TAT蛋白转运结构域介导的重组蛋白诱导成体细胞重编程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诱导干细胞(induced pluripotent stem cell,iPS或iPSCs)的建立在再生医学领域有着极大的应用潜力。但是,在该技术应用于临床之前,安全与效率是其必须应对的重要问题。
     众多研究致力于推进以上问题的解决:介导重编程因子转染供体细胞的方法由最初的整合型病毒(逆转录病毒、慢病毒)到非整合型病毒(腺病毒),继而发展到无病毒(如PB转座子系统、episome),直至穿膜肽介导的目的因子融合蛋白直接转运至细胞内。09年4月,Zhou等人利用11精氨酸穿膜肽介导四因子融合蛋白建立了小鼠蛋白iPS细胞系(protin-iPS, p-iPS),同年5月Kim等人利用同方法建立了人p-iPS。由于蛋白诱导iPS彻底排除了外源遗传物质,被认为是目前为止最安全的iPS诱导方法。但是,以上的非整合型的诱导方法效率低、耗时长、不稳定,增加了细胞变异的可能,限制了iPS在临床和研究方面的应用。
     TAT-PTD是迄今为止应用最为广泛的转膜肽,大量研究表明该系统能够介导多种融合蛋白高效转染不同种类的细胞且重折叠后的外源蛋白多具有生物学活性。我们尝试检测TAT-PTD转导系统是否可以促进蛋白iPS细胞系的建立。在本工作中,我们运用TAT蛋白转导结构域构建了TAT-PTD介导的蛋白转运系统。通过原核表达His-TAT-Sox2/Oct4/Klf4/c-Myc/Nanog等多能因子融合蛋白;从TAT融合蛋白转染条件、工作浓度、孵育时间等方面优化转染效果,并检测融合蛋白在细胞内的稳定性;在多细胞系上测试TAT-目的蛋白的转染效果以测定所得优化条件的稳定性和通用性。在所得条件下,于成体细胞重编程系统中比较TAT和11精氨酸(11R)蛋白转导结构域的异同,并探索基于蛋白转导结构域的重编程因子(reprogramming factor, RF)重组蛋白诱导iPS的条件。我们发现:TAT和11R融合重编程因子具有转录活性,在荧光素报告系统中能够激活其对应的下游靶基因的报告基因。TAT-RFs在转录活性上要优于相应的11R-RFs,但弱于相应的病毒因子。在我们构建的“3病毒+1蛋白”重编程系统中,TAT-RF能够一定程度上替代相应病毒因子的作用,同时利用该实验系统最终确定各TAT-转录因子在重编程过程中的工作条件,确定了TAT-转录因子融合蛋白(4因子)诱导iPS的诱导策略和具体条件:四个TAT-RFs因子(各50nM工作浓度,每次孵育2h)每48h孵育HFFs细胞至第17天。遗憾的是,在以上实验条件下,我们并没有获得iPS状克隆(OCT4, NANOG和AP阳性)。这个结果暗示TAT-RFs的转录活性或许相较对应病毒因子较弱。我们又进行了进一步的探索:增加TAT-mNanog和联合使用小分子组蛋白去乙酰化酶抑制剂VPA来增强重组蛋白的重编程活性。在此方法下,两周即可出现与iPS形态相似的克隆。经检测,这些克隆具iPS形态学特征,呈AP染色阳性,在转录水平和蛋白水平上表达多能相关基因。这说明TAT介导的融合蛋白转录因子在较短时间内起始了人成体细胞HFFs的重编程过程,且AP阳性克隆得率与病毒诱导iPS的效率相当。
     我们的工作的兴趣点在于:利用不同系统中(如从荧光素报告系统,“3病毒+1蛋白”重编程系统)摸索PTD-融合蛋白转染条件、工作浓度、孵育时间等方面的合适条件,探索优化蛋白iPS诱导策略。针对蛋白转录因子转录活性可能低于相应病毒转录因子这一制约蛋白-iPS应用的瓶颈,我们增加TAT-mNanog和联合使用小分子组蛋白去乙酰化酶抑制剂VPA来增强重组蛋白的重编程活性,从而在细胞水平上(AP染色,多能因子在转录水平和蛋白水平的表达)证明说明TAT介导的融合蛋白转录因子在较短时间内起始了人成体细胞HFFs的重编程过程,且AP阳性克隆得率与病毒诱导iPS的效率相当。
     我们的工作对TAT融合重编程因子在重编程过程中的系统检测,可以为建立具临床应用价值和不含外源遗传物质的人iPSC的获得提供依据。
Successful establishment of Induced pluripotent stem cells (iPSCs) is thought to herald the revolutionaries of regenerative medicine, pharmaceutic screening, disease models and basic researches. Before this promising technique could be fulfilled in the therapeutic use, the efficiency of iPSC generation and safety of iPSCs, as the clinical prerequisites, are required to be satisfied.
     The exploration for technologies of reprograming pluripotency without ectopic integration, aiming at circumventing of transgene reactivation or insertional mutagenesis, has advanced significantly. So far integration-free iPSCs have been derived via excisable (transposon and floxed lentiviral), nonintegrating vectors (plasmid, episomal, and adenovirus vectors), and DNA-free (recombination proteins incorporating cell-penetrating peptide, Sendai virus and Synthetic Modified mRNA) approaches. Among these, generation of iPSCs through recombinant proteins is the exclusive method to date without the use of genetic materials. Despite such advantages, protein based iPS-generations have so far suffered with an extremely low efficiency and a long conversion process, which limit its further application. Nevertheless, protein based iPSCs generation deserves further research.
     In this study, we explore a simple, genetic materials-free strategy for somatic cell reprogramming based on fusion proteins with protein transduction domain TAT. We purify TAT-fusion proteins of reprogramming factors (Oct4/Sox2/c-Myc/Klf4) with bio-functions from E. coli and explorate the optimized conditions for TAT-RF transductions, including working concentrations, incubation time. Also, staibilities of TAT-RFs in vivo are exaimed. We demonstrate that TAT-RFs could transduce multiple human and mouse cell lines and activate their corresponding reporter genes. In addition, we show that these fusion proteins can substitute their corresponding retrovirus to promote generation of iPSCs in the reprogramming process using '3virus+1protein' assays. Based on above results, we produce a protocol for4TAT-RF induced iPS generations:human forskin fibroblast cells are treated with4TAT-RFs (50nM each, incubation time:2h)2days one round for17days in total. Unfortrunately, no iPS-like colony is emerged under this protocol. We hypotheses Transduction of TAT-fusion proteins generates iPS-like colonies from human fibroblast cells and mouse fetal neural progenitor cells with relatively high efficiency and quick dynamics based on the result of alkaline phosphatase staining. Additionally, our work suggests that the relative low level of protein transduction is likely the key barrier to the success of protein-based iPSCs.
     In conclusion, our study provides new information of using TAT-based protein transduction approach for the generation of clinic relevant and genetic material-free human iPSCs.
引文
1. Maherali, N.& Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell stem cell 3,595-605 (2008).
    2. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell stem cell 1,39-49 (2007).
    3. Takahashi, K.& Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126,663-676 (2006).
    4. Okita, K., Ichisaka, T.& Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448,313-317 (2007).
    5. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell stem cell 1,55-70 (2007).
    6. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318,1920-1923 (2007).
    7. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318,1917-1920(2007).
    8. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131,861-872 (2007).
    9. Stadtfeld, M.& Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes & development 24,2239-2263 (2010).
    10. Toro, A., Paiva, M., Ackerley, C.& Grunebaum, E. Intracellular delivery of purine nucleoside phosphorylase (PNP) fused to protein transduction domain corrects PNP deficiency in vitro. Cellular immunology 240,107-115 (2006).
    11. Zhou, W.& Freed, C.R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27,2667-2674 (2009).
    12. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K.& Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and biological sciences 85,348-362 (2009).
    13. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458,771-775 (2009).
    14. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell stem cell 4,381-384 (2009).
    15. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell stem cell 4,472-476 (2009).
    16. Wadia, J.S.& Dowdy, S.F. Modulation of cellular function by TAT mediated transduction of full length proteins. Current protein & peptide science 4,97-104 (2003).
    17. Becker-Hapak, M.& Dowdy, S.F. Protein transduction: generation of full-length transducible proteins using the TAT system. Current protocols in cell biology/ editorial board, Juan S. Bonifacino... [et al.] Chapter 20, Unit 2022 (2003).
    18. Becker-Hapak, M., McAllister, S.S.& Dowdy, S.F. TAT-mediated protein transduction into mammalian cells. Methods 24,247-256 (2001).
    19. Abu-Amer, Y., Dowdy, S.F., Ross, F.P., Clohisy, J.C.& Teitelbaum, S.L. TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. The Journal of biological chemistry 276,30499-30503 (2001).
    20. Vocero-Akbani, A., Lissy, N.A.& Dowdy, S.F. Transduction of full-length Tat fusion proteins directly into mammalian cells:analysis of T cell receptor activation-induced cell death. Methods in enzymology 322,508-521 (2000).
    21. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells:TAT-p27Kipl induces cell migration. Nature medicine 4, 1449-1452(1998).
    22. Matsui, H., Tomizawa, K., Lu, Y.F.& Matsushita, M. Protein Therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery. Current protein & peptide science 4,151-157(2003).
    23. Gump, J.M., June, R.K.& Dowdy, S.F. Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction. The Journal of biological chemistry 285,1500-1507 (2010).
    24. Ziegler, A.& Seelig, J. High affinity of the cell-penetrating peptide HIV-1 Tat-PTD for DNA. Biochemistry 46,8138-8145 (2007).
    25. Tiriveedhi, V. & Butko, P. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry 46, 3888-3895 (2007).
    26. Gump, J.M.& Dowdy, S.F. TAT transduction: the molecular mechanism and therapeutic prospects. Trends in molecular medicine 13,443-448 (2007).
    27. Li, C. et al. Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor. PloS one 4, e6724 (2009).
    28. Wadia, J.S.& Dowdy, S.F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Advanced drug delivery reviews 57,579-596 (2005).
    29. Richard, J.P. et al. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. The Journal of biological chemistry 280,15300-15306 (2005).
    30. Kaplan, I.M., Wadia, J.S.& Dowdy, S.F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of controlled release : official journal of the Controlled Release Society 102,247-253 (2005).
    31. Pan, G., Qin, B., Liu, N., Scholer, H.R.& Pei, D. Identification of a nuclear localization signal in OCT4 and generation of a dominant negative mutant by its ablation. The Journal of biological chemistry 279,37013-37020 (2004).
    32. Li, J. et al. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. The Journal of biological chemistry 282,19481-19492 (2007).
    33. Wadia, J.S., Stan, R.V.& Dowdy, S.F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature medicine 10,310-315 (2004).
    34. Ryu, J., Han, K., Park, J.& Choi, S.Y. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Molecules and cells 16,385-391 (2003).
    35. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26,1269-1275 (2008).
    36. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature biotechnology 26,795-797 (2008).
    37. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell 7, 618-630(2010).
    38. Yu, J. et al. Human induced pluripotent stem cells free of vector and trans gene sequences. Science 324,797-801 (2009).
    39. Saha, S., Brickman, J.M., Lehming, N.& Ptashne, M. New eukaryotic transcriptional repressors. Nature 363,648-652 (1993).
    40. Guenther, M.G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell stem cell 7,249-257 (2010).
    41. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell stem cell 2,151-159 (2008).
    42. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458,766-770 (2009).
    43. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G.& Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322,945-949 (2008).
    44. Li, W. et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27,2992-3000 (2009).
    45. Kim, J.B. et al. Direct reprogramming of human neural stem cells by OCT4. Nature 461,649-643 (2009).
    46. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell stem cell 3,568-574 (2008).
    47. Stadtfeld, M., Maherali, N., Breault, D.T.& Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell stem cell 2,230-240 (2008).
    48. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460,53-59 (2009).
    49. Raya, A. et al. A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nature protocols 5,647-660 (2010).
    50. Sanchez-Danes, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO molecular medicine (2012).
    51. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134,877-886 (2008).
    52. Pfisterer, U. et al. Efficient induction of functional neurons from adult human fibroblasts. Cell Cycle 10,3311-3316 (2011)
    53. Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462,595-601.
    54. Yamanaka, S. (2009a). Elite and stochastic models for induced pluripotent stem cell generation. Nature 460,49-52.
    55. Yamanaka, S. (2009b). A fresh look at iPS cells. Cell 137,13-17.
    56. Boland, M.J., Hazen, J.L., Nazor, K.L., Rodriguez, A.R., Gifford, W., Martin, G., Kupriyanov, S., and Baldwin, K.K. (2009). Adult mice generated from induced pluripotent stem cells. Nature 461,91-94.
    57. Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell stem cell 5,135-138.
    58. Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W., Wang, L., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature 461,86-90.
    59. Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., Ziller, M., Croft, G.F., Amoroso, M.W., Oakley, D.H., et al. (2011). Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144,439-452.
    60. De Carvalho, D.D., You, J.S., and Jones, P.A. (2010). DNA methylation and cellular reprogramming. Trends in cell biology 20,609-617.
    61. Gore, A., Li, Z., Fung, H.L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., et al. (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature 471,63-67.
    62. Guenther, M.G., Frampton, G.M., Soldner, F., Hockemeyer, D., Mitalipova, M., Jaenisch, R., and Young, R.A. (2010). Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell stem cell 7,249-257.
    63. Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng,S., Sourour, M., Hamalainen, R., Olsson, C., et al. (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471,58-62.
    64. Laurent, L.C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C., Harness, J.V., Lee, S., Barrero, M.J., et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell stem cell 8,106-118.
    65. Zhao, T., Zhang, Z.N., Rong, Z., and Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature 474,212-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700