用户名: 密码: 验证码:
非线性动力系统的时滞反馈分岔控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分岔控制和时滞动力学作为非线性科学中的前沿研究课题,极具挑战性,是目前非线性研究的新热点。分岔控制的目的是对给定的非线性动力系统设计一个控制器,用来改变系统的分岔特性,从而消除系统中有害的动力学行为,使之产生人们需要的动力学行为。本文在全面分析和总结非线性动力系统分岔控制研究现状的基础上,基于非线性控制理论、分岔理论、时滞动力学等非线性科学的现代分析方法和理论,设计了时滞反馈控制器,对非线性微分动力系统分岔控制的基础理论和应用进行了系统和深入的研究,工作具有较大的理论意义和应用价值。研究内容如下:
     第一章对非线性控制理论、分岔控制和时滞反馈控制的研究方法、现状和进展进行了综述,介绍了本文的研究目的、研究内容和创新点。
     第二章介绍动力学研究的一些基本概念,简述发生鞍结分岔、跨临界分岔、叉形分岔的充分必要条件,以及这三种静态分岔相互转换的条件;介绍分岔控制器设计及分析的主要方法以及时滞动力学的一些分析方法。
     第三章设计含有线性时滞位移和时滞阻尼的时滞反馈控制器,对含有平方和立方非线性项的强迫Duffing振动系统在主共振和亚超谐共振时的分岔进行控制,找到了系统产生鞍结分岔的临界条件,消除了系统的鞍结分岔,同时降低了系统的振幅,得到系统稳态响应的振幅与控制参数之间的关系,给出设计该类时滞反馈控制器的思路。
     第四章用含有两个时滞量的线性时滞反馈控制器对参数激励的van der Pol-Duffing系统的主参数共振进行控制。通过对平均方程和分岔响应方程分析,得到时滞参数对分岔响应的影响,进而提出控制策略,设计时滞控制器,对系统分岔进行控制。
     研究轴向周期激励作用下梁的后屈曲动力学分岔行为,设计线性时滞阻尼控制器,对临界力进行了有效地控制,并有效地消除超临界分岔,改变亚临界分岔的位置。
     第五章对线性和非线性时滞反馈控制器联合作用下的分岔控制进行了研究。以van der Pol-Duffing系统为例,分析了静平衡情况时的Hopf分岔,得到了时滞参数与Hopf分岔产生条件的关系;对于存在稳态周期响应的情况,推导出了时滞参数与稳定极限环幅值的关系,从而达到通过时滞反馈对稳定极限环幅值的控制。
     第六章对受移动载荷作用的非线性梁进行研究,设计一类反馈控制器,分析
As a leading subject and new interests of nonlinear researches, bifurcation control and time delay dynamics come up with great challenge. It aims at designing a controller to modify the bifurcation properties of a given nonlinear system, and achieving some desirable behaviors. Through a complete summary and examination of the history and the actuality of the bifurcation control research, a systematic investigation into the fundamental theory and application of the bifurcation control of a differential nonlinear system has been studied based on the nonlinear vibration theory, the nonlinear dynamics theory, the bifurcation theory and the time delay dynamics theory, and the time delay feedback controller has been designed. The studies have more profound theoretical significances and important engineering application values, which contribute to the development and application of bifurcation control. The main contents in this paper can be stated as follows:Chapter one outlines some study methods, nonlinear theory and recent advances on bifurcation control first, and introduces the aim, contents and innovations of the study in this paper.Chapter two introduces some basic conceptions on dynamics. The necessary and sufficient conditions of genesis for three elementary static bifurcations, including saddle-node bifurcation, transcritical bifurcation and pitchfork bifurcation, and transfer conditions between each other are introduced. Then some design and analysis methods on bifurcation controller and time delay dynamics are presented.In chapter three, a controller with two linear time delays-----displacement andvelocity, is designed to the forced Duffing system with quadratic and cubic nonlinearities, Studies cover primary resonance, subresonance and superresonance. The critical conditions of bifurcation are obtained based on the study. The saddle-node bifurcation is eliminated as well as the resonance amplitude is reduced; the relationship between steady response amplitude and controller parameters is obtained and design method of this kind time delay controller is provided.In chapter four, a linear controller with time delay displacement and time delay velocity is designed to van der Pol-Duffing system, and principle parametric resonance is studied. Using the perturbation method, the average equations and bifurcation equation are obtained. Studying the obtained equations, the effects of main parameters to the bifurcation are found, so the control strategy is advanced. The
    desirable controller is designed and the bifurcation of this system is controlled well.As an engineering case, a post-bulked dynamics bifurcation of a beam subjected to harmonic axial excitation is studied. Using the time delay velocity feedback controller, the critical force control is achieved. The study indicates this controller can effectively eliminate super-critical bifurcation or change the position of sub-critical bifurcation.In the chapter five, van der Pol-Duffing system with the controller including linear time delay items and nonlinear items at the same time is investigated. Hopf bifurcation for the static steady case is studied and time delay parameters' effects on the condition of this bifurcation are obtained. For the steady periodic resonance case, the relationship between limit cycle amplitude and time delay parameters is obtained, so the aim of amplitude control of limit cycle with time delays is achieved.In the chapter six, a nonlinear beam under moving loads is investigated. The dynamics differential equation with time delays is obtained and the dynamics behaviors of this system are analyzed. Particularly, a kind of nonlinear time delay controller is introduced, which can obtain the results that cannot be obtained with the linear time delay controller.In this paper, some innovative thinking is that using bifurcation control theory investigates the nonlinear dynamical systems, which enriches the nonlinear dynamics theory and expands the nonlinear theory. The incorporates are as follows:1. The time delay feedback control is used to investigate nonlinear dynamic systems control, especially for the bifurcation control. Some kind of time delay feedback controllers are designed and studied. The systems' dynamic behaviors are optimized and some control strategies for the various systems are obtained.2. Time delay controllers with multi time delays are new exposure in the interrelated field. In this paper, controller with two time delays, including displacement and velocity, is investigated. Using the designed controllers, the Duffing system with quadratic and cubic nonlinearities and van der Pol-Duffing system with parametric motivation are investigated. The results indicate these controllers can be well used to bifurcation control of primary resonance.3. Using linear time delay velocity controller, the flexible post-bulking beam under parametric excitation and harmonic motivation is investigated. The aims, including controlling critical force, eliminating super-critical bifurcation and changing the bifurcation position of sub-critical bifurcation, are achieved.4. A nonlinear beam under moving loads is studied. The dynamics differential
    equation with time delays is obtained and the dynamics behaviors of this system are analyzed. A nonlinear time delay controller is obtained, which can content the bifurcation aims and meantime make the response amplitude invariably. This result is meaning for practical engineering.Through the present research work, the bifurcation control theory is enriched and developed. The studied have put forward the theoretical foundations and approaches for designing time delay feedback controllers for optimizing the dynamics behaviors. The bifurcation control is a new researching field that needs not only more deeper and wider theoretical studies but practical applications. Due to the widely existence of time delays and the superiority of time delay control, it can be anticipated that new results publications on this subject will be appeared, more and more researchers will pursue further in this stimulating and promising direction of the new research.
引文
[1] 曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安交通大学出版社.2001
    [2] 高为炳.非线性控制系统的发展.自动化学报.1991,17(5):513-523
    [3] Rugh D, Nonlinear System Theory, The John Hopkins University Press, Beltimore, 1980
    [4] 曹建福,韩崇昭.非线性控制系统的频谱理论及应用,控制与决策,1998,3:193-199
    [5] 谢惠民.绝对稳定性理论及应用.北京:科学出版社.1987.
    [6] Brocket R W, Volterra series and geometric control theory, Automatic, 1976, 12: 167-176
    [7] Billings S A, Gray J O & Owens D H, Nonlinear system design, Peter Peregrinus Ltd, 1984
    [8] 方洋旺.非线性控制系统的综合理论研究.西安交通大学.博士论文.1997
    [9] 陆启韶.分岔与奇异性.上海科技教育出版社.1995
    [10] 陈予恕.两自由度分段线性振动系统的一种解法.固体力学学报,1982,(2):77-86
    [11] 陈予恕,金志胜.两自由度分段线性振动系统的亚谐解.应用数学和力学,1986,7(3):206-213
    [12] 毕勤胜,陈予恕.Duffing系统解的转迁集的解析表达式.力学学报,1997,29(5):573-581
    [13] 徐鉴,陈予恕.具有非线性阻尼和刚度参数激励的Hopf分岔和混沌运动.非线性动力学学报,1995(增刊):15-20
    [14] Jin J D, Bifurcation Analysis of Double Pendulum with a Follower Force, Journal of Sound and Vibration, 1992, 154(2): 191-204
    [15] Jin J D, Stability and Chaotic Motions of a Restrained Pipe Conveying Field, Journal of Sound and Vibration, 1997, 208(3): 427-439
    [16] 金基铎.超音速板颤振问题中的局部分岔.力学与实践,1997,19(2):29-31
    [17] 唐驾时,尹小波.一类强非线性系统的分岔.力学学报,1996,8(3):23-29
    [18] 袁小阳,朱均.不平衡转子-滑动轴承系统的分岔.振动工程学报,1996,9(3):266-275
    [19] Diekmann O, et al. Delay Equations, Functional-, Complex-, and Nonlinear Analysis. New York: Springer-Verlag, 1995
    [20] Stepan G. Retarded Dynamics System: Stability and Characteristic Functins. Essex: Longman Scientific and Technical, 1989
    [21] Kuang Y. Delay Differential Equations with Applications to Population Dynamics. New York: Academic Press, 1993
    [22] 秦元勋等,带有时滞的动力系统的稳定性.第二版.北京:科学出版社,1989
    [23] Lu H T, He Z Y. Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE transaction on Circuits&System-I, 1996, 43(8): 700-702
    [24] Fischer I, et al. High-dimensional chaotic dynamics of an external cavity semiconductor laser. Phys. Rev. Lett., 1994, 73(16): 453-463
    [25] Belair J, et al. Frustration, stability, and delay-induced oscillations in a neural network model. SIAM Journal on Applied Mathematics, 1996, 56(1): 245-255
    [26] Zhang L, et al. Stability of active-tendon structural control with time delay. Journal of Engineering Mechanics, 1993, 119(5): 1017-1024
    [27] Olgac N, et al. Introduction to the dual frequency fixed delayed resonator. Journal of Sound and Vibration, 1996, 189(3): 355-367
    [28] Palkovics L, Venhovens Th P J. Investigation on the stability and possible chaotic motion in controlled wheel suspension systems. Vehicle System Dynamics, 1992, 21(5): 269-296
    [29] Just W, Bernard T, Ostheimer M, et al. Mechanism of time-delayed feedback control. Physical Review Letters, 1997, 78(2): 203-206
    [30] Faria F, Magalhaes L T. Nomal Forms for retards functional differential equations with parameters and applications to Hopf bifurcation. Journal of Differential Equations, 1995, 122: 181-200
    [31] Faria F, Magalhaes L T. Nomal Forms for retards functional differential equations and applications to Bogdanov-Takens singularity. Journal of Differential Equations, 1995, 122: 201-224
    [32] Stech H W. Hopf bifurcation calculation for functional differential equations. J Math Anal Appl, 1985, 109: 472-491
    [33] Hu H Y, Dowell E H, Virgin L N. Resonance of a harmonically forced Duffing oscillators with time delay state feedback. Nonlinear Dynamics, 1998, 15(4): 311-327
    [34] Belair J, Campell S A. Stability and bifurcations of equilibria in a multi-delayed differential equation. SIAM J Appl Math, 1994, 54(4): 1402-1424
    [35] 傅卫平等.机床动力学中含时滞颤振系统的分岔问题的研究.非线性动力学学报,1994,1(4):319-325
    [36] Compell S A, et al. Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback. Chaos, 1995, 5(4): 640-645
    [37] 唐风军,黄振勋,阮炯.以滞量为参数的广义Lienard方程的Hopf分岔.数 学年刊(A辑),1998,19(4):469-476
    [38] Stepan G, Hailer G. Quasiperiodic oscillation in robot dynamics. Nonlinear Dynamics, 1995, 8(4): 513-528
    [39] Hu H Y, Wu Z Q. Stability and Hopf bifurcation of a four-wheel-steering vehicle model with driver's delay. In: Proceedings of IUTAM Symposium on Nonlinear Oscillations of Mechanical Systems. Honai: Kluwer Academic Publishers, 1999
    [40] Luzyanina T, Roose D. Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations. J Comput Appl Math, 1996, 72: 379-392
    [41] Kaplan J L, York J A. Ordinary differential equations which yields periodic solutions of differential delay equations. J Math Anal Appl, 1974, 48: 317-324
    [42] Casal A, Freeman M. A. Poincare-Lindstedt approach to bifurcation problem for differential delay equations. IEEE Trans Autom Control, 1980, 25: 967-973
    [43] Morris H C. A perturbation approach to periodic solutions of delay differential equations. Journal of Institute of Mathematics and Applications, 1976, 18: 15-24
    [44] Macdonald N. Harmonic balance in delay-differential equations. Journal of Sound and Vibration, 1995, 186(4): 649-656
    [45] Nayfeh A H, Chin C-M, Pratt J. Perturbation methods in nonlinear dynamics: applications to maching dynamics. J Manufact Sci Tech, 1997, 119: 485-493
    [46] Moiola J L, Chen G. Hopf bifurcation in time-delayed nonlinear feedback control systems. In: Proceedings of the 34th Conference on Decision and Control. New Orieans, 1995: 942-948
    [47] Yoshitake Y, et al. Vibration of a forced self-excited system with time lag. Trans JSME, Series C, 1983, 49(439): 298-305
    [48] Plaut R H, Hisen J C. Nonlinear structural vibrations involving a time delay in damping. Journal of Sound and Vibration, 1987, 117(3): 497-510
    [49] Sato K, et al. Dynamic motion of a nonlinear mechanical system with time delay (analysis of the self-excited vibration by an averaging method). Transactions of Japanese Society of Mechanical Engineering, Series C, 1995, 61(685): 1855-1860
    [50] Sato K, et al. Dynamic motion of a nonlinear mechanical system with time delay (analysis of the forced vibration by an averaging method). Trans JSME, Series C, 1995, 61(685): 1861-1866
    [51] Lin J S, Weng C I. A nonlinear dynamic model of cutting. Int J Math Tools Manufact, 1990, 30(1): 53-64
    [52] Heiden U an der, Walther H O. Existence of chaos in control system with delayed feedback. Journal of Differential Equations, 1983, 47: 273-295
    [53] Palkovics L, Venhovens Th P J. Investigation on the stability andpossible chaotic motion in controlled wheel suspension systems. Vehicle System Dynamics, 1992, 21(5): 269-296
    [54] Tsuda Y, et al. Chaotic behavior of a nonlinear vibrating system with a retarded argument (characteristics in the region of subharmonics resonance). Trans, JSME, Series C, 1993, 59(564): 2425-2432
    [55] Berger B S, et al. Complex dynamics in metal cutting. Quaterly of Applied Mathmatics, 1993, LI(4): 601-612
    [56] Plaut R H, Hisen J C. Chaos in a mechanism with time delays under parametric and external excitation. Journal of Sound and Vibration, 1987, 114(1): 73-90
    [57] Boe E, Chang H C. Transition to chaos from a two-torus in a delayed feedback system. Int J of Bifur Chaos, 1991, 1: 67-81
    [58] Ueda Y, Ohta H, Stewart H B. Bifurcation in a system described by a nonlinear differential equation with delay. Chaos, 1994, 4: 75-83
    [59] Pyragas K. Continuous control of chaos by self-controlling feedback. Physics Letters A, 1992, 170: 421-428
    [60] Pyragas K. Predictable chaos in slightly perturbed unpredictable chaotic system. Phys Lett A, 1993, 181: 203-210
    [61] Celka P. Control of time-delayed feedback systems with application to optics. International Journal of Electronics, 1995, 79(6): 787-795
    [62] Socolar J E S, et ai. Stability unstable periodic orbits in fast dynamical systems. Physics Reviews E, 1994, 50: 3245-3248
    [63] Pyragas K. Control of chaos via extended delay feedback. Phys Lett A, 1995, 206: 323-330
    [64] Nakajima H, et al. Automatic adjustment of delay time and feedback gain in delay feedback control of chaos. IEICE Trans Fundamentals, 1997, E80-A, 9: 1554-1559
    [65] 胡海岩,王在华.非线性时滞动力系统的研究进展.力学进展,1999,29(4):501-512
    [66] Abed E H, Fu J H. Local feedback stabilization and bifurcation control: Part Ⅰ. Hopf bifurcation, Syst. Contr. Lett., 1986, 7: 11-17
    [67] Abed E H, Fu J H. Local feedback stabilization and bifurcation: Ⅱ. Stationary bifurcation, Syst. Contr. Lett., 1987 8: 467-473
    [68] Abed E H, Wang H O, Chen R C. Stabilization of period doubling bifurcations and implications for control of chaos, Physica D. 1994 70: 154-164
    [69] Chen G, Fang J Q, Hong Y, et al. Controlling Hopf bifurcations: The Continuous Case, ACTA Physica China. 1999, 8: 416-422
    [70] Chen G, Fang J Q, Hong Y, et al. Controlling Hopf bifurcations: The Discrete Case, Dis. Dyn. Nat. Soc, 2000
    [71] Chen G, Liu J, Yap K C. Controlling Hopf bifurcations, Proc. Int. Symp. Circ. Syst., (Monterey, CA), 1997, III639-642
    [72] Chen G, Chaos, Bifurcation, and their control, in The Wiley Encyclopedia of Electrical and Electronics Engineering, ed, Webster J, (Wiley. NY), 1999 3: 194-218
    [73] Chen G. Controlling Chaos and Bifurcations in Engineering Systems, (CRC Press, Boca Raton, FL), 1999
    [74] Chen X, Gu G, Martin P, et al. Bifurcation control with output feedback and its applications to rotating stall control. Automatic, 1998, 34: 437-443
    [75] Gu G, Sparks A G, Banda S S, et al. Bifurcation based nonlinear feedback control for rotating stall in axial flow compressors. Int. J. Cont., 1997, 6: 1241-1257
    [76] Yabuno H. Bifurcation control of parametrically excited Duffing system by a combined linear-plus-nonlinear feedback control. Nonlinear Dynamics, 1997, 12: 263-274
    [77] Kang W, Gu G, Sparks A, et al. Bifurcation test functions and surge control for axial flow compressors. Automatic. 1999, 35: 229-239
    [78] Gu G, Chen X, Sparks A G, et al. Bifurcation stabilization with local output feedback. SIAM. J. Contr. Optim, 1999,. 37: 934-956
    [79] Wang H O, Abed E H. Bifurcation control of a chaotic system, Automatic. 1995, 31: 1213-1226
    [80] Abed. E H, Wang H O. "Feedback control of bifurcation and chaos in dynamical systems", in Nonlinear Dynamics and Stochastic Mechanics, eds, Kliemann W & Sri Namachchivaya N, (CRC Press, Boca Raton, FL), 1995, 153-173
    [81] Abed E H, Wang H O, Tesi A. "Control of bifurcation and chaos", in the Control Handbook. Eds, Levine W S, (CRC Press, Boca Raton, FL), 1995, 951-966
    [82] Chen D, Wang H O, Chen G. Anti-control of Hopf bifurcation through washout filters. Proc. 37th IEEE Conf. Decision and Control, (Tampa, FL), 1998. 16-18: 3040-3045
    [83] Wang H O, Chen D, Bushnell L G. Control of bifurcations and chaos in heart rhythms. Proc. 36th IEEE Conf. Decision Control, (San Diego, CA), 1997, 395-400
    [84] Wang H O, Chen D, Chen G. Bifurcation control of pathological heart rhythms, Proc. IEEE Conf. Contr. Appl., Italy, 1998, 858-862
    [85] Moiola J L, Chen G. Hopf bifurcation Analysis: A Frequency Domain Approach, (World Scientific, Singapore), 1996
    [86] Berns D W, Moiiola J L, Chen G. Feedback control of limit cycle amplitudes from a frequency domain approach, Automatica, 1998, 34: 1567-1573
    [87] Berns D W, Moiiola J L, Chen G. Predicting period-doubling bifurcations and multiple oscillations in nonlinear time-delayed feedback systems." IEEE Trans. Circuits Syst. I , 1998 45: 759-763
    [88] Moiola J L, Berns D W, Chen G. Feedback control of limit cycle amplitudes. Proc. IEEE Conf. Decision and Contr., (San Diego, CA), 1997:1479-1485
    [89] Moiola J L, Chen G. Controlling the multiplicity of limit cycles. Proc. IEEE Conf. Decision and Contr., 1998:3052-3057
    [90] Basso M, Evangelisti A, Genesio R, et al. On bifurcation control in time delay feedback systems. Int. J. Bifurcation and Chaos, 1998, 8: 713-721
    [91] Moiola J L, Desages A C, Romagnoli J A. Degenerate Hopf Bifurcations via feedback system theory-higher-order harmonic balance. Chem. Eng. Sci. 1991, 46: 1475-1490
    [92] Genesio R, Tesi A, Wang H O, et al. Control of period doubling bifurcations using harmonic balance. Proc. Conf. Decis. Contr., San Antonio, 1993, TX: 492-497
    [93] Mees A I & Chua L O, The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems, IEEE Trans. Circuits Syst., 1979, 26: 235-254
    [94] Moiola J L, Colantonio M C, Donate P D. Analysis of static and dynamic bifurcation from a feedback systems perspective. Dyn. Stab. Syst. 1997, 12: 293-317
    [95] Moiola J L, Berns D W, Chen G. Controlling degenerate Hopf bifurcations. Latin American Appl. Res., 1999, 29: 213-220
    [96] Kang W, Bifurcation and normal form of nonlinear control systems. Parts I and II. SIAM J. Contr. Optim, 1998, 36: 193-232
    [97] Chen G, Moiola J L, Wang H O. Bifurcation control: theories, methods, and applications. Int. J. of Bifurcation and Chaos, 2000, 10: 511-548
    [98] Chen G, Dong X. From Chaos to Order: Perspectives, Methodologies, and Application. Singapore: World Scientific Series on Nonlinear Science, 1998, Series A, 24
    [99] Chen G, Moiola J L. An overview of bifurcation, chaos and nonlinear dynamics in control systems. J. Franklin Institute, 1994, 331B: 819-858
    [100]Chen G. Chaos: Control and Anti-control, IEEE Circuits and Systems Society Newsletter. March 1998. 1-5
    [101] Tesi A, Abed E H, Genesio R, et al. Harmonic balance analysis of period-doubling bifurcation with implications for control of nonlinear dynamics. Automatica, 1996, 32: 1255-1271
    [102] Kang W, Krener A J. Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems. SIAM J. Contr. Optim., 1992, 30: 1319-1337
    [103] Kang W. Bifurcation control via state feedback for systems with a single uncontrollable model. SIAM J. Contr. Optim., 2000, 38: 234-256
    [104] Alvarez J, Curiel L E. bifurcations and chaos in a linear control system with saturated input. Int. J. bifurcation and chaos, 1997, 7: 1811-1822
    [105] Brandt M E, Chen G. Feedback control of a quadratic map model of cardiac chaos. Int. J. Bifurcation and Chaos, 1996, 6: 715-723
    [106] Cui F, Chew C H, Xu J, et al. Bifurcation and chaos in the Duffing Oscillator with a PID controller. Nonlinear Dynamics, 1997, 12: 251-262
    [107] Lowenberg M H, Richardson T S. Derivation of non-linear control strategies via numerical continuation. Proc AIAA Atmospheric Flight Mechanics Conference, 1999, AIAA-99-4111: 359-369
    [108] Moore F K, Greitzer E M. A theory of post-stall transients in axial compressors: Part Ⅰ development of the equations. ASME J, Engr. Gas Turbines and Power, 1986, 108: 68-76
    [109] Streit D A, Krousgrill C M, Bajaj A K, Combination parametric resonance leading to periodic ang chaotic response in two-degree-of-freedom systems with quadratic nonlinearities. J. Sound & Vib., 1988, 124: 470-480
    [110] Wang X F, Chen G. Chaotification via arbitrarily small feedback controls: theory, method, and application. Int. J. of Bifur. Chaos, 2000, 10: 549-570
    [111] Calandririni G, Paolini E, Moiola J L, et al. Controlling limit cycles and bifurcation, in Controlling Chaos and Bifurcatons in Engineering Systems. ed. Chen G, (CRC Press, Boca Raton, FL), 1999: 200-227
    [112] Bleich M E, Socolar J E S. Stability of periodic orbits controlled by time-delayed feedback. Phys. Lett., 1996, A210: 87-94
    [113] Ji J C, Leung A Y T. Bifurcation control of a parametrically excited Duffing system. Nonlinear Dynamics 2002 27: 411-417
    [114] Wang X F, Chen G, Yu X H. Anti-control of continuous-time systems by time-delay feedback. Chaos, 2000, 10: 771-779
    [115] Vieira M de S, Lichtenberg A J. Controlling chaos using nonlinear feedback with delay. Phy. Rev., 1996, E54: 1200-1207
    [116] Pyragas K. Control of chaos via extended delay feedback. Phys. Lett., 1995, A206: 323-330
    [117] Kittel A, Parisi J, Pyragas K. Delayed feedback control of chaos by self-adapted delay time. Phys. Lett., 1995, A198: 433-436
    [118] Chen G, Liu J, Nicholas B, et al. Bifurcation dynamics in discrete-time delayed\feedback control systems. Int. J. Bifurcation and Chao, 1999, 9: 287-293
    [119] Konishi K, Ishii M, Kokame H. Stabilizing unstable periodic points of one-dimensional nonlinear systems using delayed-feedback signals. Phys. Rev., 1996, E54: 3455-3460
    [120] Mareels I M Y, Bitmead R R. Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization. Automatic, 1986, 22: 641-665
    [121] Mareels I M Y, Bitmead R R. Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization Ⅱ—analysis. Automatic, 1988, 24: 485-497
    [122] Praly L, Pomet J B. Periodic solutions in adaptive systems: The regular case. Proc. IFAC 10th Triennual World Congress, 1987, 10: 40-44
    [123] Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett., 1992, A170: 421-428
    [124] Pyragas K, Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback. Phys. Lett., 1993, A180: 99-102
    [125] Ydstie B E, Golden G C. Bifurcation and complex dynamics in adaptive control systems. Proc. IEEE Conf. Decision Contr., Athens, 1986: 2232-2236
    [126] Ydstie B E, Golden M P. Chaos and strange attractors in adaptive control systems. Proc. IFAC World Congress, 1987, 10: 127-132
    [127] Ydstie B E, Golden M P. Chaotic dynamics in adaptive systems. Proc. IFAC Workshop on Robust Adaptive Control, Newcastle, 1998, 14-19
    [128] Dibernardo M. An Adaptive Approach to the Control and Synchronization of Continuous-Time Chaotic Systems. Int. J. of Bifurcations and Chaos, 1996, 6: 557-568
    [129] Wang H O &, Abed E H. Robust control of period doubling bifurcations and implications for control of chaos. Proc. 33rd IEEE Conf. Decision and Control, Orlando, 1994: 3287-3292
    [130] 乔宇,王洪礼,竺致文等.电力系统的分岔控制研究.力学学报.2002.34:195-198
    [131] Senjyu T & Uzeato K. stability analysis and suppression control of rotor oscillation for stepping motors by Lyapunov direct method. IEEE Trans. Power Electron., 1995, 10: 333-339
    [132] Littleboy D M, Smith P R. Using bifurcation methods to aid nonlinear dynamic inversion control law design. J. Guidance Contr. Dyn., 1998, 21: 632-638
    [133] Iida S K, Ogawara K, Furusawa S. A study on bifurcation control using pattern recognition of thermal convection. JSME. Int. J. Series B—Fluid and Thermal Eng., 1996, 39: 762-767
    [134] Hill D J, Hiskens I A, Yang Y. Robust, adaptive or nonlinear control for modern power systems. Proc. 32nd IEEE Conf. Decision and Control. (San Antonio, TX), 1993
    [135] Abed E H. Bifurcation-theoretic issues in the control of voltage collapse, in Proc. IMA Workshop on Systems and Control Theory for Power Systems, eds. Chow J H, Kokotovic P V & Thommas R J, (Springer, NY), 1995: 1-21
    [136] Zavodney L D, Nayfeh A H. The response of a single-degree-of freedom system with quadratic and cubic nonlinearities to a principal parametric resonance. J Sound and Vibr., 1988, 120: 63-93
    [137] Liao J J, Wang A P, Ho C M, et al. a robust control of a dynamic beam structure with time delay effect. Journal of Sound and Vibration, 2002, 252: 835-847
    [138] Aboarayan A M, Nayfeh A H, Mook D T. Nonlinear response of a parametrically excited buckled beam, Nonlinear Dynamics. 1993, 4: 499-525
    [139] 季进臣,陈予恕.参激屈曲梁的倍周期分岔和混沌运动的实验研究.实验力学.1997.12:248-259
    [140] Bogoliubov N N, Mitropolsky. Asymptotic methods in the theory of nonlinear oscillations. New York: Gordon and Breach, 1981
    [141] Nayfeh A H, Balachandran B. Applied Nonlinear Dynamics. New York: John Wiley and Sons, 1995
    [142] Nayfeh A H, Mook D T. Nonlinear Oscillations. New York: John Wiley and Sons, 1995
    [143] 张伟,陈予恕.含有参数激励非线性动力系统的现代理论的发展.力学进展,1998,28(1):1-16
    [144] Bogoliubov N N, Mitropolsky. Asymptotic methods in the theory of nonlinear oscillations. New York: Gordon and Breach, 1981
    [145] Hsu C S. Some simple exact periodic responses for a nonlinear system under parametric excitation. ASMEJ Appl. Mech., 1974, 41: 1135-1137
    [146] Nayfeh A H. Introduction to Perturbation Techniques. New York: Wiley-Interscience, 1979
    [147] Sethna P R, Bajaj A K. Bifurcations in dynamical systems with internal resonances. ASMEJ Appl. Mech., 1978, 45: 895-902
    [148] Guckenheimer J, Holmes P J. Nonlinear oscillations, Dynamical systems and bifurcations of vector fields. New York: Springer-Verlag, 1983
    [149] 陈予恕.非线性振动系统的分岔与混沌理论,北京:高等教育出版社,1993
    [150] Zavodney L D, Nayfeh A H, Sanchez N E. Bifurcation and chaos in parametrically excited single-degree-of-freedom system. Nonlinear Dynamics, 1990, 1: 1~21
    [151] Yano S. Parametric excitation in self-exciting vibration system (3rd report, the influence of resonance of cubic non-linearity). Bulletin of the JSME, 1984, 27: 1264-1271
    [152] Kotera T, Yana S. Periodic solution and the stability in a non-linear parametric excitation system. Bulletin of the JSME, 1985, 28: 1473-1480
    [153] Yana S, Kotera T. Parametric excitation with an asymmetric characteristic in a self-exciting system (1st report, behaviors of region of resonance of order 1/2). Bulletin of the JSME, 1986, 29: 902-907
    [154] Yana S. Parametric excitation in the self-excited vibration system dry frication (1st report, parametric resonace). Bulletin of the JSME, 1984, 27: 255-262
    [155] 张伟.非线性振动、分岔及混沌.天津:天津大学出版社,1992
    [156] Tang J S, Fu W B, Li K A. Bifurcations of a parametrically excited oscillator with strong nonlinearity. Chinese Physics, 2002, 11(10): 1004-1007
    [157] Lu Q S, To C W S. Principal resonance of a nonlinear system with two-frequency parametric and self-excitation. Nonlinear Dynamics, 1991, 2: 419~444
    [158] Najaj A K. Bifurcations in a parametrically excited nonlinear oscillator. Int J. Non-linear Mechanics, 1987, 22: 47-59
    [159] Sri Namachchivaya N, Ariaratnam S T. periodically perturbed Hopf bifurcation. SISM J Appl. Math., 1987, 47: 15-39
    [160] Chen Y S, Xu J. Global bifurcations and chaos in van der Pol-Duffing-Mathieu system with three well potential oscillator. Acta Mechanica Sinica, 1995, 11(4): 357-372
    [161] Troger H, Hsu C S. Response of a nonlinear system under combined parametric and forcing excitation. ASME J Appl Mech, 1977, 44: 179-181
    [162] Nayfeh A H. Interaction of fundamental parametric resonances with subharmonic resonances of order one-half. Journal of Sound and Vibration, 1984, 96: 333-340
    [163] 张伟,霍拳忠.参数激励与强迫激励联合作用下非线性振动系统的分岔.力学学报,1991,23(4):464-474
    [164] 符文彬.非线性动力系统的分岔控制研究:[湖南大学博士论文].长沙:湖南大学工程力学系,2004
    [165] J C Ji, C H Hansen. Nonlinear response of a post-bulked beam subjected to a harmonic axial excitation. Journal of Sound and Vibration, 2000, 237(2): 303-318
    [166] 陈予恕,叶敏,詹凯军.非线性Mathieu方程1/2亚谐分岔解的实验研究.应用力学学报,1990,7(4):11-16.
    [167] 徐鉴,陆启韶,王乘.van der Pol-Duffing时滞系统的稳定性和Hopf分岔.力学学报,2000,32(1):112~116
    [168] E Yu, Y. Yuan, J. Xu Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback. Communication in Nonlinear Science and Numerical Simulation, 2002, 7: 69~91
    [169] Maccari A. Vibration control for primary resonance of van der Pol oscillator by a time delay state feedback. Int. J. Non-linear Mechanics, 2003, 38: 128~131
    [170] Xu J, Chung K W. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D. 2003, 180: 17~39
    [171] Ji J C, Leung A Y T. Resonances of a non-linear s. d. o. f, system with two time-delays in linear feedback control. J. of Sound and Vibration. 2002, 253(5): 985~1000
    [172] Abhyankar N S, Hall E K, Hanagud S V. Chaotic vibrations of beams: numberical solution of partial differential equation. Journal of Applied Mechanics, 1993, 60: 167-174
    [173] 张年梅,杨桂通.非线性弹性梁在谐波激励下的次谐和超次谐响应.应用数学和力学,1999,20(12):1224-1228.
    [174] Olsson M. On the fundamental moving load problem. Journal of sound and vibration 1991, 145(2), 299-307
    [175] Sinddiqui S A Q, Golnaraghi M F, Heppler G R. Dynamics of a flexible beam carrying a moving mass using perturbation, numerical and time-frequency analysis techniques. Journal of sound and vibration 1999, 229(5), 1023-1055
    [176] Law S S, Chan T H T, Zeng Q H. Moving force identification: a time domain method. Journal of Sound and Vibration, 1997, 201: 1-22
    [177] Law S S, Chan T H T, Zeng Q H. Moving force identification-a frequency and time domain analysis. Journal of Dynamics, Measurement and Control, 1999, 121: 394-401
    [178] Chan T H T, Law S S, Yung T H, et al. An interpretive method for moving force identification. Journal of Sound and Vibration, 1999, 219: 503-524
    [179] Yu L, Chan T H T. Moving force identification based on the frequency-time domain method. 2003, 261: 329-349
    [180] Yanmeni Wanyou A N, Tchoukuegno R, Woafo P. Non-linear dynamics beam
    ?under moving loads. Journal of Sound and Vibration, 2004, 273: 1101-1108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700