老年鼠肺水通道基因表达及肺泡水转运率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水通道蛋白(aquaporin, AQPs)是一族广泛存在于细胞膜上的持续开放的、不需要消耗能量、选择性高效转运水分子的特异孔道。水通道的发现为多种细胞的跨细胞膜快速水转运提供了生物化学基础。迄今为止,已发现的动物水通道蛋白有13种,他们广泛分布于全身各组织器官,包括大脑、肝脏、肺脏、心脏、肾脏、肌肉、骨骼和血细胞等,并在机体一些重要的生理和病理生理活动中发挥着重要作用。
     呼吸系统的主要功能是提供呼吸通路、发声,同时具有免疫防御功能。其另外的一个作用是参与吸入气体的加温加湿,参与液体的吸收和分泌。水通道中的AQP1、AQP3、AQP4和AQP5在呼吸系统表达:AQP1主要在毛细血管内皮细胞和胸膜上表达;AQP3主要在气道基细胞的基底边膜表达;AQP4只在气道上皮细胞表达;AQP5在I型肺泡顶膜上高表达。此外,纤毛柱状细胞、支气管腺体细胞中也有表达。
     肺在出生前为液体分泌器官,而在出生后则迅速转为液体吸收器官,从而为肺泡呼吸做好准备。研究表明,大鼠胎肺在孕19天时首先出现AQP1的表达,且这种表达水平持续升高,从孕21天到出生后1天内可以增加5倍,而且这种高水平表达可以持续到成年以后。而AQP3、AQP4、AQP5的表达则发生在出生后2周内。水通道蛋白这种在出生前后的表达变化主要是与其出生前后的功能变化相适应的。
     已有研究显示,肺泡腔内过量的液体清除随年龄的老化而下降,其确切机制尚不十分明确。本研究的目的是探讨小鼠肺内水通道蛋白的表达在老年状态下的变化及其与老年鼠肺泡水转运功能的关系。由于AQP1和AQP5在外周肺组织表达,直接参与肺泡腔和血管室之间的水转运过程,因此他们成为本研究的主要研究对象。Western blot和RT-PCR的结果提示了AQP1和AQP5在老年鼠肺组织内的表达有明显下调。通过一种改造的重力测定方法,对肺泡腔和肺毛细血管腔之间的渗透性和压力性水转运率进行了测量,结果显示,两种方法测定的老年鼠肺泡水转运率均较青年鼠显著下降,而组织形态学分析提示老年鼠和青年鼠之间的肺组织结构无显著差异,这说明老年鼠肺泡水转运率的下降与其肺组织结构变化无关,而与AQP1和AQP5在老年鼠肺组织内的下调表达有关。以往的研究表明,糖皮质激素可以上调AQP1表达,因此,我们比较了老年鼠和青年鼠血清糖皮质激素水平,与预期结果一致,老年鼠的糖皮质激素水平明显低于青年鼠的糖皮质激素水平,肌肉注射糖皮质激素可以上调AQP1的表达,并能够提高老年鼠肺泡水转运率,然而糖皮质激素对AQP5的表达并无作用。
     本研究首次证明了老年鼠肺内水转运率下降、以及这种下降的功能改变与老年鼠AQP1和AQP5的下调表达有关。此外,糖皮质激素能够上调老年鼠肺内AQP1的表达、并改善肺水转运功能,为糖皮质激素应用于急性肺水肿的治疗提供了一条新的作用机制。
Aquaporins (AQPs) are a family of small and integral membrane proteins that facilitate water transport across cell membranes in response to osmotic gradients. Discovery of AQPs has provided a molecular explanation for rapid water transport across the membranes of many types of cells. AQPs are expressed extensively in the body, including heart, kidney, liver, lung, brain, bone and so on. Also they play a very important role in some physiological and pathophysiological process, such as urine producing.
     Respiratory system is an important system in the body, which includes trachea, bronchia and alveoli. Respiratory system takes part in gas exchange; immunological defense and air hydration. Among AQPs, AQP1, AQP3, AQP4, and AQP5 are expressed in the respiratory system. Studies show that AQP1 first appears in the lung of rats on the embryonic day 19 and subsequently increases until birth. However, AQP3, AQP4, and AQP5 appear in the lung after birth. The changed expression of AQPs is relative to the changed function of lung before and after birth.
     It was proposed that clearance of excess fluid from the alveolar space might be decreased with aging. However, its reason is unknown clearly. The purpose of the present study was to examine whether AQPs of lung change in aged mice, whether lung water transport changes and whether the change of lung water transport is associated with the change of AQPs. Since alveolar endothelial water channel AQP1 and alveolar epithelial water channel AQP5 are expressed in peripheral lung and they take part in the process of water transport between alveolar and capillary compartments, they become the main subject in this study. Western blot and RT-PCR analysis was used to detect the expression of AQP1 and AQP5. Both mRNA expression and protein expression of AQP1 and AQP5 are decreased compared with young mice. By a modified gravimetric method, we knew that osmotically and hydrostatically driven water transport rates (Jw) between the airspace and capillary compartments were reduced in aged mice compared with young mice. However, there was no remarkable difference in lung histology between young and aged mice. Subsequently, since corticosteroids can induce expression of AQP1 in the lung, we compared the level of serum glucocorticoid in young mice and aged mice. As expected, there was a dramatic decrease of serum glucocorticoid in aged mice compared with young mice. In vivo administration of dexamethasone (4mg/Kg) to aged mice increased lung AQP1 mRNA and protein expression by about 2 fold, respectively. In addition, decreased water transport rate in the lung also can be increased partially for increased AQP1 expression. However, AQP5 mRNA and protein expression in aged lung was not affected by dexamethasone administration.
     The present study provided the first evidence of reduced lung water transport rate associated with down-regulation of AQP1 and AQP5 in aged mice. Corticosteroid hormone may accelerate edema clearance in aged lung by stimulating AQP1 expression, providing a new mechanism for using corticosteroid in acute lung edema.
引文
[1]麻彤辉,杨红。膜通道研究再获诺贝尔奖[J].特邀评论。生物物理学报,2003,19(4):343-346.
    [2]冯学超,麻彤辉.水通道蛋白的生理功能-水通道基因敲除小鼠表型研究进展[J].生物化学与生物物理进展,2005,32(4):291-297.
    [3] Verkman AS, Mitra AK. Structure and function of aquaporin water channels [J]. Am J Physiol Renal Physiol. 2000; 278: 13-28.
    [4] Verkman AS. More than just water channels: unexpected cellular roles of aquaporins [J]. J Cell Science. 2005; 118: 3225-3232.
    [5] Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules [J]. J Biol Chem. 1988; 263: 15634-15642.
    [6] Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein [J]. Science. 1992: 256: 385-387.
    [7] Morishita Y, Matsuzaki T, Hara- chikuma M, et al. disruption of aquaporin- 11 produces polycystic kidneys following vacuolization of the proximal tubule[J]. Mol Cell Biol. 2005; 25: 7770-7779.
    [8] Itoh T, Rai T, Kuwahara M, et al. Identification a novel aquaporin, AQP12, expressed in pancreatic acinar cells [J]. Biochem Biophys Res Commun. 2005; 330: 832-838.
    [9] Krane CM, Goldstein DL. Comparative functional analysis of aquaporins/ glyceroporins in mammals and anurans [J]. Mamm Genome. 2007; 18: 452-462.
    [10] Yang B. The human aquaporin gene family [J]. Current Genomics. 2000; 1: 91-102.
    [11] Verkman AS. Applications of aquaporin inhibitors [J]. Drug News Perspect. 2003; 14: 412-420.
    [12] Bai L, Fushimi K, Sasaki S, et al. Structure of aquaporin- 2-vasopressin water channel [J]. J Biol Chem. 1996; 271: 5171-5176.
    [13] Skach W, Shi LB, Calayag MC, et al. Topology and biogenesis of the CHIP28 water channel at the endoplasmic reticulum [J]. J Cell Biol. 1994; 125: 803-816.
    [14] Verbaratz JM, Brown D, Sabolic I, et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes. A freeze- fracture study [J]. J cell Biol. 1993; 123: 605-618.
    [15] Mandon B, Nielsen S, Kishore BK, et al. Expression of syntaxins in rat kidney [J]. Am J Physiol. 1997; 273(5 Pt 2): F718-30.
    [16] Fujiyoshi Y, Mitsuoka K, de Groot, et al. Structure and function of water channels [J]. Curr Opin Struct Biol. 2002; 12:509-515.
    [17] Stroud RM, Miercke LJ, O’Connell J, et al. Glycerol facilityator GlpF and the associated aquaporin family of channels [J]. Curr Opin Struct Biol. 2003; 13: 424-431.
    [18] Nemeth CKL, Hall JE. pH and calcium regulate the water permeability of aquaporin0[J].J Biol Chem. 2000; 275: 6777-6782.
    [19] Nemeth CKL, Kalman K, Hall JE. Molecular basis of pH and Ca2+ regulation of aquaporin water permeability [J]. The Journal of General Physiology, 2004; 123: 573-580.
    [20] Cahalan KL, and Hall JE. pH sensitivity of MIP- induced water permeability may play a role in regulating the intrinsic fluid circulation of the lens[J]. Biophy J. 1999; 76: 183.
    [21] Yasui M, Kwon TH, Knepper MA, et al. Aquaporin 6: an intracellular vesicle water channel protein in renal epithelia [J]. Proc Natl Acad Sci. USA. 1999; 96: 5808-5813.
    [22] Gradilone SA, Garcia F, Huebert RC, et al. Glucagon induces the plasma membrane insertion of functional aquaporin- 8 water channels in isolated rat hepatocytes [J]. Hepotology. 2003; 37: 1435-1441.
    [23] Ma T, Yang B, Gillespie A, et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels [J]. J Biol Chem. 1998; 273: 4296-4299.
    [24] Schnermann J, Chou CL, Ma T, et al. Defective proximal tubular fluid reabsorption in transgenic aquaporin- 1 null mice [J]. Proc Natl Acad Sci USA. 1998; 95: 9660-9664.
    [25] Chou CL, Knepper MA, Van Hoek AN, et al. Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin1 null mice [J]. J Clin Invest 1999; 103: 491-496.
    [26] Van Os CH, Deen PM. Aquaporin- 2 water channel mutations causing nephrogenic diabetes insipidus [J]. Proc Assoc Am Physicians. 1998; 10: 394-395.
    [27] Tamarappoo BK, Verkman AS. Defective aquaporin- 2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones[J]. J Clin Invest. 1998: 101: 2257-2267.
    [28] Knoers NV, Deen PM. Molecular and cellular defects in nephrogenic diabetes insipidus [J]. Pediatr nephrol. 2001; 16: 1146-1152.
    [29] Ma T, Song Y, Yang B, et al. Nephrogenic diabetes insipidus in mice lackingaquaporin-3 water channels [J]. Proc Natl Acad Sci USA. 2000; 97: 4386-4391.
    [30] Yang B, Ma T, Verkman AS. Erythrocyte water permeability and renal function in double knockout mice lacking aquaporin- 1 and aquaporin- 3[J]. J Biol Chem. 2001; 276: 624-628.
    [31] Ma T, Yang B, Gillespie A, et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial- insensitive water channel aquaporin- 4[J]. J Clin Invest. 1997; 100: 957-962.
    [32] Chou CL, Ma T, Yang B, et al. Foufolf reduction of water permeability in inner medullary collecting duct of aquaporin- 4 knockout mice [J]. Am J Physiol. 1998; 274: C549-554.
    [33] Ma T, Jayaraman S, Wang KS, et al. Defective dietary fat processing in transgenic mice lacking aquaporin- 1 water channels [J]. Am J Physiol Cell Physiol. 2001; 280: C126-134.
    [34] Wang KS, Ma T, Filiz F, et al. Colon water transport in transgenic mice lacking aquaporin-4 water channels [J]. Am J Physiol Gastrointest Liver Physiol. 2000; 279: G463-470.
    [35] Ma T, Song Y, Gillespie A, et al. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels [J]. J Biol Chem 1999; 274: 20071-20074.
    [36] Yang B, Song Y, Zhao D, et al. Phenotype analysis of aquaporin-8 null mice [J]. Am J Physiol Cell Physiol. 2005; 288: C1161-1170.
    [37] Oshio K, Watanabe H, Song Y, et al. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroids plexus water channel aquaporin-1 [J]. FASEB J.2005; 19: 76-78.
    [38] Oshio K, Song Y, Verkman AS, et al. Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production [J]. Acta Neurochir Suppl. 2003; 86: 525-528.
    [39] Verkman AS. Physiological importance of aquaporin water channels [J]. Ann Med 2002; 34: 192-200.
    [40] Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke [J]. Nat Med. 2000; 6:159-63.
    [41] Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema [J]. FASEB J. 2004; 18: 1291-1293.
    [42] Binder DK, Oshio K, Ma T, et al. Increased seizure threshold in mice lacking aquaporin-4 water channels [J]. Neuroreprot. 2004; 15: 259-262.
    [43] Li J, Patil RV, Verkman AS. Mildly abnormal retinal function in transgenic mice without muller cell aquaporin-4 water channels [J]. Invest Ophthalmol Vis Sci. 2002;43: 573-579.
    [44] Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4 water channels [J]. J Biol Chem. 2001; 276: 31233-31237.
    [45] Da T, Verkman As. Aquaporin-4 gene disruptiong in mice protects against impaired retinal function and cell death after ischemia [J]. Invest Ophthalmol Vis Sci.2004; 45: 4477-4483.
    [46] Ma T, Hara M, Sougrat R, et al. impaired stratum cornea hydration in mice lacking epidermal water channel aquaporin-3 [J]. J Biol Chem. 2002; 277: 17147-17153.
    [47] Hara M, Ma T, Verkman AS. Selectively reduced glycerol in skin of aquaporin-3 deficient mice may account for impaired skin hydration, elasticity, and barrier recovery [J]. J Biol Chem 2002; 277: 46616-46621.
    [48] Hara M, Verkman AS. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice [J]. Proc Natl Acad Sci USA. 2003; 100: 7360-7365.
    [49] Yang B, Verbavatz JM, Song Y, et al. Skeletal muscle function and water permeability in aquaporin-4 deficient mice [J]. Am J Physiol Cell Physiol. 2000; 278: 1108-1115.
    [50] Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling [J]. J Biol Chem. 2002; 277: 19139-19144.
    [51] Zhang D, Vetrivel L, Verkman AS. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production [J]. J Gen Physiol 2002; 119: 561-569.
    [52] Levin MH, Verkman AS. Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva [J]. Invest Ophthalmol Vis Sci. 2004; 45: 4423-4432.
    [53] Matthay MA, Folkesson HG, and Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema [J]. Physiol Rev. 2002; 82: 569-600.
    [54] Phalen RF and Oldham MJ. Airway structures. Tracheobronchial airway structure as revealed by casting techniques [J]. Am Rev Respir Dis. 1983; 128: S1- S4.
    [55] Weibel ER. Lung morphometry and models in respiratory physiology. In: Respiratory Physiology [M]. An Analytical Approach, edited by Chang HK and Paiva M. New York: Dekker, 1989, p. 1- 56.
    [56] West JB and Mathieu-Costello O. Strength of the pulmonary blood- gas barrier [J]. Respir physiol. 1992; 88: 141-148.
    [57] Clerici C. Sodium transport in alveolar epithelial cells: modulation by O2 tension [J]. Kidney Int Suppl. 1998; 65: S79-S83.
    [58] Goodman BE, Fleischer RD, and Crandall ED. Evidence for active Na+ transport bycultured monolayers of pulmonary alveolar epithelial cells [J]. Am J Physiol Cell Physiol. 1983; 245: C78- C83.
    [59] Mason RJ, Williams MC, Widdicombe JH, et al. Transeithelial transport by pulmonary alveolar typeⅡcells in primary culture [J]. Proc Natl Acad Sci USA. 1982; 79: 6033-6037.
    [60] Matalon S, Benos DJ, and Jackson RM. Biophysical and molecular properties of amiloride- inhibitable Na+ channels in alveolar epithelial cells [J]. Am J Physiol Lung Cell Mol Physiol. 1996; 271: L1- L22.
    [61] Dobbs LG, Gonzalez R, Matthay MA, et al. Highly water permeable TypeⅠalveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung [J]. Proc Natl Acad Sci USA. 1998; 95: 2991-2996.
    [62] Frigeri A, Gropper M, Turck CW, et al. Immunolocalization of mercurial- insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes [J]. Proc Natl Acad Sci USA. 1995; 92: 4328-4331.
    [63] King LS, Nielsen S, and Agre P. Aquaporins in complex tissues.Ⅰ.Developmental patterns in respiratory and glandular tissues of rat [J]. Am J Physiol Cell Physiol. 1997; 273: C1541-1548.
    [64] Nielsen, S., King LS, Christensen BM, et al. 1997. Aquaporins in complex tissues: II. Subcellular distribution in respiratory and glandular tissues of rat[J]. Am. J. Physiol. 273:C1549–C1561.
    [65] Bland RD. Lung epithelial ion transport and fluid movement during the perinatal period [J]. Am J Physiol Lung Cell Mol Physiol. 1990; 259: L30-L37.
    [66] Olver RE. Fluid secretion and absorption in the fetus. In: Fluid and Solute Transport in the Airspaces of the Lung [M]. Edited by Effros RM and Chang HK. New York: Dekker. 1993; 70:281-302.
    [67] King LS, Nielsen S, and Agre P. Aquaporin-1 water channel protein in lung- ontogeny, steroid- induced expression, and distribution in rat [J]. J Clin Invest 1996; 97: 2183-2191.
    [68] Towne JE, Harrod KS, Crane CM, et al. Decreased expression of aquaporin1 and aquaporin5 in mouse lung after acute viral infection [J]. Am J Respir Cell Mol Biol 2000; 22: 34-44.
    [69] Towne JE, Krane CM, Bachruski CJ, et al. Tumor necrosis factor-αinhibits aquaporin 5 expression in mouse lung epithelial cells [J]. J Biol Chem. 2001; 276: 18657- 18664.
    [70] Jang AS, Lee JU, et al. Expression of nitric oxide synthase, aquaporin1 and aquaporin 5 in rat after bleomycin inhalation [J]. Intensive Care Med. 2004; 30: 489-495.
    [71] Hoffert JD, Leithch V, Agre P, et al. Hypertonic induction of aquaporin-5 expression through an ERK- dependent pathway [J]. J Biol Chem. 200; 275: 9070-9077.
    [72] Bai C, Fukuda N, Song Y, et al. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice [J]. J Clin Invest. 1999; 103: 555-561.
    [73] Ma T, Fukuda N, Song Y, et al. Lung fluid transport in aquaporin-5 knockout mice [J]. J Clin Invest. 2000; 105: 93-100.
    [74] Song Y, Fukuda N, Bai C, et al. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in edema formation following lung injury [J]. J Physiol 2000; 525: 771-779.
    [75] Folksson HG, Matthay M, Frigeri A, et al. Transepithelial water permeability in microperfused distal airways. Evidence for channel- mediated water channels [J]. J Clin Invest 1996; 97: 664-671.
    [76] Song Y, Jayaraman S, Yang B, et al. Role of aquaporin water channels in airway fluid transport, humidification and surface liquid hydration [J]. J Gen Physiol. 2001; 117: 573-582.
    [77] Jayaraman S, Song Y, Vetrivel L, et al. Noninvasive in vivo fluorescence measurement of airway surface liquid depth, salt concentration and pH [J]. J Clin Invest. 2001; 107: 317-324.
    [78] Song Y, Yang B, Matthay MA, et al. Role of aquaporin water channels in pleural fluid dynamics [J]. Am J Physiol. 2001; 279: C1744-1750.
    [79] Song Y, Verkman AS. Aquaporin- 5 dependent fluid secretion in airway submucosal glands [J]. J Biol Chem. 2001; 276: 41288-41292.
    [80] Ying S, Zhang G, Gu S, et al. How much do we know about atopic asthma: where are we now [J]? Cell Mol Immunol. 2006; 3(5): 321-32.
    [81] Krane CM, Fortner CN, Hand AR, et al. Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation [J]. Proc Natl Acad Sci U S A. 2001 Nov 20; 98(24): 14114-9. Epub 2001 Nov 13.
    [82] James AL, Hogg JC, Dunn LA, et al. The use of the. internal perimeter to compare airway size and to calculate smooth muscle shortening [J]. Am.J.Respir.Dis.1988; 138: 136-139.
    [83] James AL., Pare LD, Hogg JM. The mechanics of airway narrowing in asthma [J]. Am.J.Respir.Dis. 1989; 139: 242-246.
    [84] Lee MD, Bhakta KY, Raina S, et al. The Human Aquaporin-5 Gene. Molecular characterization and chromosomal localization [J]. J.Biol.Chem. 1996; 271: 8599-8604.
    [85] Krane CM, Melvin JE, and Menon AG. Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster [J]. Mann.Gen. 1999; 10: 498-505.
    [86] Zhu J, Kaplan AM, Goud SN. Immunologic alterations in bleomycin- treated mice: role of pulmonary fibrosis in the modulation of immune responses [J]. Am J Respir Crit Care Med 1996; 153: 1924-1930.
    [87] Yasui H, Gabazza EC, Tamaki S, et al. Intratracheal administration of activated protein C inhibits bleomycin- induced lung fibrosis in the mouse [J]. Am J Respir Crit Care Med 2001; 163: 1660-1668.
    [88] Jones HA, Schofield JB, Krausz T, et al. Pulmonary fibrosis correlates with duration of tissue neutrophil activation [J]. Am J Respir Crit Care Med 1998; 158: 620-628.
    [89] Gabazza EC,Kasper M, Ohta K, et al. Decreased expression of aquaporin- 5 in bleomycin- induced lung fibrosis in the mouse [J]. Pathology International 2004; 54: 774-780.
    [90] Su X, Song Y, Jiang J, et al. The role of aquaporin-1 (AQP1) expression in a murine model of lipopolysaccharide-induced acute lung injury [J]. Respir Physiol Neurobiol. 2004 Aug 20; 142(1): 1-11.
    [91] Hoque MO, Soria JC, W oo J, et a1.Aquaporin 1 is overexpressed in lung cancer and stimulates NIH 3T3 cell proliferation and anchorage independent growth. Am J Pathol 2006; 168: 1345-1353.
    [92] Saadoun S, Papadopoulos M C, H ara-Chikuma M, et a1 . Impairment of angiogenesis and cell migration by targeted aquaporin-l gene disruption [J]. Nature 2005; 434: 786-792.
    [93] Liu YL, Matsuzaki T, Nakazawa T, et a1. Expression of aquaporin 3(AQP3) in normal and neoplastic lung tissues [J]. Hum Pathol 2006; 38: 171-178.
    [94] Woo J, Kim MS, Baek JH, et a1. Potential oncoprotein AQP5, triggering Ras signal pathway. AACR Meeting Abstracts, 2006: 1133.
    [95] Xiang Y, Ma B, Li T, et a1. Acetazolamide inhibits aquaporin 1 protein expression and angiogenesis [J]. Acta Pharmacol Sin 2004; 25: 812-816.
    [96] Jablonski EM, Webb AN, McConnell NA, et a1. Plasma membrane aquaporin activity can affect the rate of apoptosis hut is inhibited after apoptotic volume decrease [J]. Am J Physiol Cell Physiol, 2004; 286: C975-C985.
    [97] Goodman BE. Characteristics and regulation of active transport in lungs from young and aged mammals [J]. Prog Clin Biol Res. 1988; 258:263-274.
    [98] Song Y, Ma T, Matthay MA, et al. Role of aquaporin- 4 in air space-to-capillary water permeability in intact mouse lung measured by a novel gravimetric method [J]. J Gen Physiol. 2000; 115: 17-27.
    [99] Stoenoiu MS, NI J, Verkaeren C, et al. Corticosteroids induce expression of aquaporin- 1 and increase transcellular water transport in rat peritoneum [J]. J Am Soc Nephrol.2003; 14: 555-565.
    [100] Moon C, King LS, and Agre P. Aqp1 expression in erythroleukemia cells: genetic regulation of glucocorticoid and chemical induction [J]. Am J Physiol. 1997; 273: C1562–1570.
    [101] King LS, Nielsen S, Agre P, et al. Decreased pulmonary vascular permeability in aquaporin-1-null humans [J]. Proc Natl Acad Sci USA. 2002: 99: 1059–1063.
    [102] Noda M, Suzuki S, Tsubochi H, et al Dexamethasone injection increases alveolar fluid clearance in adult rats [J]. Crit Care Med. 2003; 31: 1183–1189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700