固氮斯氏假单胞菌A1501泌突变株的构建及其理化特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
联合固氮菌与宿主根系形成松散的结合方式,所固定的氮主要供自身生长所需,只能为植物供给有限的氮素。因此,探索联合固氮菌的泌机制,提高其固氮和泌能力,在理论和实际应用上有着重要意义。本研究在完成了斯氏假单胞菌A1501全基因组测序和注释信息,以及开展联合固氮菌固氮基因调控表达的研究基础上,构建了具有能高效固氮的泌工程菌,并进行了生理生化特性分析。
     根据斯氏假单胞菌A1501的基因组序列,克隆了固氮酶正调节基因(nifA),将含有完整的nifA的DNA片段连接到pVK100,构建了nifA组成型表达质粒pVA3,通过三亲结合的方法将pVA3转化进铵转运载体蛋白AmtB1AmtB2双缺失突变株(1561)和野生型菌株中,经卡那霉素(Km)和四环素(Tc)抗性筛选,分别获得1561/pVA3和A1501/pVA3重组菌。研究结果表明增强nifA基因的表达提高了固氮条件下斯氏假单胞菌的固氮酶活,而且在一定浓度(10mM)下也能保持固氮能力(1.53U/mg·protein)。但是,未观测到A1501/pVA3培养物中离子的存在。尽管铵转运载体缺失突变株(1561)在固氮条件下的固氮酶活略高于野生型菌株,但无显著性差异,在10mM浓度下均未测定到固氮酶活。然而,在以硝酸盐为唯一氮源时,A1501培养液中测定不到离子的存在,而菌株1561在含8mM,12mM硝酸盐的培养基中经33h培养后,培养液中的浓度分别达到0.60mM和1.32mM。结果表明硝酸盐进入细胞后转化为,经自由扩散到胞外,当铵转运载体蛋白缺失时,不能迅速将吸收到胞内,从而导致胞外含有离子。
     nifA组成型表达且铵转运载体蛋白缺失的斯氏假单胞菌突变株(1561/pVA3)在固氮条件下,其固氮酶活(14.24U/mg·protein)是野生型的1.95倍,在10mM浓度下仍然保持一定的固氮酶活(4.24U/mg·protein),高于A1501/pVA3的酶活。在无氮的半固体限制性培养基中培养15天后,培养基呈弱碱性(pH=7.42),测定培养基的含量达5.15 mM。研究结果表明1561/pVA3具有较强的固氮能力,并且能向胞外泌
     1561/pVA3和野生型菌株的水稻接种实验显示,接种工程菌的水稻株高(19.4 cm)、地上、地下部分干重(12.85mg和2.96mg)等指标都要高于接种野生型A1501的水稻(14.8cm,11.70mg和2.11mg)。根表竞争实验表明1561/pVA3在水稻根际的定殖和根际竞争能力上优于野生型。本研究结果表明工程菌对水稻具有较好的促生作用。
     上述结果显示1561/pVA3菌株是具有较强固氮能力和具有泌能力的工程菌。为进一步探讨1561/pVA3的泌作用,我们对工程菌及野生型菌株进行了冲击试验,离子、硝酸盐、氨基酸含量和GS酶活的测定,以及固氮和非固氮条件下固氮基因转录表达测定,结果表明1) nifA的组成型质粒pVA3增强了nifA基因的表达效率,从转录水平上增强了固氮基因的表达;2)铵转运载体基因amtB1amtB2的缺失使得1561/pVA3失去了向细胞内部主动运输的能力,使固氮合成的通过自由扩散在胞外积累;3) AmtB1AmtB2可能参与了固氮酶的后修饰和调控固氮基因的表达,并在蛋白的翻译水平上增强了固氮酶的合成效率。
Associative nitrogen-fixing bacteria can colonize on rhizoplane of the host crops for growth and nitrogen fixation. Associative nitrogen-fixing bacteria could supply host plants with nitrogen, but the supply is not sufficient. Pseudomonas stutzeri A1501, isolated from rhizosphere of rice, is an associative nitrogen-fixing bacterium. Recently, the genome sequence and annotation of A1501 have been completed. On the basis of the genetic information and the previous study on expression and regulation of nitrogen fixation systems in P. stutzeri A1501, we construct, identify and characterize an ammonium-excreting strain by improving the ability of nitrogen fixation of P. stutzeri A1501.
     The complete nifA gene amplified from A1501 genomic DNA was ligated into the plasmid pVK100, which encodes the key activator NifA of nif gene expression, and then the resulting plasmid, pVA3, was transformed into the wild type strain A1501 and the ammonium transporter AmtBl/AmtB2 deficient mutant (1561) by tri-parental conjugation, to generate the strain A1501/pVA3 and 1561/pVA3, respectively. The data showed that the overexpression of nifA gene enhanced the nitrogenase activity (7.3U/mg·protein) in P. stutzeri under nitrogen fixation conditions and remained nitrogenase activity (1.53U/mg·protein) under non-nitrogen-fixing conditions. But no ammonium was detected in the culture of A1501 or 1501/pVA3; no significant differences of growth rate and nitrogenase activity were observed between the strain 1561 and the wild type strain. However, when the strain 1561 was incubated in the N-free medium containing 8 or 12 mM NO_3~- for 33h, the ammoniumn (0.60 or 1.32mM) in the extracellular milieu was detected, suggesting that disruption of ammonium transporter AmtB1/AmtB2 caused the cells leakage of ammoniumn.
     The nitrogenase activity of the strain 1561/pVA3 was about as 1.95-fold as that of the wild type strain under nitrogen fixation conditions, and maintained 30% of nitrogenase activity in presence of 10mM ammonium, which was higher than that of the strain 1501/pVA3. After 15-day incubation in the N-free medium, the medium pH became slightly alkaline, and also the ammoniumn concentration was as high as 5.15 mM. The results showed that the overexpression of nifA and disruption of ammonium transporter could make nitrogenase activity enhanced and amount of ammonium released into the medium.
     Rice plant was inoculated with strain 1561/pVA3. The plant height (19.4 cm), dry weights of shoot and root (12.85mg and 2.96mg) of the rice plant treated with 1561/pVA3 were significnatly higher than those of the wild type strain (14.8cm, 11.70mg and 2.11mg). 1561/pVA3 showed a strongly enhanced competitive root-colonizing ability compared with wild type strain. These results indicated that 1561/pVA3 strain obviously improved rice plant growth.
     To further understand the ammonium-excretion of the strain 1561/pVA3, ammonium shock experiments were performed, and the concentrations of ammonium, nitrate, amino acid and GS activities were measured. These results indicated that 1) constitutive plasmid of nifA, pVA3, can enhance the expression of nif A and nifH; 2) disruption of AmtB1/B2 deprives function of transporting ammonium, leads to ammonium release into extracellular culture; 3) AmtB1AmtB2 might be involved in post-translational modification of nitrogenase and control of nif gene expression.
引文
1.陈明,张维,林敏,粪产碱菌耐工程菌与水稻。联合共生固氮作用.核农学报,1999,13(6):373-376.
    2.黄大昉,林敏.农业微生物基因工程,北京:科学出版社,2001,2-18.
    3.孟庆杰,王光全.生物固氮及其应用。生物学教学,2004,5(29):6-7.
    4.江群益,周宗汉,沈思师,金润之,黄懿德,沈善炯,具有广泛寄主范围转移特性的Tn5-nifA重组质粒的构建.科学通报.1990,4:302-305.
    5.林敏,根际联合固氮作用的研究进展,植物生理学通讯,1992a,28:1-8
    6.林敏,尤崇杓,刘永正.重组耐固氮菌株的田间长期定点释放实验.农业生物技术学报 1995.3:88-91.
    7.林敏,尤崇杓.水稻根分泌物及其与粪产碱菌的相互作用.中国农业科学.1989,22(6):6-12.
    8.卢嘉锡,蔡启瑞,万惠霖等.生物固氮:全球的挑战和未来的需要.辽宁科技参考,2001(4):26.
    9.平淑珍,程红梅,林敏,盐胁迫下粪产碱菌在水稻根表的定殖和异源固氮基因的表达.植物生理学报,2000,26(2):95-100.
    10.丘元盛,程锐彦,莫小真等.1990.水稻根际固氮耐菌株的田间应用实验.水稻根际联合固氮,尤崇杓主编,北京:农业出版社:397-402.
    11.丘元盛,周淑萍,莫小真等.水稻根联合固氮细菌的研究.科学通报,1980,25:1008
    12.丘元盛,周淑萍,莫小真等.水稻根联合固氮细菌的研究Ⅰ.菌种的分离和鉴定.微生物学报,1981,21(4):468-472
    13.燕永亮,斯氏假单胞菌(Pseudomonas stutzeri)A1501基因组学的研究[博士论文].北京:中国农业大学,2005.
    14.尤崇杓,李信,王有为..粪产碱菌的培养及其生理特性.水稻根际联合固氮.尤崇杓主编,1990北京:农业出版社:39-46.
    15.郑平,环境微生物学,浙江大学出版社,2003
    16.Andersen K and Shanmugam K T,Energetics of biological nitrogen fixation:determination of the ratio of formation of H_2 to NH_4~+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo.J.Gen.Microbiol.1977,103:107-122.
    17.Bali A,Blanco G,Hill S and Kennedy C.Excretion of ammonium by a nifL mutant of nitrogen fixing Azotobacter vinelandii.Appl.Environ.Microbiol.1992,58:1711-1718.
    18.Bani D.Isolation and characterization of glutamate synthase mutants of Azospirillum brasilense.J.Gen.Microbiol.1980,119:239-244.
    19.Barros M E C.,Rawlings D E,and Woods D R.Purification and regulation of a cloned Thiobacillus ferrooxidans glutamine synthetase.J.Gen.Microbiol.1986,132:1989-1995.
    20.Bender RA,Janssen KA,Resnick AD,Blumenberg M,Foor F,Magasanik B et al. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes.J Bacteriol.1977,129:1001-1009.
    21.Blanco G,Drummond M D,Kennedy C and Woodley P.Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii.Mol.Microbiol.1993,9:869-879.
    22.Bopp L H,Chakrabarty A M,and Eherlich HL.Chromate resistance plasmid in Pseudomonas fluorescens.J.Bacteriol.1983,155:1105-1109.
    23.Bothe H.Transformationg of inorganic nitrogen by Azospirillum spp.Arch.Microbiol.1981,130:96-100.
    24.Buck M,Cannon W,Woodcock J.Mutational analysis of upstream sequences required for transcriptional activation of the Klebsiella pneumoniae nifH promoter.Nucleic Acids Res.1987,15:9945-9956.
    25.Christensen,P.B.,Nielsen,L.P.,Revsbech,N..P.and Sorensen,J.,Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor.Appl.Environ.Microbiol.,1989,55(5):1234-1241.
    26.Danilevskaya O N,and Gragerov A I.Curing of Escherichia coli K12 plasmids by coumermycin.Mol.Gen.Genet.1980,178:233-235.
    27.Dean DR,Jacobson MR.Biochemical genetics of nitrogenase.In:Biological Nitrogen Fixation,1992.pp.763-834.Edited by G.Stacey,R.H.Burris,and H.J.Evans.New York:Chapman and Hall.
    28.Desnoues,N.,M.Lin,X.Guo,L.Ma,R.Carreno-Lopez,and C.Elmerich.Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice.Microbiology 2003.149:2251-62.
    29.Dilworth M J.In Nitrogen fixation,vol.2(Newton W E and Orme-Johnson W H eds.) 1980,pp.3-31,Uni,Press,Blatimore.
    30.Donald R G,LaPointe K J,Ludwig R A,Characterization of the Azorhizobium sesbaniae ORS751 genomic locus encoding NADPH-glutamate synthase.J.Bacteriol.1988,170:1197-1204.
    31.Drummond MH,Contreras A,Mitchenall LA.The function of isolated domains and chiaeric proteins constructed from the transcriptional activators NifA and NtrC of Klebsiella pneumoniae.Mol Microbiol.1990,4:29-37.
    32.Edwards R,and Merrick M.The role of uridylyltransferase in the control of K.pneumoniae nif gene regulation.Mol.Gen.Geten,1995,247:189-198.
    33.Ernsting B R,Denninger J W,Blumenthal R M,and Matthews R G.Regulation of the gltBDF operon of Escherichia coli:how is a leucine-insensitive operon regulated by the leucine-responsive regulatory protein? J.Bacteriol.1993,175;7160-7169.
    34.Fischer HM,Bruderer T,Hennecke H.Essential and non-essential domains in the Bradyhizobium japonicum NifA protein:identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding.Nucleilc Acids iRes.1988,16: 2207-2224.
    35.Fosterhartnett D and Kranz R G.Analysis of the promoters and upstream sequences of nifA1and nifA2 in Rhodobacter capsulatus-activation requires NtrC but not RpoN.Mol.Microbiol.1992,6:1049-1060.
    36.Fu H,Burris RH,Roberts GP.Reversible ADP-ribosylation is demonstrated to be a regulatory mechanism in prokaryotes by heterologous expression.Proc Natl Acad Sci USA 1990,87:1720-1724.
    37.Gauthier D,and Elmerich C.Relationship between glutamine systhetase and nitrogenase in Spirillum lipoferum.FEMS Microgiol.Lett.1977,2:101-104.
    38.Gordon J Kand JacobsonMR.Isolation and characterization of Azotobacter vinelandii mutant strains with potential as bacterial fertilizer.Can.J.Microbiol.1983,29:973-978.
    39.Hanson TE,Forchhammer K,Tandeau de Marsac N et al.Characterisation of the glnB gene product of Nostoc punctiforme strain ATCC 29133:glnB or the Pn protein may be essential.Microbiology.1998,144:1537-1547.
    40.He S,Chen M,Xie Z et al.Involvement of GlnK,a P_Ⅱ protein,in control of nitrogen fixation and ammonia assimilation in Pseudomonas Stutzeri A1501.Arch Microbiol.2008,190(1):1-10.
    41.Hilgert U,Schell J,and de Bruijn F J.Isolation and characterization of Tn5-induced NADPH-glutamine synthase(GOGAT) muatans of Azorhizobium sesbaniae ORA751 and cloning of the corresponding glt locus.Mol.Gen.Genet.1987,216:484-491.
    42.Hoover TR,Santero E,Porter S,Kustu S.The integration host factor stimulates interaction of RNA polymerase with NifA,the transcriptional activator for nitrogen fixation operons.Cell.1990,63:11-22.
    43.Jayakurmar A,Schulman I,MacNeil D,Barnes E M.Role of the Escherichia coli glnALG operon in regulation of ammonium transport.J.Bacteriol.,1986,166:281-284
    44.Kerby NW,Musgrave S C,Rowell P,Shestakov S V and StewartW D.Photoproduction of ammonium by immobilized mutant strains of Anabaena variabilis.Appl.Microbiol.Biotechnol.1986,24:42-46.
    45.Klassen G,Souza EM,Yates G et al.Nitrogenase Switch-off by Ammonium Ions in Azospirillum brasilense Requires the GlnB Nitrogen Signal Transducing Proein.AEM.2005,71:5637-5641.
    46.Kleiner D.In Biology of inorganic nitrogen and sulfur(Bothe H and Trebst A eds.),1981,pp131-140,Springer New York.
    47.Kleinschmidt J A,and Kleiner D.Relationgships between nitrogenase,glutamine synthetase,glutamine and energy charge in Azotobacer vinelandii.Arch,Microbiol.,1981,128:412.
    48.Kullik I,Jenni R,Berger B.Inhibition of Bradyhizobium japonicum nifA-dependent nif gene activation by oxygen occurs at the NifA protein level and is irreversible.Arch Microbiol.1989,151:191-197.
    49.Kustu S,Santero E,Keener J et al.Expression of NtrA-dependent genes is probably united by a common mechanism.Microbiol Rev.1989,53:367-378.
    50.Kustu Y,Hirschman J,Burton D,Jelesko J,Meeks J C.Short term effect of ammonium chloride on nitrogen fixaton by Azotobacer vinelandii and bacteroids of Rhizobium leguminisarum.Eur.J.Biochem.,1979,48:871.
    51.Lei S,Pulakat L,Gavini N.Genetic analysis of nif regulatory genes by utilizing the yeast two-hybrid system detected formation of a NifL-NifA complex that is implicated in regulated expression of nif genes.J.Bacteriol.1990,181:6535-6539.
    52.Lilian Noindorf,Fabiane G.M.Rego,Valter A.Baura,Rose A.et al.Characterization of the orflglnKamtB operon ofHerbaspiriUum seropedicae.Arch Microbiol 2006,185:55-62.
    53.Lin M,Y.C.B.Denitrification and nitrogen fixation by Alcaligenes faecalis.Agriculturae Nucleatae Sinica 1987,1:1-7.
    54.Ludden P,Reversible W.ADP-ribosylation as a mechanism of enzyme regulation in procaryotes.Mol Cell Biochem.1994,138:123-129.
    55.Machado H B,Funayama S,Rigo L U and Pedrosa F O.Excretion of ammonia by Azospirillum brasilense resistant to ethylenediamine.Can.J.Microbiol.1991,37:549-553.
    56.Machado.Excretion of ammonia by Azospirillum brasilense,ibid 14,1990.p558
    57.Magasanik B.Genetic control in nitrogen assimilation in bacteria.Annu.Rev.Genet.,1982,16:135-168.
    58.Mandal A K,Ghosh S.Isolation of a blutamate synthase(GOGAT)-negative pleiotropicaloly N utilization-defective mutant of Azospirillum brasilense:cloning and partial characterization of GOGAT structural gene.J.Bacteriol.,1993,175:8024-8029.
    59.Martin and Reinhold-Hurek,Distinct roles of P(Ⅱ)-like signal transmitter proteins and amtB in regulation of nif gene expression,nitrogenase activity,and posttranslational modification of NifH in Azoarcus sp.strain BH72.J Bacteriol.2002 Apr;184(8):2251-9.
    60.Masepohl B,Krey R,Klipp W.The draTG gene region of Rhodobacter capsulatus is required for post-translational regulation of both the molybdenum and the alternative nitrogenase.J Gen Microbiol.1993,139:2667-2675.
    61.Merrich M J,Organisation and regulation of nitrogen fixation genes in Klebsiella pneumoniae and Azotobacter.In Nitrogen Fixation:Hundred Years after.Bothe H.1988:pp293-302,Gustav Fischer.Stuttgart.New York.
    62.Merrich M.Regulation of nitrogen fixation genes in free-living and symbiotic bacteria.In Biological Nitrogen Fixation(G.Stacey,H J Evans and R H Burris,Eds),pp.835-876.Chapman and Hall,New York.
    63.Merrick M J and Edwards R A.Nitrogen Control in Bacteria.Microbiol.Revs.1995b,59:604-622.
    64.Merrick M,Hill S,Hennecke H,Hahn M,Dixon R and Kennedy C.Repressor properties of the nifL gene product of Klebsiella pneumoniae.Mol.Gen.Genet.1982,185:75-81.
    65.Merrick MJ.Organisation and regulation of nitrogen fixation genes in Klebsiella and Azotobacter.Nitlogen fixation:Hundred Years After.Bothe H et al(eds).Gustav Fischer Stuttgart.New York.Pp293-302.
    66.Merrick MJ.Organisation and regulation of nitrogen fixation genes in Klebsiella and Azotobacter.Nitlogen fixation:Hundred Years After.Bothe H et al(eds).Gustav Fischer Stuttgart.New York.Pp293-302.
    67.Moey T,Jones T,Dixon R,Austin S.Isolation and proterties of the complex between the enchancer binding protein NifA and the sensor NifL.J Bacteriol.1999,181:4461-4468.
    68.Morett E,Buck,M.In vivo studies on the interaction of RNA polymerase with the Klebsiella pneumonia and Rhizobium meliloti nifA in the formation of an open promoter complex.J Mol Biol.1989,210:65-77.
    69.Nelson L M,and Knowles R,Effect of oxygen an nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture.Can.J.Microbiol.1978,24:1395-1403.
    70.Newton J W and Cavins J F.Liberation of ammonia during nitrogen fixation by a facultatively heterotrophic cyanobacterium.Biochim.Biophys.Acta 1985,809:44-50.
    71.Neyra C A,and van Berkum P.Nitrate reduction and nitrogenase activity in Spirillum lipoferum.Can J.Microbiol.1977,23:306-310.
    72.Nicole Desnoues,Min Lin,Xianwu Guo et al.Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice.Microbiology,2003,149:2251-2262.
    73.Okon,Y.1994.Azospirillum-plant root associations.CRC Press,Boca Raton,Fla.
    74.Oliver G,Gosset G,Sanchez-Pescador R,Lozoya E,Ku L M,Flores N,Becerril B,Valle F,and Bolivar F.Determination of the nucleotide sequence ofr the glutamate synthase structural genes of Escherichia coli K-12 Gene,1987,60:1-11.
    75.Paul W,Merrick MJ.The nucleotide sequence of the nifM gene of Klebsiella pneumonia and identification of a new nif gene:nifZ.Eur.J Biochem.1987,170:256-259.
    76.Penyige A,Kalmanczhelyi A,Sipos A,Ensign J C,Barabas G.Modifications of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation.Biochem.Biophys.Res.Commun.,1994,204:598-605.
    77.Polukhina L E,Sakhurieva G N and Shestakov S V.Ethylenediamine-resistant Anabaena variabilis mutants with derepressed nitrogen-fixing system.Microbiology,1982,51:90-95.
    78.Popham DL,Szeto D,Keener J,Kustu S.Function of a bacterial activator protein that binds to transcriptional enhancers.Science.1989,243:629-635.
    79.Ramos J L,Guerrero M G and Losada M.Sustained photoproduction of aramonia from dinitrogen and water by the nitrogen fixing cyanobacterium Anabaena sp.strain ATCC 33047.Appl.Environ.Microbiol.1984,48:114-118.
    80.Ratti S,Purification and characterization of glutamate synthase from Azospirillum brasilense.J.Bacteriol.1985,163:729-734.
    81.Reitzer L J,Magasanik B,Ammonia assimilation and the biosynthesis of glutamine,glutamate,aspartate,asparagines,L-alanine,and D-alanine.In F.C.Neidhardt,J.L.Ingraham,K.B.Low,B.Magasanik,M.Schaechter,and H.E.Umbarger(ed.),Escherichia coli and Salmonella typhimurium:cellular and molecular biology,vol,Ⅰ.1987,p.302-320,American Society for Microbiology,Washington D C.
    82.Reitzer L J.Ammonia assimilation and the biosynthesis of glutamine,glutamate,aspartate,asparagine,L-alanine,and Dalanine.In Escherichia coli and Salmonella.Ed.F C Neidhardt.1996,pp 391-407.ASM Press,Washington D.C.
    83.Ronson CW,Nixon BT,Albright LM,Ausubel FM.Rhizobium meliloti ntrA(rpoN) gene is required for diverse metabolic functions.J Bacteriol.1987,169:2424-2431.
    84.Sambrook,J.,Fritsch,E.F,Maniatis,T.Molecular Cloning:a Laboratory manuel,2nd edn.1989 Cold Spring Harbor,NY:Cold Spring Harbor Laboratory.
    85.Schmitz RA,He L,Kustu S.Ironis required to relive inhibitory effects of NifL on transcriptional activation by NifA in Klebsiella pneumoniae.J Bacteriol.2001,178:4679-4687.
    86.Schmitz RA,Klopprogge K,Grabbe R.Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii:NifL,transducing two environmental signals to the nif transcriptional avtivator NifA.J Mol Microbiol Biotechnol.2002,4:235-242.
    87.Scott D B,Nitrogenase activity and nitrate repiration in Azospirillum app.Arch,Microbiol.,1979,121:141-145.
    88.Shanmugam K T and Valentine R C.Microbial production of ammonium ion from nitrogen.Proc.Natl.Acad.Sci.USA 1975,72:136-139.
    89.Silman N J,Carr N G,and Mann N H.ADP-ribosylation of glutamine synthestase in the cyanobacterium Synechocystis sp.Strain PCC 6803,.J.Bacteriol.1995,177:3527-3533.
    90.Soderback E,Reyes-Ramirez F,Eydmann T et al.The redox and fixed nitrogen-responsive regulatory protein NIFL from Azotobacter vinelandii comprises discrete flavin and nucleotide-binding domoains.Mol Microbiol.1998,28:179-192.
    91.Souza E M,Machado H B and Yates M G.Deletion analysis of the promoter region of the nifA gene from Herbaspirillum seropedicae.In Nitrogen Fixation:Fundamentals and Applications.Eds.I A Tikhonovich,N A Provorov,V I Romanov and W E Newton.1995a,pp 259.Kluwer Academic,Dordrecht.
    92.Spiller H,Latore C,HassanME and Shanmugam KT.Isolation and characterization of nitrogenase-derepressed mutant strains of Cyanobacterium Anabaena variabilis.J.Bacteriol.1986,165:412-419.
    93.Stephan M P.Denitrification by Azosprillum brasilense Sp71 Ⅱ,Growth with nitrous oxide as repiratory electron acceptor.Arch.Microbiol.1984,138:212-216.
    94.Stewart W D P and Rowell P.Effects of L-methionine-D,Lsulfoximine on the assimilation of newly fixed NH3,acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem.Biophys.Res.Commun.1975,65:846-856.
    95.Stouthamer A H.Dissimilatory reduction of oxidized nitrogen compounds.Biology of Anaerobic Microorganisms.Aehner A J B(eds.),1988:pp245-303,John Wiley and Sons,New York.
    96.Streicher S,Tyler B.Regulation of glutamine synthetase activity by adelylylation in the gram-posibive bacterium Streptomyces cattleya.Proc.Natl.Acad.Sci.USA,1981,78:229-233.
    97.Taylor L.A.and R.E.Rose.A correction on the nucleotide sequence of the Tn903 Kanamycin resistance determinant in pUC4K.Nucleic Acids Res.1988,16:358.
    98.Thomas GH,Mullins JG,Merrick M.Membrane topology of the Mep/ Amt family of ammonium transporters.Mol Microbiol 2000,37:331-44.
    99.Thomas S P,Zaritsky A and Boussiba S.Ammonium excretion by an L-methionine-DL-sulfoximine-resistant mutant of the rice field cyanobacterium Anabaena siamensis.Appl.Environ.Microbiol.1990,56:3499-3504.
    100.Vairinhos F.Simultaneous assimilation and denitrification of nitrate,by Brasyrhizobium japonicum.J.Gen.Microbiol.1989,135:189-194.
    101.van Heeswijk W C,Stegeman B,Hoving S,Molenaar D,Kahn D,and Westerhoff H V.An Additonal PⅡ in Escherichia coli:a new regulatory protein in the glutamine synthetase cascade.FEMS Microbiol.Lett.1995,132:153.
    102.van Heeswijk WC,Hoving S,Molenaar D et al.An alternative P_Ⅱ protein in the regulation of glutamine synthetase in Escherichia coli.Mol Microbiol.1996,21:133-146.
    103.Vermeiren,H.,A.Willems,G.Schoofs,R.de Mot,V.Keijers,W.Hai,and J.Vanderleyden.The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri.Syst Appl Microbiol 1999.22:215-24.
    104.Wall J D and Gest H.Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata.J.Bacteriol.1979,137:1459-1463.
    105.Weare N M.The photoproduction of H+2 and NH_4~+ fixed from N_2 by a derepressed mutant of Rhodospirillum rubrum.Biochim.Biophys.Acta 1978,502:486-494.
    106.Woehle D L,Lueddecke B A,and Ludden P W.ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhdospirillum rubrum in vitro.J.Biol.Chem.1990,265:13741-13749.
    107.Woods D,Reid S.Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups.FEMS Microbiol.Rev.,1993,11:273-284.
    108.Wootton JC,Drummond M.The Q-linker:a class of interdomain sequences found in bacterial multidomain regulatory proteins.Prot Eng.1989,22:535-543.
    109.Wray L V,Fisher S.Cloning and nucleotide sequence and the Streptomyces coelicolor gene encoding glutamine synthetase.Gene,1988,71:247-256.
    110.Yamashita M JM,Almassy R J,Janson C A,Casio D,Eisenberg D.Refined atomic model of glutamine synthetase at 3.5A Resolution.J.Biol.Chem.1989,264:17631-17690.
    111.Yan,Y,J.Yang,L.Chen,F.Yang,J.Dong,Y.Xue,X.Xu,Y Zhu,Z.Yao,M.Lin,Y Wang,and Q.Jin.Structural and functional analysis of denitrification genes in Pseudomonas stutzeri A1501.Sci China C Life Sci 2005.48:585-92.
    112.Yongliang Yan,Jian Yang,Yuetan Dou,Ming Chen,Suzhen Ping,Junping Peng,Wei Lu,Wei Zhang,Claudine Elmerich,Min Lin and Qi Jin,Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501.PNAS 2008,105(21):7564-7569.
    113.Yates M G and Eady R R.In recent advances in biological nitrogen fixation (Subba Rao NS ed.)1980,pp.88-120.Arnold,London.
    114.Zhang Y,Burns RH,Ludden PW et al.Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense.J Bacterid.1993,175:6781-6788.
    115.Zhang Y,Pohlmann EL,Ludden PW,Mutagenesis and functional characterization of the glnB,glnA,and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum.J Bacterid.2000,182:983-992.
    116.Zimmer W.Denitrification by Azospirillum brasilense Sp7,I.Growth with nitrate as respiratory electron accepter.Arch.Microbiol.1984,138:206-211.
    117.Zimmerman W J and Boussiba S.Ammonia assimilation and excretion in an asymbiotic strain of Anabaena azollae from Azolla filiculoides Lam.J.Plant Physiol.1987,127:443-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700