计,2009,(5).
    [11]吴志成,陈思忠,林程,张斌.中型汽车用麦弗逊式前独立悬架设计与仿真分析[J].车辆与动力技术,2005,(4).
    [12]张景骞,毛明.轮式装甲车辆双横臂独立悬架系统的运动分析[J].机械设计,1995,(9).
    [13]周良生,彭莫,宋立新.半拖臂独立悬架的设计计算[J].汽车工程,2007,(9).
    [14]孙延伟,吴向杰.独立悬架性能评价指标[A].河南省汽车工程学会.[C].:,2012:153-154-155-156.
    [15]张聪颖.2.0L轿车麦弗逊式独立悬架的设计[J].科技信息,2012,(23).
    [16]祁宏钟,雷雨成,孟黎明,黄泽勇,陈宇晖.基于UGII软件的汽车悬架设计开发系统[J].计算机应用与软件,2003,(7).
    [17]梁建伟.基于ADAMS的悬架优化软件开发研究[D].:燕山大学,2009.
    [18]梁静文.轿车独立悬架设计方法研究[D].:吉林大学,2009.
    [19]石峰.双横臂独立悬架系统的分析与设计[D].:长安大学,2008.
    [20]郑重.基于虚拟样机的悬架优化设计及整车仿真[D].:武汉理工大学,2009.
    [21]潘筱.汽车前悬架运动学及整车操纵稳定性仿真[D].:郑州大学,2006.
    [22]张伯俊.四轮转向汽车横向动力学特性及控制研究[D].:天津大学,2006.
    [23]陈俊.基于双横臂独立悬架对轿车转向机构优化设计[D].:合肥工业大学,2007.
    [24]阮五洲.基于ADAMS悬架系统分析与优化设计[D].:合肥工业大学,2008.
    [25]邵昭晖.汽车麦弗逊悬架三维设计与运动分析[D].:武汉理工大学,2011.
    [26]王惠生.麦弗逊悬架和转向系统的性能仿真研究[D].:河北工业大学,2006.
    [27]刘长乐.基于虚拟样机技术的汽车操纵稳定性及平顺性分析研究[D].:长安大学,2010.
    [28]高晋.基于虚拟样机技术的悬架K&C特性及其对整车影响的研究[D].吉林大学,2010.
    [29] Yang Yi,Optimization design of double wishbone independent suspension based on ADAMS[J].Applied Mechanics and Materials,2012,138-139:252-256.
    [30] Li.Z, An optimal control design of independent suspension based on Adams for a fourin-wheel-motor drive electric vehicle[C].201219th International Conference on Mechatronics andMachine Vision in Practice, M2VIP2012,2012.
    [31] Dong Zhurong,Suspension design and research for electric vehicles with independent steering anddriving[C].3rd international Conference on Manufacturing Science and Engineering, ICMSE2012,2012.
    [32] Tian Zhongrong, Optimization design of double wishbone front independent suspension based onADAMS [J].Advanced Materials Research,2011,299-300:1235-1238.
    [33] Wang Yu, Design of new suspension for four-wheeled independent steering electric automobile[J].Advanced Materials Research,2011,314-316:2091-2095.
    [34] Dong Zhurong, Design of new suspension for four-wheeled independent steering electricautomobile[C].Proceedings of2011International Conference on Electronic and MechanicalEngineering and Information Technology, EMEIT2011,2011.
    [35] Zhu Hao, Design and dynamics simulation of a rectilinearly guidedfront independent suspension and its steering linkage[J]. Qiche Gongcheng/AutomotiveEngineering,2010,32(7):611-616.
    [36] Zhou Bing, Optimization design of steering linkage in independent suspension based on geneticalgorithm[C]. Proceeding2009IEEE10th International Conference on Computer-Aided IndustrialDesign and Conceptual Design: E-Business, Creative Design, Manufacturing-CAID andCD'2009,2009.
    [37] Zhao J.-S. Innovative concept design of an independent front suspension and steering system[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,2010,224(12):1487-1500.
    [38] Jiang Guoping,Optimization design of splitting point of Ackerman steering linkageof independent suspension based on ADAMS[J].Nongye Jixie Xuebao/Transactions of the ChineseSociety of Agricultural Machinery,2007,38(2):30-34.
    [39] Gerrard, M.B. Roll centres and jacking forces in independent suspensions-A first principlesexplanation and a designer's toolkit[C]. International Congress and Exposition,1999.
    [40] Magalh es, Marcelo,CAE-driven design for NVH optimization ofan independent rear suspension subframe[C].11th International Mobility Technology Congressand Exhibition,2002.
    [41] Lu Zheng-Yu. Kinematic calculation and design optimization of vehicle'sfront independent suspension control arms[C]. International Congress and Exposition,1986.
    [42] Hoban, J.T. Design and development of an independent rear suspension for the1979CadillacEldorado.SAE Preprints,1979,790375.
    [43] Eanna P. Timoney. A Review of the Development of Independent Suspension for Heavy Vehicles.SAE Technical Paper2003-01-3433,2003.
    [44]王杰刚,刘守银.某轻型客车前悬架系统设计[J].合肥工业大学学报(自然科学版),2009,(S1).
    [45]胡久强.大客车空气悬架的设计匹配与仿真研究[D].:西南交通大学,2012.
    [46]袁敏.大客车空气悬架系统的多体运动学仿真分析研究[D].:合肥工业大学,2006.
    [47]齐海政.高品质商用车动力学建模关键问题研究[D].吉林大学,2011.
    [48]张元胤.采埃孚商用车独立悬架新技术[J].商用汽车,2007,08:106-107.
    [49]侯宇明.基于指标分解的商用车悬架系统动态优化研究[D].华中科技大学,2011.
    [50]吕振华,常放,杨道华,张天兵.利用ADAMS对双横臂独立悬架进行仿真分析[J].汽车科技,2005,05:7-9.
    [51]何锋,徐军,杨洪江.商用车空气悬架的关键技术分析[J].农机化研究,2005,02:236-240.
    [52]左佳.客车前悬架导向机构硬点优化与整车操纵稳定性研究[D].湖南大学,2012.
    [53]漓沙.采埃孚的创新商用车技术[J].汽车与配件,2011,34:56-57.
    [54]李俊伟.空气悬架半挂牵引车操纵稳定性研究[D].湖南大学,2012.
    [55]石琴.前悬架K&C特性优化设计及整车操纵稳定性分析[D].合肥工业大学,2012.
    [56]陈康.轻型商用车电动转向助力特性的仿真分析[D].华中科技大学,2007.
    [57]王伟.基于知识工程的重型商用车空气悬架系统设计与研究[D].吉林大学,2011.
    [58]孙营.重型商用车转向系统建模及整车动力学仿真研究[D].华中科技大学,2011.
    [59]朱毅杰.重型卡车两种悬架模型的开发与仿真[D].吉林大学,2009.
    [60]陈连云,周孔亢.旅行车横置钢板弹簧独立悬架运动特性的研究[J].机械设计,2009,05:33-36.
    [61]蒋国平,李守成.刚柔耦合建模技术在横置钢板弹簧独立悬架中的应用[J].武汉理工大学学报(交通科学与工程版),2006,04:728-731.
    [62]朱其明,王国林,韩涛. CATIA在IVECO双横臂独立悬架设计中的应用[J].机械工程师,2011,12:115-118.
    [63]李小龙,赵又群,王健,季昊成.多片钢板弹簧建模及悬架性能仿真[J].农业装备与车辆工程,2012,12:31-33.
    [64]孙经来.重型商用车操纵稳定性分析及参数匹配[D].吉林大学,2010.
    [65]郭立群.商用车车架拓扑优化轻量化设计方法研究[D].吉林大学,2011.
    [66]李海林.重型汽车空气悬架设计与优化[D].太原理工大学,2011.
    [67]李雪莉.基于ADAMS的空气悬架客车动力学仿真分析[D].长安大学,2012.
    [68]王杰刚,刘守银.某轻型客车前悬架系统设计[J].合肥工业大学学报(自然科学版),2009,S1:135-138.
    [69]秦东晨.面向运动型多功能车操纵稳定性的建模、仿真与优化[D].华中科技大学,2007.
    [70]隗寒冰.重型载重汽车空气悬架设计及悬架系统分析研究[D].武汉理工大学,2006.
    [71]李浩亮.基于ADAMS的空气悬架大客车平顺性仿真研究[D].郑州大学,2010.
    [72]付文奎.三轴商用车平顺性和操纵稳定性分析及优化[D].华中科技大学,2012.
    [73] Knable, Joseph J.,Design of a multilink independent front suspension for class A motor homes[C]International Truck and Bus Meeting and Exposition,1999.
    [74] Ziesing, Dirk.For commercial vehicles incorporating an independent wheel suspension [J].VDIVerlag GMBH,2007,1986:181-194.
    [75] Hagen, Hans. Axle locating and suspension systems for commercial vehicles [J]. SAEPreprints,1977,(770685).
    [76] Hoban, J.T. Vibrations measurement on commercial vehicles equipped with air-susoension and leafspring [J]. ATZ Automobiltechnische Zeitschrift,1970,72(7):257-261, July1970.
    [77] Bank, T.A. Some ABC's of air spring suspensions for commercial road vehicles[C]. Congress andExposition, February25,1980-February29,1980.
    [78] Anon.Air suspension for commercial vehicles [J]. Automotive Design Engineering,1974,13:34-35.
    [79] Dudding, Ashley T. Development of a new front air suspension and steer axle system for onhighway commercial vehicles[C]. Truck and Bus Meeting and Exposition,2000.
    [80] Schonfeld, Karl-H. Electronically Controlled Air Suspension (ECAS) for commercial vehicles[C].International Truck and Bus Meeting and Exposition,1991.
    [81] Yarmohamadi, Hoda. Comfort and handling of a commercial vehicle with IndividualFront Suspension[C]. Proceedings of the ASME Design Engineering Technical Conference,2011.
    [82] Moon, I.D. Computational model for analyzing the kinematics and compliance characteristics ofa commercial vehicle's front suspension system[J]. International Journal of AutomotiveTechnology,2012,13(2):279-284.
    [83] Sreedhar, Bollishetty. A simplified model of air suspension for multi body simulation of thecommercial passenger vehicle[C]. Symposium on International Automotive Technology, SIAT2013,2013.
    [84] Li Zan. Force and simulation analysis of thrust rod on heavy commercial vehicle balancedsuspension[J]. Applied Mechanics and Materials,2013,387:94-99.
    [85] J. E. Heywood. Twin-I-Beam A Unique Truck Independent Front Suspension[J]. SAE TechnicalPaper650153,1965.
    [86] Mathias Eickhoff. Latest Developments on Independent Front Suspensions for Class A MotorhomeChassis and an Outlook to Truck Applications[J]. SAE Technical Paper2003-01-3435,2003.
    [87] G. S. Bedi. Evolution of the New Ford Light Truck Four Wheel Drive Independent FrontSuspension[J].SAE Technical Paper791035,1979.
    [88]郭孔辉,张立浩.中心转向独立悬架:中国,2013204849136[P].2013-08-09.
    [89]王望予.汽车设计[M].北京:机械工业出版社,2006.
    [90]蒋国平,王国林,周孔亢.独立悬架转向梯形断开点位置的优化设计[J].农业机械学报,2007,02:30-34.
    [91]姚明龙,王福林.车辆转向梯形优化设计及其求解方法的研究[J].机械设计与制造,2007,05:24-26.
    [92]张立国,宁国宝.汽车断开式转向梯形机构的优化设计[J].机械设计与制造,2007,12:1-3.
    [93]徐锐良,曹青梅.车辆转向梯形机构的参数优化[J].拖拉机与农用运输车,2008,01:38-40.
    [94]吕明.独立悬架轮毂驱动电动汽车转向状态下的四轮差速研究及其转向梯形机构的设计[D].西北工业大学,2006.
    [95]廖林清,王金龙,谢明,屈翔,张君.汽车转向梯形机构在不同目标函数下的优化[J].机械与电子,2010,02:3-6.
    [96]韦超毅,蒋国平,周从钜,谢美芝.基于ADAMS软件的转向梯形计算机辅助设计[J].广西大学学报(自然科学版),2003,03:246-248.
    [97]陈集丰,段德高,杨荣.汽车转向梯形机构最佳参数确定[J].西北工业大学学报,1995,04:500-504.
    [98][初亮,彭彦宏,鲁和安,代淑云.双横臂独立悬架转向梯形断开点位置的优化及分析[J].汽车工程,1998,03:176-182.
    [99]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700