日粮磷水平和VD_3对Na~+/Pi-Ⅱb mRNA表达和磷吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷的大量使用和低利用率造成严重的环境污染和磷资源的浪费,进一步掌握磷吸收的分子机理和调控因素,可为准确掌握磷在日粮中的添加量,提倡低磷耗养殖提供科学依据。
     试验一不同磷水平对Na+/Pi-Ⅱb mRNA表达和磷吸收影响的研究
     本试验旨在研究影响Na+/Pi-Ⅱb mRNA表达量和磷吸收的适宜低磷水平,并比较不同肠段和肾脏对低磷适应性的差异。选用120只21日龄、平均体重为18-22 g的昆明大白鼠(雄),随机分成4组,每组5个重复,每重复6只大白鼠,分别饲喂含磷(总磷)0.2%P(低磷组)、0.4%P(低磷组)、0.6%P(正常磷组)、0.8%P(高磷组)的饲粮,试验期7 d。测定血钙血磷、骨钙骨磷及不同肠段Na+/Pi-Ⅱb转运载体蛋白mRNA表达量和磷的吸收等指标。结果表明:(1)0.2%低磷组回肠、空肠、十二指肠Na+/Pi-Ⅱb载体转运蛋白mRNA表达量分别是0.6%磷水平组的1.96倍(P<0.01)、2.41倍(P<0.01)、1.21倍(P<0.05);但肾脏中Na+/Pi-Ⅱb mRNA表达量比其他三个磷水平组分别低9.19倍、12.86倍、23.15倍,差异均极显著(P<0.01);(2)0.2%低磷组中回肠Na+/Pi-Ⅱb mRNA表达量分别是空肠、十二指肠和肾脏的1.34倍、3.43倍(P<0.05)和6.20倍(P<0.01);肾脏中Na+/Pi-Ⅱb mRNA的表达量最低,分别比空肠、十二指肠低4.60倍(P<0.01)、1.80倍(P<0.05);(3)0.2%低磷组回肠中磷摄入量比0.6%和0.8%磷水平组分别提高22.11%(P<0.05)和19.35%(P<0.05),同时提高血清中VD3含量(P<0.05);不同磷水平对小肠BBMV中磷吸收率影响均不显著(P>0.05),但对肾脏中磷吸收率影响显著,随着磷水平的增高,肾脏BBMV中磷吸收率呈升高趋势。研究表明:(1)低磷提高了回肠中Na+/Pi-Ⅱb载体转运蛋白mRNA表达量和磷的吸收,但显著降低了肾脏中Na+/Pi-Ⅱb载体转运蛋白mRNA表达量和磷的吸收;本研究中,0.2%日粮磷水平可视为从mRNA表达水平影响磷吸收分子机理的日粮磷水平;(2)低磷条件下,大鼠Na+/Pi-Ⅱb载体转运蛋白mRNA表达量以回肠最高,肾脏最低。
     试验二VD缺乏时,不同磷水平对Na+/Pi-Ⅱb mRNA表达和磷吸收影响的研究
     本试验旨在研究VD3对低磷条件下磷吸收和Na+/Pi-Ⅱb转运的调控作用。选择80只断奶后昆明大白鼠,随机分为0.2%P、0.4%P、0.6%P、0.8%P水平组,以0.6%磷水平为对照组,其它三个磷水平为试验组。每组5个重复,每重复4只大白鼠。日粮中不添加VD,其它参照大白鼠的营养需要标准配制。试验7 d。每晚6点每组大白鼠都以40 mg/kg/d剂量大腿肌注VD3代谢抗干扰药物EHDP(二磷酸盐),使试验动物缺乏VD;第7天早晨6点全部屠宰、取样。
     试验显示:(1)在缺乏VD的情况下,两低磷组(0.2%P和0.4%P)骨钙骨磷含量均极显著低于0.6%P和0.8%P组(P<0.01);不同磷水平对血钙血磷未表现出显著性差异;但随着磷水平的增加,血钙和血磷均表现出上升的趋势(P>0.05)。(2)VD缺乏下,不同磷水平极显著影响血清中VD3、PTH、ALP (P<0.01)。0.2%P处理组与0.8%P处理组比较,血清中VD3、PTH、ALP含量分别提高28.64%(P>0.05)、39.16%(P<0.05)和39.69%。(3)不同磷水平显著影响各肠段中Na+/Pi-Ⅱb mRNA相对表达量(P<0.05)。0.2%P水平组与0.8%P水平组比较,回肠、空肠、十二指肠Na+/Pi-Ⅱb mRNA表达量分别高2.08倍(P<0.01)、1.63倍(P<0.01)、1.75倍(P<0.05),肾脏中却降低1.73倍(P<0.05)。(4)VD缺乏条件下,不同磷水平显著影响磷的摄入量(P<0.05),回肠中两低磷组间磷的摄入量分别为62.24和59.21pmol/mg/60s;正常磷组和高磷组磷摄入量分别为84.25和76.22 pmol/mg/60s; 0.2%磷水平组与0.6%磷水平组比较,磷摄入量降低26.12%(P<0.05);其它各肠段和肾脏中也均以低磷组中磷吸收为最低。VD缺乏下不同磷水平对BBMV中磷吸收率影响显著(P<0.05);随着磷水平的降低,磷的吸收率也呈下降趋势,但肾脏中磷吸收率随着磷水平的增高而升高(P<0.05)。
     本试验显示:(1)VD缺乏时低磷降低了Na+/Pi-Ⅱb mRNA表达量和磷的吸收;(2)不同的部位中,磷摄入量和吸收率均以回肠中最高,十二指肠最低。
     试验三不同磷水平下,补充VD3对Na+/Pi-Ⅱb mRNA表达和磷吸收影响的研究
     本研究在试验二的基础上,通过对缺乏VD的试验动物补充VD3后,研究Na+/Pi-Ⅱb转运和磷吸收的变化,以探讨VD3对磷吸收的调控作用。在试验二的基础上,使试验动物先缺乏VD,然后再补充VD3。试验分组和磷水平的设计皆同试验二。试验前6天每晚6点,每组大白鼠仍以40 mg/kg/d剂量大腿肌注VD3代谢抗干扰药物EHDP;屠宰前的12 h,每只老鼠以600 ng/kg·wt(以10ng/mL溶解乙醇中)的剂量腹腔注射1,25-(OH)2D3;第7天早晨屠宰、取样。
     试验结果表明:(1)补充VD3后,骨钙骨磷随着磷水平的增加呈增长趋势;低磷降低骨钙骨磷浓度,0.2%磷水平组骨钙、骨磷分别比0.6%磷水平组低3.03倍(P<0.01)、7.06倍(P<0.01)。(2)给VD缺乏动物补充VD3后,0.2%P组较0.6%P组,血清中VD3、PTH、ALP含量分别提高23.25%(P<0.05)、13.97%(P<0.05)、33.55%(P<0.01)。(3)补充VD3后,低磷极显著提高了不同肠段和肾脏中Na+/Pi-Ⅱb mRNA表达量,且以0.2%P组对Na+/Pi-Ⅱb mRNA表达量影响最显著。四个不同部位中,Na+/Pi-Ⅱb mRNA表达量以回肠受低磷影响最大。(4)给缺乏VD的大白鼠补充VD3显著影响磷的摄入量(P<0.05),四个磷水平中,回肠和空肠中皆以0.2%P水平组磷摄入量为最高,但低磷对肾脏Na+/Pi-Ⅱb mRNA表达量的影响趋势与回肠和空肠相反,即0.6%P和0.8%P组中磷摄入量平均值分别比两个低磷组高。不同部位中以回肠中磷摄入量为最高,其次是空肠、肾脏、十二指肠,磷摄入量分别为129.04、90.95、48.75、39.49 pmol/mg/60s。补充VD3后,不同磷水平对BBMV中磷吸收率影响不显著(P>0.05);但0.2%P与0.6%P组比较,回肠和空肠中磷吸收率高7.57%(P>0.05)、12.57%(P>0.05);肾脏中磷的吸收率随着磷水平的增高而增高,0.6%P组分别比两个低磷组高13.43%和14.61%,但差异不显著。
     综合三个试验结果,在不同日粮磷水平下,无论VD缺乏与否,骨钙骨磷皆随着日粮磷水平增加而升高,低磷增加了PTH和ALP的含量,且在VD缺乏时更为明显;补充VD3后,血清中VD含量增加,PTH和ALP的含量下降;低磷刺激了Na+/Pi-Ⅱb mRNA表达量,但VD缺乏下,磷摄入量随着磷水平下降显著降低,磷吸收率呈相同变化趋势;补充VD3后,Na+/Pi-Ⅱb mRNA和磷摄入量和吸收率增加,且以低磷组提高幅度最大;补充VD3后,不同磷水平对不同部位中磷吸收的影响不一致,低磷刺激回肠和空肠中磷摄入量的提高,但降低了肾脏中磷的摄入量。显示:低磷下,VD3是调控Na+/Pi-Ⅱb和磷吸收的重要因素,不同部位中磷吸收的高低分别为:回肠、空肠、肾脏、十二指肠。
     综上所述,本研究得出结论如下:
     (1)日粮低磷提高Na+/Pi-Ⅱb载体蛋白mRNA表达和磷的摄入量,本研究中,日粮0.2%P可视为大白鼠从mRNA表达水平影响磷吸收分子机理的日粮磷水平。
     (2)大白鼠Na+/Pi-Ⅱb载体蛋白mRNA表达量在回肠最高,肾脏最低;不同肠段或组织中磷吸收高低依次为:回肠、空肠、肾脏、十二指肠。
     (3)VD3是调节动物低磷适应性的一个重要因素,且VD3对磷代谢的调控作用符合基因学说观点。
     (4)VD缺乏后,补充VD3对磷吸收有提高作用,但这种作用随着磷水平的增加逐步减弱。
     (5)不同日粮磷水平和VD3对小肠和肾脏中Na+/Pi-Ⅱb载体转运蛋白mRNA表达量和磷吸收的影响存在差异性。
To reveal the mechanism of phosphate absorption and provide basis for scientific apply Pi or decreased the pollution and waste from phosphate's utilization, and more, define the appropriated factor regulating phosphate uptake, a trial was conducted to determine the effects of gradient dietary Pi on phosphate absorption and a factor regulating low phosphate adaption.
     ExperimentⅠ. Effects of Dietary Phosphate Content on Na+/Pi-Ⅱb Cotransporter mRNA Expression and Pi absorption
     To investigate the effects of low-phosphate diet on Na+/Pi-Ⅱb mRNA and phosphate uptake, and compare the difference between intestinal segments and kidney adaption to low-Pi diet, a study was conducted to determine the effects of phosphate levels on Pi absorption. A total of 120 male Kunming-rats aging 21-days and body weighting 18-22 g was randomly divided into 4 treatments, each treatment consisted of 5 replicates with 6 rats. The four treatments were fed with the basal diet supplemented with 0.2%(low-Pi),0.4%(low-Pi),0.6%(normal-Pi),0.8% P(high-Pi). The experiment lasted for 7 days. On the last day, one of the replicates was slaughtered to determine Ca and Pi concentration of bone and blood or other biochemical indexes.It suggested that (1)Na+/Pi-Ⅱb mRNA expression higher 1.96、2.41、1.21 folds than normal Pi treatment in ileum、jejunum and duodenum compared 0.2%P with 0.6%P. Na+/Pi-Ⅱb mRNA expression in 0.2%P treatment lower 9.19(P<0.01),12.86(P<0.01)、23.15(P<0.01) folds than other three treatments in renal;(2) To 0.2% treatment, Na+/Pi-Ⅱb mRNA expression was higher 1.34(P>0.05)、3.43(P<0.01)、6.20(P<0.01) folds than jejunum、duodenum and renal, and lower 4.60(P<0.01)、1.80(P<0.05) folds in renal compared with jejunum and duodenum. Na+/Pi-Ⅱb mRNA expression is highest in ileum. Pi absorption of 0.2% P treatments higher 22.11% or 19.35% than 0.6%P or 0.8%P treatments(P<0.05), and VD3 concentration of serum is significantly higher than other three treatments. (3) Dietary phosphate no significant effects to Pi absorption rate of BBMV, while affected to it in renal (P<0.05), Pi absorption rate increased with dietary phosphate content(P< 0.05).The results showed that:(1) Low Pi diet significantly increased intestinal Na+/Pi-Ⅱb mRNA expression and Pi absorption,while decreased it in renal. In our study,0.2% dietary phosphate was a optimal low-Pi content that impacted to the mechanism of phosphate absorption from mRNA expression for rat;(2) Expression of Na+/Pi-Ⅱb mRNA is highest in ileum, and lowest in renal.
     ExperimentⅡ. Effects of Dietary Phosphate Content on Na+/Pi-Ⅱb mRNA Expression and Phosphate Absorption under Vitamin D Stress
     The study was conducted to determine the role of vitamin D3 in regulating phosphate absorption and adaption to a low Pi diet. A total of 80 male Kunming-rats aging 21 days and body weighting 18-22 g was randomly divided into 4 treatments, each treatment consisted of 5 replicates with 4 rats. The treatments were fed with the basal diet supplemented with 0.2%、0.4%、0.6% or 0.8% phosphate. The experiment lasted for 7 days. On the former 6 days at every 6 pm, each of the replicates was treated with EHDP (ethane-1-hydroxy-1,1-diphosphonicacid, tetrasodiumsalt) which is known to decrease the circulating levels of 1,25-(OH)2D3. On the 7th day morning, rats were slaughtered for determination of Ca and Pi concentration and phosphate uptake. It showed that:(1) bone Ca and Pi were significant increased compared two low-Pi treatments with 0.6%P or 0.8%P groups under VD restriction(P<0.01);Dietary phosphate levels didn't affected to serum Ca and Pi; but which tend to rise with dietary Pi content (P>0.05).(2) VD、PTH、ALP concentration of serum were significant affected by diet phosphate contents.Compared 0.2%P with 0.8%P group, VD、PTH and ALP of serum were increased 14.35%(P>0.05)、28.83%(P<0.05) and 36.69%(P <0.05), respectively. (3) Dietary phosphate contents also affected to expression of Na+/Pi-Ⅱb mRNA in small intestine. Compared 0.2%P with 0.8%P group, that of ileum、jejunum、duodenum, respectively, increased 2.08 (P<0.01)、1.63 (P<0.05)、1.75 (P<0.05) folds, while decreased 1.73(P<0.05) folds in renal.(4) Dietary phosphate contents also affected to Pi absorption rate when animal shortage of VD(P< 0.05), Pi absorption of two low-Pi treatments, respectively, were 62.24 and 59.21 pmol/mg/60s; the same of normal-Pi or high-Pi treatments were 84.25 and 76.22 pmol/mg/60s, respectively; Compared 0.2%P with 0.6%P group, Pi absorption decreased to 26.12%(P<0.05), this effects appeared to every intestinal segments and kidney. Dietary phosphate significant affected to Pi absorption rate of BBMV, Pi absorption rate decreased with dietary phosphate in intestine, contrasted to that, Pi absorption rate increased with dietary phosphate in renal.
     Overall, Experiment II showed that:(1) Low-Pi diet lowered phosphate absorption under VD stress;(2) The main intestinal segment for phosphate absorption is ileum to rat, and Pi absorption lowest in duodenum.
     ExperimentⅢ. Effects of Dietary Phosphate Content on Na+/Pi-Ⅱb mRNA Expression and Absorption after Injected 1,25-(OH)2D3
     Based on experimentⅡ, mading rat lack of vitamin D firstly, then administration 1,25-(OH)2D3 to them. The aim of the study was to investigate the tendency of Na+/Pi-Ⅱb mRNA and Pi uptake after administrated 1,25-(OH)2D3 toVD restricted rats. As same as experimentⅡ, the former 6 days, injected EHDP still to rats, before 12h before slaughter, rats were injected with 1,25-(OH)2D3 at 600ng/kg.wt. On the 7th day morning, rats were slaughtered for determination of Ca and Pi concentration and phosphate uptake.
     Experiment III showed that:(1) Ca and Pi of bone rised with dietary phosphate after administration 1,25-(OH)2D3 to restricted VD rats. Low-Pi diet declined bone Ca and Pi concentration, compared 0.2%P with 0.6%P group, that decreased 3.03 (P< 0.01) and 7.06 times (P<0.01). (2) Serum VD3、PTH、ALP concentration of 0.2%P treatment increased 23.25%(P<0.05)、13.97%(P<0.05)、33.55%(P<0.01) than 0.2%P treatment after injection 1,25-(OH)2D3.(3) Low-Pi diet significantly elevated Na+/Pi-Ⅱb mRNA expression to every intestinal segments or renal, and more 0.2%P trteatment become the highest, namely mRNA expression of 0.2%P was the impacted treatment mostly after injection 1,25-(OH)2D3. But concerning to different segment, it was highest in ileum.Injection 1,25-(OH)2D3 also significant improved Pi absorption (P <0.05), among four phosphates levels, it is highest in ileum and jejunum to 0.2%P group, while contrasted to that it is higher in duodenum and renal to 0.6%P or 0.8%P treatment, namely Pi absorption in duodenum and renal were higher than in ileum and jejunum when phosphate is 0.6%P or 0.8%P. Ileum was the dominant site to Pi uptake, and secondly, jejunum、rena、duodenum. The value were, respectively,129.04、90.95、48.75、39.49 pmol/mg/60s.Based on the above, it showed Ca and Pi of bone increased with dietary Pi regardless of animal VD varied situation; Low-Pi decreased PTH and ALP concentration of serum, especially nuder situation of restricted VD.Injection 1,25-(OH)2D3 increased serum VD concentration and lowed PTH and ALP concentration.(4)Low-Pi stimulated Na+/Pi-Ⅱb mRNA expression, but Pi uptake downed with diet Pi content when VD is shortaged. Administration 1,25-(OH)2D3 to rats increased expression of Na+/Pi-Ⅱb mRNA, and low-Pi treatment increased most.
     Dietary phosphate no significant effects to Pi uptake of BBMV after injection 1,25-(OH)2D3, but compared 0.2%P group to 0.6%P group, Pi absorption higher 7.57% (P>0.05)and 12.57%(P>0.05)in ileum and jejunum.While it increased with dietary phosphate in renal which display contrast effects to small intestine.
     ExperimentⅢsuggested vitamin D play an important role for regulation low phosphate adaption. The optimal site for phosphorus absorption was ileum, secondly jejunum, then kidney and duodenum.
     In conclusion, it suggested that:(1) Low-Pi diet significantly increased Na+/Pi-Ⅱb mRNA expression and Pi absorption in ileum and jejunum, and decreased in renal.0.2% dietary phosphate was a optimal low-Pi content that impacted to the mechanism of phosphate absorption from mRNA expression for rat. (2) Na+/Pi-Ⅱb cotransporter mRNA expression is highest in ileum, while lowest in kideny for rat under low dietary phosphate. Pi absorption or absorption rate presented a similar effects to small intestine and renal, and the main intestinal segment or organ for Pi absorption is ileum, secondly jejunum and renal, lastly duodenum. (3) VD play an important role for regulating animal adaption to low phosphate, and the mechanism for it was consistent with gene thesis. (4) Injection 1,25-(OH)2D3 to restricted VD rats improve Pi uptake, but this effects decreased with increasing dietary phosphate content. (5) The effects of ditary phosphate content and VD3 on Pi absorption is different between small instine and renal.
引文
陈东梅.2003.植酸酶和柠檬酸对肉鸡生产性能及钙、磷利用率的影响[J].饲料工业,24(1):22-24.
    陈丙波.1991.小鼠饲料配方的研究[J].实验动物与动物实验,2:95-96.
    代建国,李德发,朴香淑等.2004.仔猪小肠上皮细胞刷状缘膜囊制备方法的研究[J].中国畜牧杂志,40(7):6-7.
    代建国,李德发,朴香淑等.2007.二肽在仔猪小肠刷状缘膜囊中跨膜转运的动力学特点研究[J].畜牧兽医学报,38(5):471-475.
    邓近平.2007.生长猪植酸酶磷当量及其与日粮结构的关系[D].长沙:湖南农业大学.
    方热军.2003.猪植物性饲料磷真消化率及其真可消化磷预测模型的研究[D].雅安:四川农业大学.
    龚家竹.全球饲料磷酸盐市场现状与发展方向[J].无机盐工业,2006,38(5):1-3.
    国家环境保护总局自然生态保护司.2002.全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社.2-78.
    何诚.实验动物学[M].北京:中国农业大学出版社.2006:55-58.
    何谓霞,张晓雷.1987.实验性佝偻症对鸡血清、肠、肝、肾、骨碱性磷酸酶的影响[J].畜牧兽医学报,18(2):99-103.
    和占龙,鲁帅尧,赵远等.2006.日粮钙磷对恒河猴血清钙、磷及碱性磷酸酶的影响[J].云南畜牧兽医,4:41-43.
    黄雯.2004.钙磷代谢及肾脏对钙磷平衡的调节[J].中国血液净化.3(4):175-177.
    霍启光.2002.动物磷营养与磷源[M].第1版.中国农业科技出版社.
    李佳,吴东波.2007.添加植酸酶日粮不同磷水平和钙磷比对生长肥育猪血液生化指标和骨骼牲能的影响[J].南方养猪,216:8-11.
    李德发.2005.猪的营养[M].第2版.北京:中国农业科学技术出版社.
    李佳,解鹏,吴东波.2006.猪对磷利用的研究进展[J].猪业科学,9:42-43.
    刘海霞,王子轼,顾建红等.2008.磷对体外培养番鸭破骨细胞生成及骨吸收功能的影响[J].动物营养学报,20(1):102-107.
    罗士津,韩进诚,张铁鹰等.2008.猪无机磷吸收机制研究进展[J].饲料博览,3: 20-22.
    孙 杰,张铁鹰,陈志伟等.2008.生长猪小肠钠依赖型磷摄入特性的研究[J].畜牧兽医学报,2008,39(1):108-112.
    孙会,秦贵信,姜海龙等.2009.宰前短期高钙日粮对猪肌钙含量和u-calpain活性及其mRNA表达量的影响[J].动物营养学报,21(6):960-966.
    孙杰.2006.大白猪和五指山猪小肠钠依赖型磷转运吸收的比较研究[D].青岛:山东理工大学.
    屠焰,范先国,霍启光.1998.影响磷酸盐中磷生物学利用率的因素[J].中国饲料,9:2-4.
    王凤来,张曼夫,陈清明等.2001.日粮磷和钙磷比例对小型猪(香猪)血清、肠、骨碱性磷酸酶及血清钙磷的影响[J].动物营养学报,13(1):36-42.
    王萍.2006.植物磷转运蛋白基因及其表达调控的研究进展[J].植物营养与肥料学报,4(12):583-591.
    王 茵,楼正清,来伟旗.2000.小鼠血液生化指标正常参考值范围的探讨[J].卫生毒理学杂志,14(2):112-114.
    吴信,印遇龙.2006.低氮低磷日粮对生长育肥猪生产性能和生态环境的影响[J].安徽农业科学.34(22):5870-5871,5876.
    姚泰.生理学[M].2005.第一版.北京:人民卫生出版社.28-30.
    易中华,吴利新.2008.植物性饲料磷生物学利用率的测定方法及存在问题[J].江西饲料,5:22-25.
    旷昶,汪儆,何瑞国.2005.猪饲料磷生物学价值的评定[J].动物营养学报,17(3):11-16.
    殷莺,陈靖.2010.成纤维细胞生长因子23与肾脏磷代谢研究新进展[J].中国血液净化,5:276-280.
    殷国荣,姚树展,杨建一等.1993.缺磷症和肝功障碍奶牛血清碱性磷酸酶的诊断价值[J].畜牧兽医学报,24(4):359-365.
    曾冬莲.2008.骨碱性磷酸酶活性测定在营养性VD缺乏症防治中的临床价值[J].井岗山医学报,15(6):46,57.
    翟福利,马厚勋.2009.成纤维细胞生长因子23及其基因表达与磷代谢性疾病的关系[J].中华临床医学杂志,3(12):26-29.
    张艳梅.2006.VD及其活性代谢物的生理功能和机理探讨[J].中国饲料添加剂, 4:13-17.
    张永刚,范明,黄瑞林.2004.不同钙磷水平日粮对钙磷在猪体内代谢的影响[J].中国畜牧兽医,31(11):6-8.
    赵爽,刘源.2009.钙、磷摄人对骨代谢及骨组织形态影响的研究进展[J].中国比较医学杂志.3:7679.
    周雪瑞.甲状旁腺及其研究进展[J].生物学教学,2004,29(12):7-9.
    周玉东.2007.猪磷营养与植酸磷研究进展[J].饲料研究,3:15-17.
    朱元招,葛金山,孙小恒等.2010.低磷日粮对蛋鸡产蛋性能和血清钙磷的影响[J].饲料研究,6:53-56.
    中华人民共和国农业部,中国农业统计资料(2000-2008)[M],北京:中国农业出版社.
    Adeney K L, Siscovick D S, Seliger S L, et al.2009.Association of serum phosphate with vascular and valvular calcification in moderate CKD[J]. J.Am.Soc.Nephrol.20:381-387.
    Andreas W, Leif Dehmelt and Perihan Nalbant.1998.Na+-dependent phosphate cotransporters:The protein families[J]. J.Exp Biol.201:3135-3142.
    Arar M Z A, Iicek H K, Elshihabi I. et al.1999.Epidermal growth factor inhibits Na-Pi cotransport in weaned and suckling rats[J].Am.J.Physiol-Renal Physiol.276: 72-78.
    Armbrecht H J, Boltz M A, Bruns M E H.2003.Effect of age and dietary calcium on intestinal calbindin D-9k expression in the rat[J]. Arch.Biochem.Biophys.420: 194-200.
    Armbrecht H J, ZenserT V, Gross C J.et al.1980.Adaptation to dietary calcium and phosphorus restriction changes with age in the rat[J]. Am.J.Physiol.239:E322-327.
    Bai L, Collins J F, Ghishan F K.2000. Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am.J.Physiol-Cell Physiol.279:C1135-C1143.
    Bar A, Shani M, Fullmer C S. et al.1990.Modulation of chick intestinal and renal calbindin gene expression by dietary vitamin D3,1.25-dihydroxyvitamin D3, calcium and phosphorus[J]. Mol.Cell Endocrinol.72:23-30.
    Beck L, Karaplis A C, Amizuka N.et al.1998.Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities[J]. Proc.Natl.Acad.Sci.U S A.95:5372-5377.
    Beck L, Meyer J R A, Meyer, et al.1996. Renal expression of Na+ phosphate cotransporter mRNA and protein:effect of the Gy mutation and low phosphate diet[J]. Pfliigers Arch-Eur.J.Physiol.431:936-941.
    Bernd T J, Knox F G.1992.Renal regulation of phosphate excretion[M].TheKidney, Physiology and Pathophysiology[J]. New York:Raven.2511-2532.
    Berner W, Kinne R, Murer H.1976. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine[J].Biochem.J.160(3):467-474.
    Biber J, Hernando N, Forster I. et al.2009. Regulation of Na/Pi transporter in the proximal tubule[J]. Pflugers Arch-Euro.J.Physiol.458:39-52.
    Block G A, Hulbert-Shearon T E, Levin N W.et al.1998. Association of serum phosphorus and calcium phosphate product with mortality risk in chronic hemodialysis patients:a national study[J]. Am.J.Kidney Dis.31:607-617.
    Brandis M, Harmeyer J, Mohrmann M, et al.1987.Phosphate transport in brush border membranes from control and rachitic pig kidney cortex and small intestine [J]. J.Physiol.Lond.384:479-490.
    Breusegem S Y, Takahashi H, Giral-Arnal H.et al.2009. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-Ⅱc, and PiT-2 in dietary potassium deficiency[J]. Am.J.Physiol-Renal Physiol,297:F350-F361.
    Brien S P O, Bowe A E, Byrne A.et al.2003.FGF23 and FRP4 internialize sodium-phosphate co transporter [J].J Bone Miner.Res.18(Suppl2):142.
    Busche R, Schroder B, Huber K.et al 2007.The effects of dietary phosphorus deficiency on surface pH and membrane composition of the mucosa epithelium in caprine jejunum[J]. J.Comp.Physiol. B.177:135-142.
    Capuano P, Radanovic T, Wagner C A, et al.2005. Intestinal and renal adaptation to a low-Pi diet of type Ⅱ NaPi cotransporters in vitamin D receptor-and 1αaohase-deficient mice[J]. Am.J.Physiol-Cell Physiol.288(2):C429-C434.
    Caverzasio J, Danisi G, Straub R W, et al.1987. Adaptation of phosphate transport to low phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH[J].Pfliigers Arch.409:333-336.
    Chau H, El-Maadawy S, McKee M D. et al.2003.Renal calcification in mice homozygous for the disrupted type Ⅱa Na/Pi cotransporter gene Npt2. J.Bone.Miner Res.18:644-657.
    ChiouT J, Liu H, Harrison M J.2001.The spatial expression patterns of a phoaphste transporter at the root/soil interface[J]. Plant.J.25:281-289.
    Cien M L, Oneill E, Garcia J V,1998.Phosphate depletion enhance the stability of the amphotropic murine leukemia virus receptor mRNA[J].Virology.240:109-117.
    Collins J F, Bulus N, Ghishan F K.1995. Sodium-phosphate transporter adaptation to dietary phosphate deprivation in normal and hypophosphatemic mice[J]. Am.J.Physiol,268(61):G917-24.
    Coluso R M. King K, Fletcher J W. et al.2003.Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture. J.Comp.Phys.M.173 (6):519-530.
    Cromwell G L.1996.Metabolism and role of phosphorus, calcium, and vitamin D3 in swine nutrition. In:MB Coelho, ET Kornegay, editors. Phytase in animal nutrition and waste management [J]. BASF reference manual, BASF Corp.29.
    Custer M, Lotscher M, Biber J.et al.1994.Expression of Na+/Pi cotransporter in rat kidney:localization by RT-PCR and immunohistochemistry[J]. Am.J.Physiol.266: F767-F774.
    Danisi G, Bonjour J P, Straub R W.1980.Regulation of Na-dependent phosphate influx across the mucosal border of duodenum by 1,25-dihydroxy cholecalciferol[J]. Pflugers Arch.388(3):227-32.
    Danisi G, Murer H.1989.Inorganic phosphate absorption in small intestine[J]. Handbook of physiology-the gastrointestinal system IV.182:323-335.
    Drueke T B.2001.Control of seeondary hyperparathyroidism by vitam D derivatives [J]. Am.J.Kidney Dis.37[Suppl2]:558-561.
    Elhalel M D, Rubinger H W D, Inoue A G M, et al.2004.Regulation of NaPi-Ⅱa mRNA and transporter protein inchronic renal failure:role of parathyroid hormone (PTH)and dietary phosphate (Pi) [J]. Pflugers Archiv-Euro.J.Physiol.449(3): 265-270.
    Escoubet B, Djablai K, Amiel C.1989. Adaptation to Pi eprivation of Cell Na-dependent Pi uptake:A wide spread process[J]. Am.J.Physiol.256 (2):322-328.
    Eto N, Tomita M, Hayashi M.2006. NaPi-mediated transcellular permeation is the dominant route in intestinal inorganic phosphate absorption in rats[J].Drug Metab.Pharmacokinet.21:217-221.
    Euzet S, Lelievre-Pegorier M, Merlet-Benichou C.1995.Maturation of rat renal phosphate transport:effect of trii-odothyronine[J]. J.Physiol.15:449-457.
    Fan M Z, Matthews N M P, Etienne B et al. Expression of brush border L-glutamate transporters in epithelial cells along the crypt-villus axis in the neonatal pig[J]. Am.J.Physiol.287:G385-398.
    Fan M Z, Archbold T, Willem C. et al.2001. Novel methodology allows simultaneous measurement of ture phosphorus digestibility and the gastrointestinal endogenous phosphrus otputs in studies with pigs. J.Nutr.131:2388-2396.
    Fernandez J A.1995.Calcium and phosphorus metabolism in growing pigs II. Simultaneous radio-calcium and radio-phosphorus kinetics[J]. Livestock Pro.Sci.41: 43-254.
    Fleet J C, Wood R J.1999.Specific 1,25 (OH)2D3-mediated regulation of transcellular calcium transport in Caco-2 cells[J]. Am.J.Physiol.276:G958-64.
    Forster I C, Virkki L, Bossi E.2006.Electrogenic kinetics of a mammalian intestinal type Ⅱb Na(+)/P(i) cotransporter[J]. J. Membrane Biol.212(3):177-190.
    Forster I C.Katja K O. Biber J.et al.2002.Foring the ling between structure and function of electrogenic cotransporters:the renal type II a Na+/Pi cotransporter as a case study[J]. Prog.Biophy. Mol.Biol.80:69-108.
    Forster I, Hernando N, Biber J. et al.1998.The voltage dependence of a cloned mammalian renal typeⅡNa/Pi cotransporter (NaPi-2)[J].J.Gen.Physiol.112:1-18.
    Fucentese M, Winterhalter K, Murer H.et al.1995.Functional expression of rat renal Na/Pi-cotransport (NaPi-2)in Sf9 cells by baculovirus system[J]. J. Membrane Biol. 144:43-48.
    Fucentese M, Winterhalter K, Murer H. et al.1997. Functional expression and purification of histidine-tagged rat renal Na/phosphate (NaPi-2) and Na/sulfate (NaSi-1) cotransporters[J]. J. Membrane Biol.160:111-117.
    Fuchs R, Peterlik M.1979. Vitamin D induced phosphate transport in intestinal brush border membrane vesicles [J]. Biochem.Biophys.Res.Commun.100(2):357-359.
    Fuchs R, Plohberger, Perterlik M.1984.Vitamin D activates intestinal Na+-Pi transport by differential effects on luminal membrane and carrier properties[M]. Epithelial calcium and phosphate transport, New York:305-307.
    Fuchs R, Peterlik M.1980.Vitamin D induced phosphate transport in intestinal brush border membrane vesicles[J]. Biochem.Biophys.Res.Commun.93:87-92.
    Fukagawa M, James Kazama J.2006. FGF23:its role in renal bone disease.[J].Pediatr Nephrol.21:1802-1806.
    GhishanF K.1992.Phosphate transport by plasma membranes of enteroeytes during development:role of 1,25-dihydroxy chole calciferol[J].Am.J.Clin.Nutr.55: 873-877.
    Giapros S, Vantziou V, Cholevas et al.2001.Effect of intraenous phosphate on the red cell phosphate metabolites of the preterm infant [J].Nutr.Res.21:71-79.
    Giral H, Caldas Y, Sutherland E. et al.2009. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate[J]. Am.J.Physiol-Renal Physiol. 297(11):F1466-F1475.
    Gma J P, Murer H.1986.Cellular mechanisms of inorganic phosphate transport in the kidney[J]. Physiol Rev.66:36-70.
    Gonza'lez E A, Sachdeva A, Oliver D A.et al.2004.Vitamin D insufficiency and deficiency in chronic kidney disease, a single center observational study[J]. Am.J.Nephrol.24(5):503-510.
    Graham C, Nalbant P, Scholermann B.et al.2003 Characterization of a type Ⅱb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney[J].Am J Physiol-Renal Physiol.284:F727-F736.
    Graham.C, Nalbant P, Scholermann B, et al.2003. Characterization of a type Ⅱb sodium-phosphate cotransporter from zebrafish (Danio rerio)kidney[J]. Am.J.Physiol-Renal Physiol.284:727-736.
    Hammerman M R.1989.The growth hormone-insulin-like growth factor axis in the kidney[J]. Am.J.Physiol-Renal Fluid Electrolyte Physiol.257:503-514.
    Han I K, Lee J H, Piao X S, Li D F.2001.Feeding and management system to reduce environmental pollution in swine production[J]. Asian-Aust.J.Anim.Sci.14(3): 432-444.
    Harrison H E, Harrison H C.1961.Intestinal transport of phosphate:action of vitamin D, calcium, and potassium[J]. Am.J.Physiol.201:1007-1012.
    Harrison H E, Harrison H C.1963.Sodium,potassium,and intestinal transport of glucose, 1-tyrosine, phosphate, and calcium[J]. Am.J.Physiol.205:107-111.
    Hart G R, Furniss J L, Laurie D, Durham S K,2006.Measurement of vitamin D status: background,clinical use, and methodologies[J].Clin.Lab(Zaragoza).52(7-8): 335-343.
    Hashimoto M, Wang D Y, Kam T, et al.2000.Isolation and localization of type Ⅱb Na/Pi cotransporter in the developing rat lung[J]. Am.J.Physiol.157:21-27.
    Hattenhauer O, Traebert M, Murer H, et al.1999. Regulation of small intestinal Na-Pi type Ⅱb cotransporter by dietary phosphate intake[J]. Am.J.Physiol-Gastrointest Liver Physiol.277:G756-G762.
    Hattenhauer 0, Traebert M, Murer H.et al.1999. Regulation of small intestinal Na-Pi type Ⅱb cotransporter by dietary phosphate intake[J]. Am.J.Physiol-Gastrointest Liver Physiol.277:G756-G762.
    Havlin J L.2004. Technical basis for quantifying phosphorus transport to surface and groundwaters[J]. J.Anim.Sci.82(Suppl.):E277-E291.
    Heaney R P, Nordin T E C.2002.Calcium effects on phosphorus absorption:implication for the prevention and co-therapy of osteoporosis [J]. J.Am.Coll.Nutr.21:239-44.
    Hernando N, Forster I C, Biber J.et al.2000. Molecular characteristics of phosphate transporters and their regulation[J]. Exp.Nephrol.8(6):366-75.
    Hernando N, GislerS M, PribanicS, et al.2005.NaPi-IIa and interacting partners[J]. J.Physiol.567 (15):21-26.
    Hildmann B, Storelli C, Danisi G. et al.1982.Regulation of Na+-Pi cotransport by 1,25-dihydroxy vitamin D3 in rabbit duodenal brush-border membrane[J]. Am.J.Physiol-Gastrointestinal and Liver Physiology.242(5):G533-G539.
    Hilfiker H, Hattenhauer O, Traebert M.et al.1999.Characterization of a murine type Ⅱ sodium-phosphate cotransporter expressed in mammalian small intestine[J].Proc.Natl.Acad.Sci.U S A.95(24):14564-14579.
    Huang C H, Fang R J, Yin Y L.et al.2005. Phosphorus digestibility is affected by dietary sodium chloride levels in growing pigs[J]. Faseb.J.19(5):A990-A999.
    Huber K, Hempel R, Rodehutscord M.et al.2006.Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variation in dietary phosphorus intake[J]. Poult.Sci.85(11):1980-1986.
    Huber K, Walter C, Schroder B.et al.2002.Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium[J]. Am.J.Physiol-Regul.Integr.Comp.Physiol.283(2):R296-302.
    Hypponen E, Turner S, Cumberland P.et al.2007. Serum 25-hydroxyvitamin D measurement in a large population survey with statistical harmonization of assay variation to an international standard[J]. J.Clin.Endocrinol.Metab.92(12): 4615-4622.
    Inishi Y, Hase H.2005.Regulation of phosphate balance in the kidney [J].Clin Calcium. 15(7):1213-1228.
    Inoue M, DigmanM A, ChengM et al.2004. Partitioning of NaPi cotransporter in cholesterol, sphingomyelin, and glycosphingolipid-en-riched membrane domains modulates NaPi protein diffusion, clusteringand activity[J]. J.Biol.Chem.279: 49160-49171.
    Ito M, Sakurai A, Hayashi K.et al.2010. An apical expression signal of the renal type Ⅱc Na+-dependent phosphate cotransporter in renal epithelial cells [J]. Am.J.Physiol-Renal Physiol.299:F243-F254.
    Jehele A W, Forgo J, BiberJ, et al.1998. IGF-Ⅰ and vanadate stimulate Na/Pi cotransport in OK cells by increasing type ⅡNa/Pi cotransporter protein stabdity[J]. Pflfigers Arch.437:149-159.
    Jin C, Evangelos Z, Ghirlanda C.et al.2010. Dexamethasone and cyclic AMP regulate sodium phosphate cotransporter (NaPi-IIb and Pit-1) mRNA and phosphate uptake in rat alveolar type Ⅱ epithelial cells[J]. Lung.188:51-61.
    Jungbluth H, Binswanger U.1989. Unidirectional duodenal and jejunal calcium and phosphorus transport in the rat:Effects of dietary phosphorus depletion, ethane-1-hydroxy-1,1-diphopshonate and 1,25 dihydroxycholecalciferol[J]. Res.Exp.Med (Berl).189:439-49.
    Katai K, Miyamoto K, Kishda S. et al.1999.Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3[J]. Biochem.J.343:705-712.
    Katai K, Segawa H, Haga H, et al.1997. Acute regulation by dietary phosphate of the sodium-dependent phosphate transporter (NaPi-2) in rat kidney[J]. Biochem.J.121: 50-55.
    Kavanaugh M P, Miller D G, Zhang W, et al.1994.Cell surface receptors for gibbon ale leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters[J]. Proc.Natl.Acad.Sci.USA.19:7071-7075.
    Kayne L H, D'Argenio D Z, Meyer JH. et al.1993. Analysis of segmental phosphate absorption in intact rats. A compartmental analysis approach[J]. J Clin Invest.91: 915-922.
    Kempson S A.1996.Peptide hormone action on renal phosphate handling[J].Kidney Int. 49:1005-1009.
    Kenneth J, Livak, Thomas D. et al.2001. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-△△ct method [J].Methods.25: 402-408.
    Kinsella J L, Sacktor B.1985. Thyroid hormones increase Na+-H+exchange activity in renal brush bordermembrane proc[J]. Proc.Natl.Acad.Sci (USA).8:3606-3610.
    Kirchner S, Muduli A, Casirola D.et al.2008. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake[J]. Am.J.Clin.Nutr.87:1028-1038.
    Knowlton K F, Radcliffe J S, Novak C L. et al.2004.Animal management to reduce phosphorus losses to the environment[J]. J.Anim.Sci.82(Suppl.):E173-E195.
    Koenig K G, Lindberg J S, Zerwekh J E.1992. Free and total 1,25-di-hydroxyvitamin D levels in subjects with renal disease [J].Kidney Int.41(1):161-165.
    Kohler K, Forster I C, Stange G..et al.2002. Identification of functionally important sites in the first intra-cellular loop of the NaPi-IIa cotransporter[J]. Am. J. Physiol. 282:F687-F696.
    Kumar V, Prasad R.2002. Molecular basis of renal handling of calcium in response to thyroid hormone status of rat[J]. Biochem.Biophys.Acta.1586:331-343.
    LaClair R E, Hellman RN, Karp S L.2005.Prevalence of calcidiol deficiency in CKD:a cross-sectional study across latitudes in the United States[J]. Am.J.Kidney Dis. 45(6):1026-1033.
    Lee D B, Brautbar N, Walling M W.et al.1979.Effect of phosphorus depletion on intestinal calcium and phosphorus absorption. Am. J. Physiol.236:E451-E457.
    Lee D B, Walling M W, Corry. D B.1986.Phosphorus transport across rat jejunum: influence of sodium, pH, and 1,25-(OH)2D3[J]. Am J Physiol.250:G369-G373.
    Lei X G, Stahl C H.2000. Nutritional benefits of phytase and dietary determinants of its efficacy[J]. Special issue on swine production. Journal of Applied Animal Research. 17:197-112.
    Lim H S, Namkung H, Um J S, Kang K R., Kim B S, Paik I K.2001.The effects of phytase supplementation on the performance of broiler chickens fed diets with different levels of non-phytate phosphorus[J].Asian-Aust.J.Anim.Sci.14:250-257.
    Lips P.2006.Vitamin D physiology[J]. Prog.Biophys.Mol Biol.92(1):4-8.
    Loghman-Adham M, Levi M, Scherer SA. et al.1993.Phosphonoformic acid blunts adaptive response of renal and intestinal Pi transport[J]. Am.J.Physiol-Renal Fluid Electrolyte Physiol.265:F756-F763.
    Lundquist P, Murer H, Biber J.2007. Type Ⅱ Na+-Pi cotransporters in osteoblast mineral formation:regulation by inorganic phosphate[J]. Cell Physiol.Biochem.19: 43-56.
    Maenz D D, Classen H L.1998. Phytase activity in the small intestinal brush border membrane of the chicken[J]. Poult.Sci.77:557-563.
    Maenz D D, Engele-Schaan C M, Newkirk. et al.1999. The effect of,minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in slurry of canola meal[J]. Anim.Feed.Sci. Technol.81:177-192.
    Mahieu S T, Navoni J, Millen N, et al.2004.Effects of aluminum on phosphate metabolism in rats:a possible interaction with vitamin D3 renal production[J]. Arch Toxicol.78:609-616.
    Marks J, Srai S K, Biber J. et al.2006. Intestinal phosphate absorption and the effect of vitamin D:a comparison of rats with mice[J]. Exp.Physio.191:531-537.
    Marsell R, Gmndberg E, Krajisnik T, et al.2008.Fibroblastrgowth factor23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men[J].Eur.J.Endocrinol.158(1):125-129.
    Martin K J,Mcconkey C L, JacobA K, et al.1989.Protein kinase A and the effects of parathyroid hormone on phosphate uptake in opossum kidney cells[J]. Endocrinology.125:295-301.
    Martin K J,Mcconkey C L, JacobA K, et al.1994.Effect of U73122,an inhibitor of phospholipase C.oR actions of parathyroid hormone in opossum kidney cells[J], Am.J.Physiol-Renal Fluid Electrolyte Physiol.266:254-258.
    Matsumoto T, Fontaine O, Rasmussen H.1980.Effect of 1,25-(OH)2D3 on phosphate uptake into chick intestinal brush border membrane vesicles[J]. Biochem.Biophys.Acta.599:13-23
    Mchaffie G S, Graham C, Kohl B. et al.2007. The role of an intracellular cysteine stretch in the sorting of the type Ⅱ Na/phosphate cotransporter[J]. Biochim.Biophys.Acta.1768:2099-2106.
    Mchardy G J R, Parsons D S.1956.The absorption of water and salt from the small intestine of the rat[J]. J.Exp.Biol.41:398-409.
    Menon V, Greene T, Pereira A A. et al.2005.Relationship of phosphorus and calcium-phosphorus product with mortality in CKD[J]. Am.J.Kidney Dis.46: 455-463.
    Mircheff A K, Wright E M.1976. Analytical isolation of plasma membranes of intestinal epithelial cells:identification of Na+/K+-ATPase rich membranes and the distribution of enzyme activities[J]. J.Membrane Biol.28(4):309-33.
    Miyamoto K, Ito M, Kuwahata M.et al.2005.Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23[J]. Ther.Apher.Dial.9: 331-335.
    Miyamoto K, Ito M, Tatsumi S.et al.2007.New aspect of renal phosphate reabsorption: The type Ⅱc sodium-dependent phosphate transporter. Am.J.Nephrol.27:503-515.
    Morita K, Haga H, Tanaka H. et al.1998. Efffect of dietary phosphate on Na+-dependent phosphate cotransporters function and expression in the rat kidney[J]. Clin.Exp.Nephrol.2:109-116.
    Mudge S R, Rae A L, Diatloff et al.2002. Expression analysis suggests novel roles form members of the Phtl family of phosphate transporters in Arabidopsis[J].Plant.J.31: 341-353.
    Murer H, Biber J,1997. A molecular view of proximal tubular inorganic phosphate(Pi) reabsorption and of its regulation[J]. Pfltigers Arch.433:379-389.
    Murer H, Forster I, Werner A. et al.2004.The sodium phosphate cotransporter family SLC34[J]. Pflugers Arch-Euro J.Physiol.447:763-767.
    Murer H, Hernando N, Forster Let al.2000.Proximal tubular phosphate reabsorption: molecular mechanisms[J]. Physiol.Rev.80(4):1373-1409.
    Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J.1996.Renal brush border membrane Na/Pi-cotransport:molecular aspects in PTH-dependent and dietary regulation[J].Kidney Int. Jun.49(6):1769-1773.
    Muscher A, Hattendorf J, Pfeffer E. et al.2008.Hormonal regulation of phosphate homeostasis in goats during transition to rumination[J]. J.Comp.Physiol.B. B.178: 585-596.
    Nakagawa N, Ghishan F K.1994.Low phosphate diet upregulates the renal and intestinal sodium-dependent phosphate transporter in vitamin D-resistant hypophosphatemic mice[J]. Proc.Soc.Exp.Biol.Med.205(2):162-167.
    Nemere 1.1996. Apparent nonnuclear regulation of intestinal phosphate transport:effects of 1,25-dihydroxyvitaminD3,24,25-dihydroxyvitaminD3, and 25-hydroxyvitamin D3[J]. Endocrinology.137:2254-2261.
    Nicolaysen R.1937.Studies upon the mode of action of vitamin D:the absorption of phosphates from isolated loops of the small intestine in the rat[J]. Biochem.J.31: 1086-1088.
    Nishida Y, Taketani Y, Yamanaka-O, Imamura F et al.2006.Acute effect of oral phosphate loading on serum fibroblast growth factor23 levels in healthy men[J]. Kidney Int.70:2141-2147.
    Norbis F, Boll M, Stange G. et al.1997.Identification of a cNDA/protein leading to an increased Pi-uptake in Xenopus Laevis oocytes[J]. J.Membrane Biol.156:19-24.
    Novak J M, Watts D W, Hunt P G, Stone K C.2000.Phosphorus movement through a Coastal Plain soil after a decade of intensive swine manure application[J]. J. Envir Quality.29:4.1310-1315.
    Nowik M, Picard N, Stange G, et al.2008.Renal phosphaturia during metabolic acidosis revisited:molecular mechanisms for decreased renal phosphate reabsorption[J]. Pflugers Arch-Euro J.Physiol.457:539-549.
    Paik I K.2001.Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production [J]. Asian-Aust.J.Anim.Sci.14:3384-3394.
    Paquin J,Vincent E, Dugre A. et al.1999.Membrane topography of the renal phosphate carrier NaPi-2:limited proteolysis studies[J].Biochem.Biophys.Acta.1431(2): 315-328.
    Peerce B E, Peerce B, Clarke R D.2004. Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia[J]. Am.J.Physiol-Renal Physiol.286(5):F955-F964.
    Peterlik M.1978. Phosphate transport by embryonic chick duodenum:stimulation by vitamin D3[J]. Biochem.Biophys.Acta.514:164-171.
    Pfcha J.2000. Development of intestinal transport function in mammals[J]. Physid.Rev. 80 (4):1633-1667.
    Pfister M F, Forgo J. ZieglerU,et al.1999. cAMP-dependent and independent downregulation of type ⅡNa/Pi cotransporters by PTH [J].Am.J.Physiol-Renal Physiol.276:720-725.
    Prabhu R, Balasubramania K A.2001.A novel method of preparation of small intestinal brush border membrane vesicles by polyethylene glycol precipitation[J]. Anal.Biochem.289:157-61.
    Prasad R, Kinsella JL, Sacktor B.1988. Renal adaptation tometabolic acidosis in the senescent rat[J]. Am.J.Physiol.255:F1183-F119.
    Prasad R, Kumar V.2005.Thyroid hormones stimulate Na+-Pi transport activity in rat renal brush-border membranes:role of membrane lipid composition and fluidity[J]. Mole and Cell Biochem.268:75-82.
    Quamme G A, Pelech S, Biber J. et al.1994. Abnormalities of parathyroid hormone mediated signal transduction mechanisms in opossum kidney cells[J]. Biochem.Biophys.Acta.1223:107-116.
    Quigley R, Bau M M.1991.Effects of growth hormone and insulin-like growth factor1 on rabbit proximal convoluted tubule transport[J]. J Clin.Invest.88:368-374.
    Radanovic T, Murer H, Biber J.2003. Expression of the Na/Pi-cotransporter type Ⅱb in sf9 cells:functional characterization and purification[J]. Membrane Biol.194: 91-96.
    Radanovic T, Wagner C A, Murer H.2005. Regulation of intestinal phosphate transport I segmental expression and adaptation to low-Pi diet of the type Ⅱb Na+-Pi co-transporter in mouse small intestine[J]. Am.J.Physiol-Gastrointest Liver Physiol. 288 (3):G496-G500.
    Rodehutseord M, ltaverkamp R, Pfefer E.1998. Inevitable losses of phosphorusin pigs, estimated from balance data using diets deficient in phosphorus [J]. Arch. Amin.Nutr. 51(1):27-38.
    Rubio V,Linhares F, Solao R 2001.et al.A conserved M Y B transcription factor involved in phosphate starvation signaling both in vascular plants and in unicdllular algae[J].Gene and Dev.15:2122-2133.
    Sabbagh Y, O'Brien S P, Song W. et al.2009.Intestinal Npt2b Plays a major role in phosphate absorption and homeostasis[J].J. Am. Soc. Nephrol.20(11):2348-2358.
    Saddoris K L, Fleet J C, Radcliffe J S.2010. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration [J]. J.Nutr.140(4):731-736.
    Saddoris K L, Fleet James C, Radcliffe J S.2010. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration[J]. J.Nutr.140(4):731-736.
    Schneider E G.1985.Activation of Na+-dependent transport at fertilization in the sea urchin:requirements of both an early event associated with exocytosis and a later event involving increased energy metabolism[J].Dev.Biol.108(1):152-163.
    Schroder B, Dahl M R, Breves G.1998.Duodenal Ca2+ absorption is not stimulated by calcitriol during early postnatal development of pigs[J]. Am.J.Physiol-Gastrointest Liver Physiol.275(2):G305-G313.
    Schroder B, Hattenhauer O, Breves G. et al.1998.Phosphate transport in pig proximal small intestines during postnatal development:lack of modulation by calcium[J]. Endocrinology.139(4):1500-1507.
    Schunm ann P H D, Richardson A E,Vickers C E et al.2004.Promoter analysis of the barely Phtl:lphosphate transporter gene identifies region controlling root expression and responsiveness to phosphate deprivation[J].Plant Physiol.136: 4205-4214.
    Segal J H, Pollock A S.1990.Transfection-mediated expression of a dominant cAMP-resistant phenotype in the opossum kidney(OK)cell line prevents parathyroid hormone induced inhibition of Na-phosphate eotransport[J]. J.Clin.Invest.86:1442-1450.
    Segawa H, Aranami F, Kaneko I.et al.2009.The roles of Na/Pi-Ⅱ transporters in phosphate metabolism[J]. Bone.45 Suppll:S2-7.
    Segawa H, Kaneko I, Takahashi A. et al.2002.Growth-related renal type Ⅱ Na/Pi cotransporter[J]. J.Biol.Chem.277:19665-19672.
    Segawa H, Kaneko I, Yamanaka S. et al.2004.Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice[J]. Am.J.Physiol-Renal Physiology.287:F39-F47.
    Segawa H, Onitsuka A, Furutani J. et al.2009. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development[J].Am.J.Physiol-Renal Physiol.297(3):F671-F678.
    Segawa H, Onitsuka A, Kuwahata M. et al.2009.Type Ⅱc sodium-dependent phosphate transporter regulates calcium metabolism[J]. J.Am.Soc.Nephrol.20(1):104-113.
    Segawa H, Yamanaka S, Mikiko I, et al.2005.Internallzation of renal typeⅡcNa/Pi cotransporter in response to a high phosphate diet[J].Am.J.Physiol-Renal Physiol. 288:587-596.
    Segawa H, Yamanaka S, Ohno Y. et al.2007.Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice[J]. Am.J.Physiol-Renal Physiol.292:F769-F779.
    Segawa H, Yamanaka S, Onitsuka A.et al.2007. Parathyroid hormone-dependent endocytosis of renal type Ⅱc Na-Pi cotransporter[J]. Am.J.Physiol-Renal Physiol. 292:F395-F403.
    Shimada T, Yamazaki Y, Takahashi M, et al.2005. Vitamin d receptor-independent FGF23 actions in regulating phosphate and vitamin d metabolism[J]. Am.J.Physiol-Renal Physiol.289:F1088-1095.
    Stauber A, Radanovic T, Stange G, et al.2005.Regulation of intestinal phosphate transport Ⅱ. metabolic acidosis stimulates Na+-dependent phosphate absorption and expression of the Na+-Picotransporter NaPi-Ⅱb in small intestine[J]. Am.J.Physiol-Gastrointest Liver Physiol.288:501-506.
    Stauber A, Radanovic T, Stange G, et al.1961.Regulation of intestinal phosphate transport Ⅱ. metabolic acidosis stimulates Na+-dependent phosphate absorption and expression of the Na+-Pi cotransporter NaPi-Ⅱb in small intestine[J].Endocrinology. 69:1074-1079.
    Stoll R, Kinne R, Murer H.1979. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush border vesicles[J]. Biochem. J.180:465-470.
    Sugima S H. Fenaris R P.2004.Contributions of different NaPi ctrauspnrter isoforms to dietary regulation of P transport in the pyloric caeca and intestine of rainbow trout[J]. J.Exp.Biol.207(12):2055-2064.
    Sugiura S H, Ferraris N K.2003.In vivo fractional Pi absorption and Na/Pi-II mRNA expression in rainbow trout are upregulated by dietary P restriction [J]. Am.J.Physiol-Regul Integr Comp Physiol.285:770-781.
    Sugiura S H, Ferraris R P.2004. Contributions of different Na/Pi co-transporter isoforms to dietary regulation of P transport in the pyloric caeca and intestine of rainbow trout [J]. J.Exp.Biol.207(12):2055-2064.
    Takahashi F, Morita K, Katai K.et al.1998.Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats[J].Biochem.J.333 (Ptl):175-181.
    Tenenhouse H S, Gauthier C, Martel J.et al.2002. Na+/P (i) cotransporter (Npt2) gene disruption increases duodenal calcium absorption and expression of epithelial calcium channels 1 and 2[J]. Pflugers Arch.444:670-676.
    Tenenhouse H S.2005. Regulation of phosphorus homeostasis by the type Ⅱa na/phosphate cotransporter[J]. Annu.Rev.Nutr.25:197-214.
    Tenenhouse H S.2007.Phosphate transport:Molecular basis, regulation and pathophysiology[J]. J Steroid Biochem.Mol.Biol.103:572-577.
    Theresa J, Berndt Theodore A, Craig Daniel J. et al.2007. Biological activity of FGF-23 fragments[J].Pflugers Arch-Eur.J.Physiol.454:615-623.
    Traebert M, Hattenhauer O, Murer H. et al.1999. Expression of type II Na-Pi cotransporter in alveolar typell cells[J]. Am.J.Physiol.277:L868-L873.
    Van os C H, Mircheff A K, Wright E M. et al.1977.Distribution of bicarbonate-stimulated ATPase in rat intestinal epithelium [J]. J.Cell.Biol.73:257-260.
    Villa-Bellosta R, Bogaert YE, Levi M.et al.2007.Characterization of phosphate transport in rat vascular smooth muscle cells implications for vascular calcification[J]. Arterioscler.Thromb.Vasc.Biol.27:1030-1036.
    Villa-Bellosta R, Ravera S, Sorribas Vet al.2009.The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi [J].Am.J.Physiol-Renal Physiol.296(4):F691-F699.
    Villa-Bellosta R, Sorribas V.2010.Compensatory regulation of the sodium/phosphate cotransporters NaPi-Ⅱc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis[J]. Pflugers Arch-Euro.J.Physiol.459:499-508.
    Vipperman P E, Poe E R J, Cunningham P J.1974. Effect of dietary calcium and phosphorus level upon calcium, phosphorus and nitrogen balance in swine[J]. J.Anim.Sci.38:758-675.
    Virkki L V, Biber J, Murer H, et al.2007.Phosphate transporters:a tale of two solute carrier families[J].Am.J.Physiol-Renal Physiol.293:F643-F654.
    Walling M W.1977.Intestinal Ca and phosphate transport:differential responses to vitamin D3 metalolites[J]. Am.J.Physiol.233:E488-E494.
    Wang B, Yin Y L.2009.Regulation of the type Ⅱb sodium-dependent phosphate cotransporter expression in the intestine[J]. Frontier Agriculture in China.3(2): 226-230.
    Werner A, Dehmelt L, Nalbant P.1998. Na+-dependent phosphate cotransporters:the NaPi protein families[J]. J.Exp.Biol.201:3135-3142.
    Werner A, Kinne R K H.2001. Evolution of the Na-Pi cotransport systems [J]. Am.J.Physiol-Regul.Integr.Comp.Physiol.280:R301-R312.
    Wernern A, Moore M L, Mantei N. et al.1991.Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex[J]. Proc.Natl.Acad.Sol.USA.88: 9608-9612.
    Williams B K, Deluca H F.2007.Characterization of intestinal phosphate absorption using a novelin vivo method[J]. Am.J. Physiol-Endocrinol Metab.292: E1917-E1921.
    Xu H, Bai L, Collins JF, Ghishan F K.2002.Age-dependent regulation of rat intestinal type Ⅱb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3[J]. Am.J.Physiol-Cell Physiol.282:C487-C493.
    Xu H, Uno J K, Inouye M, et al.2003. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen[J]. Am.J.Physiol-Gastrointest Liver Physiol.285(6): 1317-1324.
    Xu H, Inouye M, Hines E R, et al.2003.Transcriptional regulation of the human NaPi-Ⅱb cotransporter by EGF in Caco-2 cells involves c-myb[J].Am.J.Physiol-Cell Physio.284(5):1262-1271.
    Xu Y, Yeung,CH, Setiawan I,et al.2003.Sodium-inorganic phosphate cotransporter NaPi-IIb in the epididymis and its potential role in male fertility studied in a transgenic mouse model[J].Biol.Reprod.69(4):1135-1141.
    Yamamoto T, Michigami T, Aranami F.et al.2007. Hereditary hypophosphatemic rickets with hypercalciuria:A study for the phosphate transporter gene type Ⅱc and osteoblastic function[J]. J.Bone Miner Metab.25:407-413.
    Yamashita T, Konishi M, Miyake, et al.2002.Fibroblast growth factor(FGF)-23 inhibits renal phosphate reabsorption by activation of the nitogen-activated protein kinase pathway[J]. J.Biol.Chem.277:28265-28270.
    Yan F, Angel R, C. M. Ashwell.2007. Characterization of the chicken small intestine type Ⅱb sodium phosphate cotransporter [J]. Poult.Sci.86:67-76.
    Yusufi A N, Murayama N, Keller M J, et al.1985. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex[J]. Endocrinology.116(6):2438-2449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700