复杂运动目标高分辨雷达成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带雷达成像可以获取目标的形状结构信息,是目标识别的主要手段。本文针对复杂运动目标成像的特点和难点,从复杂运动目标对成像影响分析、复杂运动目标高分辨距离成像技术、平动补偿技术以及复杂运动目标高分辨二维成像技术四个方面开展了研究。
     论文首先阐述了研究背景和意义,回顾了高分辨雷达成像系统的发展历程,详细地比较和分析了国内外在高分辨雷达成像领域的研究工作,指出了已有技术手段在处理复杂运动目标高分辨成像中存在的问题。
     推导了复杂运动目标的回波相位与运动参数之间的解析关系,给出了其对距离像影响的定量计算公式;分析了匀加速转动、高速旋转、进动等复杂运动目标的多普勒特征,包括多普勒、多普勒率和多普勒展宽。
     针对复杂运动目标的高分辨距离成像问题,分别针对步进频信号和调频步进信号,提出一种脉冲重复时间的预先设计的方法,消除了由目标速度引入的相位高次项,并提出一种相位对消技术,消除由目标加速度引入的相位高次项。对于在成像时间内可近似为匀加速的目标,该方法无需进行参数估计和运动补偿,通过系列的仿真和实测数据进行了实验验证。
     针对平动补偿中的包络对齐问题,提出一种综合利用距离像幅度信息和相位信息进行包络对齐的方法,新方法不需要对距离像进行插值,因此可以在计算时间稳定的同时获得较高对齐精度。针对平动补偿中的初相校正问题,分析了基于图像准则方法与初相校正方法的一致性,提出一种新的基于图像衡量准则方法,降低了图像准则方法的聚焦结果与理想初相校正结果不一致的可能性。在转角估计方面,提出一种基于相位对消的转角估计方法,通过相位对消直接消除回波的相位一次项,克服了由于相位一次项的存在导致转角难以估计这一难题,利用加权最小二乘算法对估计结果进行拟合,增强了估计结果的稳定性和准确性。
     对匀加速转动、高速旋转、进动等复杂运动目标的二维成像方法进行了研究。针对匀加速转动目标回波二次相位系数与一次相位系数的比值为定值这一特点,提出一种基于调频傅立叶变换的ISAR成像方法,通过调频傅立叶变换后搜索最小熵的方法估计该比值,算法无需对散射点进行分离,有效减少了计算量。旋转速度估计是高速旋转目标高分辨二维成像的前提,论文提出一种估计目标旋转速度的新方法,利用较多相干脉冲进行估计以获得较高精度的旋转初速度,用较少的相干脉冲进行旋转速度精确值的搜索以保证搜索过程收敛。因此具有良好的准确性和抗噪性能。进动目标的高分辨二维成像需要先对进动周期进行估计,目标RCS可看作是姿态角余弦通过线性系统得到的响应,通过对输入信号频谱特性和系统频率传输特性的分析,确定了RCS的频谱特征,在此基础上提出一种空间锥体目标进动周期估计的新方法,仿真实验验证了算法的有效性。基于旋转对称目标的散射模型分析,提出了一种基于后向投影变换的高分辨二维成像新方法。通过将目标散射中心分布在距离时间域上的复数信号进行相干累加,转换目标的散射中心分布平面,从而实现了进动目标的高分辨二维成像,利用暗室测量数据进行了实验验证。
     论文最后总结了全文工作,并指出了下一步要着力开展的研究内容。
Wideband radar imaging is a primary technique for target recognition, due to its capability to provide the shape and structure information. Four main subjects have been researched in this dissertation, which are the imaging performance analysis for targets with complex motion, the high resolution range profile (HRRP) imaging, translation compensation, and two dimensional imaging for targets with complex motion.
     Firstly, the research background and significance is introduced, and the development of high resolution radar system for target imaging is reviewed. Then the work about signal processing technology of radar imaging is compared and analyzed in detail. The problems of high resolution radar imaging of targets with complex motion are pointed out.
     Secondly, the analytic relationships between the phase of echos and the movement parameters are derived, and the formulas for calculating the effection of HRRP are given. For the targets which are equably accelerative rotating, rapidly spinning or precessing, the Doppler signatures are analyzed respectively, including Doppler, Doppler rate and spread of Doppler.
     Thirdly, in order to obtain the HRRP of targets with complex motion, a method based on predesigned pulse repetition time (PRT) is presented for stepped frequency signals and frequency-stepped chirp signals, respectively. The target velocity will not cause higher order phase terms for the new signals, and the higher order phase terms caused by the acceleration can be eliminated by phase cancellation technology. For a nearly constant acceleration target in imaging time, the parameters estimation is not required for the new technology. The conclusion is verified by a series of experiments conducted both on the simulated and measured data.
     Fourthly, in the research of translation compensation and the rotational angle estimation, the dissertation proposed a novel range alignment algorithm, which uses both the phase information and the envelope information. Interpolation is not needed for the new algorithm, as a result, good performance can be achieved without a heavy computation burden. Then the inherent consistency between phase compensation and image auto- focusing method in ISAR imaging is analyzed and a new image auto-focusing method is presented, which has more consistency performance with the ideal result of phase compensation. In order to estimate the rotational angle, a method based on phase cancellation (PC) is proposed. In this method, PC is used to eliminate the linear terms of the phase, which is a disadvantage to the rotational angle estimation. By employing the weighted linear least squares algorithm, the rotation angle can be estimated efficiently and robustly.
     Fifthly, the dissertation has researched the imaging technology for three typical targets with complex motion, i.e., equably accelerative rotating targets, rapidly spinning targets and precessing targets. For an equably accelerative rotating target, the ratio of the second order terms of the phase to the linear terms is derived, and a novel imaging method based on the chirp-Fourier transform is presented. In the new method, the ratio is estimated by calculating the entropy of all the scattering points in cross-range. The steps of choosing range cell and the separation of the scattering points are not need in the proposed method, so the computation burden is greatly reduced. For a rapidly spinning target, a new spinning-rate estimating method is proposed, which is a precondition for two dimensional imaging. In this method, a primary estimation using many coherent pulses is put forward, and it is refined in specified range by calculating the entropy of the whole image, which uses a few coherent pulses to guarantee the convergence. Simulations results confirm its effectiveness and robustness. For a precession target, the cosine of the aspect angle and the RCS can be treated as the input and the response of a linear system, respectively. Both the frequency characteristic of the input signals and the frequency transmission characteristic of the system are analyzed. Then the frequency characteristic of RCS is achieved and a new method of estimating the precession cycle based on the frequency characteristic is presented. The simulation results show that the algorithm is effective. After that, the scattering model of a target with rotational symmetry is analyzed and a novel imaging method is proposed , which is based on the back prejection transform. The echos of the target in the range-time domain are transformed to the scatterer distribution plane by means of coherent cumulation. The algorithm is verified by the experiment results of both the simulated and anechoic chamber data.
     Chapter 6 is the summary of the dissertation. It also discusses the future work to be further researched.
引文
[1]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [2]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [3] Donald R. High resolution radar [M]. Artech House, 1987.
    [4] Brown W M. Synthetic aperture radar [J]. IEEE Transcations on Aerospace and Electronic Systems. 1967, 3(2): 217-229.
    [5] Wiley C A. Synthetic aperture radar [J]. IEEE Transcations on Aerospace and Electronic Systems. 1985, 21(3): 440-443.
    [6]张澄波.综合孔径雷达[M].北京:科学出版社, 1989.
    [7]张直中.微波成像技术[M].北京:科学出版社, 1990.
    [8]黄培康等.雷达目标特征信号[M],北京:宇航出版社, 2003.
    [9] Gombert G, Beckner F. High resolution 2-D ISAR image collection and processing[C]. Dayton, OH,USA,1994:371-377.
    [10] Lazarov A D, Minchev C N. ISAR image reconstruction technique with stepped frequency modulation and multiple receivers[C]. Washington, DC, United States, 2005:1149-1153.
    [11] Soumekh M, Nugroho S, Jones S, Rysdyk R, et al. ISAR imaging of an airborne DC-9[C]. Proceedings- ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing. Minneapolis, MN, USA,1993:465-468.
    [12] Brown W M, Fredericks R J. Synthetic aperture radar imaging of rotating objects[J]. Proc. Of the 13th annual radar symposium. 1967.
    [13] Dale A A, Adam K, Jack L W. Development in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems. 1984, 20(4):363-398.
    [14] Brown W M, Fredericks R J. Range-Doppler Imaging with Motion Through Resolution Cells[J]. IEEE Transactions on Aerospace and Electronic Systems. 1969, 5(1):98-102.
    [15] Walker J L. Range Doppler imaging of rotating objects[J]. IEEE Transactions on Aerospace and Electronic Systems. 1980, 16(1):23-52.
    [16] Chen C C. Multi-frequency imaging of radar turntable data[J]. IEEE Transactions on Aerospace and Electronic Systems. 1980, 16(1):15-22.
    [17] Chen C C, Andrews H C. Target motioninduced Radar Imaging[J]. IEEE Transactions on Aerospace and Electronic Systems. 1980, 16(1):2-14.
    [18] Camp W W, Mayhan J T and O’Donnell R M. Wideband radar for ballistic missile defense and Range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000, 12(2): 267-280.
    [19] Lemnios W Z, Grometstein A A. Overview of the Lincoln Laboratory Ballistic MissileDefense Program[J]. Lincoln Laboratory Journal. 2002, 9(32):9-32.
    [20]文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向[J].系统工程与电子技术. 2005, 27(6):1007-1011.
    [21] Cuomo K M, Piou J E, Mayhan J T. Ultrawide-Band Coherent Processing[J]. IEEE Transactions on Antennas and Propagation. 1999, 47(6):1094-1107.
    [22]李洲,尹照平,美国弹道导弹目标特性测量雷达的发展[J],飞行器测控学报, 2001, 20(1):42-49.
    [23]李斌.导弹防御系统雷达目标跟踪、成像及识别技术研究[D].长沙:国防科学技术大学, 2008.
    [24] Goodman R A. High Fidelity Ground to Air Imaging Radar System[C]. IEEE National Radar Conference. March, Atlanta, GA, USA, 1994:1578-1592.
    [25] Itoh T M, Donohoe G W. Motion Compensation for ISAR via Centroid Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems. 1996, 32(7):1191-1197.
    [26] Mehrholz D. Space object observation with radar[J]. Advance Space Research. 1993,13(8):33-43.
    [27] Mehrholz D. Radar observation in low earth orbit[J]. Advance Space Research. 1997, 19(2):203-212.
    [28] Mehrholz D, Magura K. Radar tracking and observation of non-cooperative space objects by reentry of SALYUT-7/KOSMOS-1686[C]. Proceeding of Internet Workshop on Salyut-7/Kosmos-1686 Reentry, ESOC. Darmstadt (D), 1991.
    [29] Mehrholz D, Leushacke L, etc. Detecting, tracking and imaging space debris. ESA, Bulletin 109, 2002,2. [ 30 ] Martorella M, Berizzi F. Time windowing for highly focused ISAR image reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(3):992-1007.
    [31] Cooke T, Martorella M, Haywood B, Gibbins D. Use of 3D ship scatterer models from ISAR image sequences for target recognition[J]. Digital Signal Processing. 2006, 16(2006):523-532.
    [32] Saha S, Kay S M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]. IEEE Transactions on Signal Processing. 1998, 46(3):691-708.
    [33]许人灿,黄小红,陈曾平.空间目标一维距离像高速运动补偿方法研究[J].信号处理. 2007, 23(4):607-610.
    [34]李玺,顾红,刘国岁. ISAR成像中转角估计的新方法[J].电子学报. 2000, 28(6):44-47.
    [35] Du Liping, Su Guangchuan. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets[J]. IEEE Geoscience and Remote Sensing letters. 2005, 2(3):247-249.
    [36]尹治平,张冬晨,王东进,陈卫东.基于FRFT距离压缩的高速目标ISAR成像[J].中国科学技术大学学报. 2009, 39(9):944-948.
    [37]曹敏,付耀文,黄雅静,黎湘,庄钊文.弹道目标高分辨一维距离像运动补偿研究[J].电子与信息学报. 2009, 31(3):601-605.
    [38] Haywood B, Evans R J. Motion compebsation for ISAR imaging. Proceedings of ASSPA89, Adelaide, Australia. 1989:113-117.
    [39] Garrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Artech House, 1995.
    [40] Jae Sok Son. Range-Doppler Radar Imaging and Motion Compensation[M]. Artech House, 2000.
    [41]刘铮,张守宏.步进频率雷达目标的运动参数估计[J].电子学报, 2000, 28(3): 43-46.
    [42]牛涛,陈卫东.脉冲步进频率雷达的一种运动补偿新方法[J].中国科学技术大学学报, 2005,35(2):161-166.
    [43] Martorella M, Haywood B, Berizzi F, and Dalle Mese E. Performance Analysis of an ISAR Contrast-Based Autofocusing Algorithm Using Real Data[J]. IEEE Radar conference. 2003:30-35.
    [44] Yau D, Berry P E, Haywood B. Eigenspace-based Motion Compensation for ISAR target imaging[J]. EURASIP Journal on Applied Signal Processing. 2006, Article ID:90716.
    [45]王桂丽,李兴国.频率步进和脉冲多普勒复合测速研究[J].红外与毫米波学报, 2008,27(3):190-192.
    [46] Jeong H R, Kim H T, Kim K T. Application of Subarray Averaging and Entropy Minimization Algorithm to Stepped-Frequency ISAR Autofocus[J]. IEEE Transactions on Antennas and Propagation. 2008, 56(4):1144-1154.
    [47] Martorella M, Berizzi Fabrizio, Bruscoli S. Use of Genetic Algorithms for Contrast and Entropy Optimization in ISAR Autofocusing[J]. EURASIP Journal on Applied Signal Processing. 2006, Article ID: 87298.
    [48] Park S H, Kim H T. Stepped-frequency ISAR motion compensation using Particle Swarm Optimization with an island model[J]. Progress in Electromagnetics Research. 2008, PIER 85:25-37.
    [49] Djurovi′c I, Thayaparan T, Stankovi′c L. Adaptive Local Polynomial Fourier Transform in ISAR[J]. EURASIP Journal on Applied Signal Processing. 2006, Article ID: 36093.
    [50] Chen H Y, Liu Y X, Jiang W D, Guo G R. Phase cancellation for synthesizing range profile of target with micro-motion[J]. 2006 CIE International Conference on Radar. Oct. 16-19, 2006:817-820.
    [51]陈行勇,姜卫东,刘永祥,黎湘,郭桂蓉.相位匹配处理微动目标ISAR成像[J].电子学报. 2007, 35(3):435-440.
    [52]龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理[J].电子学报. 1998, 26(12): 84-88.
    [53]陈行勇,魏玺章,黎湘,郭桂蓉.调频步进雷达扩展目标高分辨距离像分析[J].电子学报. 2005, 33(9):1599-1602.
    [54]姜斌,黎湘,陈行勇,郭桂荣.调频步进雷达扩展目标运动补偿研究[J].信号处理. 2006, 22(6):873-878.
    [55]袁昊天,文树梁,程臻.调频步进信号高速运动目标径向速度精确测量技术研究[J].电子学报, 2009,37(3):649-653.
    [56]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].航空学报. 2001, 22(6): 16-25.
    [57]雷文,龙腾,韩月秋.调频步进雷达运动目标信号处理的新方法[J].电子学报. 2000, 28(12):34-37.
    [58]张焕颖,张守宏,李强.调频步进雷达目标抽取算法及系统参数设计[J].电子学报. 2007, 35(6):1153-1158.
    [59] Delise G Y, Wu H. Moving target imaging and trajectory computation using ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems. 1994, 30(3):887-889.
    [60]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报. 1998, 26(6):5-8.
    [61]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报. 2001, 29(12): 1807-1811.
    [62]黄小红,邱兆坤,陈曾平.逆合成孔径雷达运动补偿中一种包络对齐新方法[J].信号处理. 2006, 22(2):230-232. [ 63 ] Wang G Y, Bao Z. A new algorithm of range alignment in ISAR motion compensation[J]. Journal of Electronics(CHINA), vol. 24(4). 2007, 509-514.
    [64] Wang G, Bao Z. The minimum entropy criterion of range alignment in ISAR motion compensation[J]. Proceeding Conference Radar’97. Edinburgh UK, 1997,Oct.:14-16.
    [65] Wang J, Kasilingam D. Global Range Alignment for ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(1):351-357.
    [66] Zhu D, Wang L, Tao Q N, Zhu Z D. ISAR range alignment by minimizing the entropy of the average range profile[J]. 2006, IEEE Conference on Radar: 24-27.
    [67]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报. 2000, 27(1): 93-96.
    [68]卢光跃,保铮. ISAR成像中具有游动部件目标的包络对齐[J].系统工程与电子技术. 2000, 22(6):12-14.
    [69] Sauer T, SchrothA. Robust range alignment algorithm via Hough transform in an ISAR imaging system[J]. Transactions on Aerospace and Electronic Systems, 31, 7(1995), 1173-1177.
    [70] Philippe S, LeonK, G. Sjoerd. Radon transform and Time-Dequency representations for ISAR motion compensation and imaging[J]. Pro. SPIE, Orlando, FL, USA,2002, vo1. 4738, 252-263.
    [71] Zhu D Y, Wang L, Yu Y.S, Tao Q N, and Zhu Z D. Robust ISAR Range Alignment via Minimizing the Entropy of the Average Range Profile[J]. IEEE Geoscience and Remote Sensing letters. 2009, 6(2):204-208.
    [72] Bocker R P, Jones S A. ISAR motion compensation using the burst derivative measure as a focal quality indicator[J]. International Journal of Imaging Systems and Technology. 1992, 4(4):285-297.
    [73] Berizzi F, Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems. 1996, 32(3):1185-1191.
    [74]张晓玲,黄书伟,郭少南. ISAR运动参数估计和补偿改进方法[J].电子科技大学学报. 2008, 37(3):321-324.
    [75]邱晓晖,赵阳, Alice H W C, Yeo S Y. ISAR成像最小熵自聚焦与相位校正的一致性分析[J].电子与信息学报.2007, 29(8):1799-1801.
    [76] Wang Y X, Ling H, Chen V C. ISAR motion compensation via adaptive joint time-frequency technique[J]. IEEE Transactions on Aerospace and Electronic Systems. 1998, 34(2):670-677.
    [77] Trintinalia C L, Ling H. Joint time-frequency ISAR using adaptive processing[J]. IEEE Transactions on Antennas and Propagation. 1997, 45(13):221-227.
    [78] Wu J, Zhang Y. A new motion compensation method for ISAR based on time-frequency analysis and image processing[C]. Asia-Pacific Microwave Conference Proceeding. 2005:1-4.
    [79] Berizzi F, Martorella M, Cacciamano A, Capria A. A Contrast-Based Algorithm For Synthetic Range-Profile Motion Compensation[J]. IEEE Transactions on Geoscience and Remote Sensing. 2008, 46(10):3053-3062.
    [80]郑义明. SAR/ISAR运动补偿新方法研究[D].西安电子科技大学博士学位论文,2000.
    [81] Wang L, Zhu D Y, Zhu Z D. Improvements of ROPE in ISAR Motion compensation[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar. 2007:3-19.
    [82] Steinberg B D. Microwave imaging of aircraft[J]. Proceedings of the IEEE. 1988, 33(10):1578-1592.
    [83] Ye W, Yeo T S, Bao Z. Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR autofocus[J]. IEEE Transcations on Geoscience and Remote Sensing. 1999, 37(9):2487-2494.
    [84] Wu H, Delisle G Y, Fang D G. Translational motion compensation in ISAR image processing[J]. IEEE Transactions on Imaging processing. 1995, 4(11):1561-1571.
    [85]朱兆达,邱晓晖,佘志舜.用改进的多普勒跟踪法进行ISAR运动补偿[J].电子学报. 1997, 25(3):65-70.
    [86]毛引芳,吴一戎.以散射质心为基准的ISAR成像的运动补偿[J].电子科学学刊. 1992, 14(5):532-536.
    [87] She Z, Liu Y. Autofocus for ISAR Imaging Using Higher Order Statistics[J]. IEEE Geoscience and Remote Sensing letters. 2008, 5(2):299-303.
    [88] Eichel P H, Jakowatz C V. Phase-gradient algorithm as an optimal estimal estimator of the phase derivative[J]. Optics Letters. 1989, 14(20):1101-1103.
    [89]韩兴斌,胡卫东,郁文贤.一种基于最大似然估计的ISAR自聚焦算法[J].国防科技大学学报. 2006, 28(5):63-68.
    [90] Qiu X H, Zhao Y, Udpa S. Phase compensation for ISAR imaging combined with entropy principle[C]. 2003 IEEE Antennas and propagation society international symposium, 2003:195-198.
    [91] Liu X, Liu G S, Ni J L. Autofocusing of ISAR images based on entropy minimization [J]. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(4):1240-1252.
    [92] Wang J, Liu X and Zhou Z. Minimum-entropy phase adjustment for ISAR[J]. IEE Process on Radar Sonar Navigation. 2004, 151(4):203-209.
    [93]张焕颖,张守宏,李强.高速运动目标的ISAR成像方法[J].电子与信息学报. 2007, 29(8):1789-1793.
    [94]张群,张涛,张守宏.基于拉伸信号的ISAR成像运动补偿新方法[J].西安电子科技大学学报. 2001, 28(1):83-87.
    [95] Jain A and Patel I. SAR/ISAR imaging of a non-uniformly rotating target. IEEE Transaction on Aerospace Electronic System. 1992, 28(1):317-320.
    [96]曹敏.空间目标高分辨雷达成像技术研究[D].长沙:国防科技大学, 2008.
    [97]刘爱芳,朱晓华,陆锦辉,刘中.基于离散匹配傅立叶变换的逆合成孔径雷达成像算法[J].兵工学报. 2004,25(4):458-461.
    [98] Berizzi F, Dalle Mese E, Diani M and Martorella M. High-Resolution ISAR Imaging of Maneuvering Targets by Means of the Range Instantaneous Doppler Technique: Modeling and Performance Analysis[J]. IEEE Transaction on Image Processing. 2001, 10(12):1880-1890.
    [99] Wang Q, Xing M D, Lu G Y, Bao Z. High-resolution three-dimensional radar imaging for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):22-30.
    [100] Bao Z, Sun C Y, Xing M D. Time-Frequency Approaches to ISAR Imaging of Maneuvering Targets and Their Limitation[J]. IEEE Transaction on Aerospace Electronic System. 2001, 37(3):1091-1099.
    [101] Berizzi F, Diani M. Target angular motion effect on ISAR imaging[J]. IEE Proceeding -Radar, Sonar Navigation. 1997, 144(2): 87–95.
    [102] Chen V C, Lipps R. ISAR imaging of small craft with roll, pitch and yaw analysis[J]. IEEE International Radar Conference. 2000: 493-498.
    [103]范录宏.逆合成孔径雷达成像与抗干扰技术研究[D].南京:南京航天航空大学, 2006.
    [104] Pastina D, Montanari A, and Aprile A. Motion estiamtion and optimum time selection[C]. Proceedings of the 2003 IEEE Radar Conference. Huntsville, USA, 2003: 7-14.
    [105] August W R, Stephen J H. Choosing imaging intervals for small ships[J]. Part of SPIE on Radar Processing, Technology, and Applications IV. 1999, 3810(14): 139-148.
    [106] Pastina D, Spina C. Slope-based frame selection and scaling technique for ship ISAR imaging[J]. IET Signal Processing. 2008, 2(3): 265-276.
    [107]汪玲.逆合成孔径雷达成像关键技术研究[D].南京:南京航空航天大学, 2006.
    [108]黄培康等编著.雷达目标特征信号[M].北京:宇航出版社, 2003.
    [109]黄德双著.高分辨雷达智能信号处理技术[M].北京:机械工业出版社, 2001.
    [110] F. Berizzi., M. Martorella., and A. cacciamano. Synthetic range profile focusing via contrast optimization[J]. IEEE Radar conference. 2007:3563-3566.
    [111] Gray J E, Rice T R and Conte J E, et al. A method for determining the non-linear time dependence of windowed data gathered from scattered signalsp[C]. In: Proceedings of International Symposium on Time-frequency and time-scale analysis, Victoria, BC, Canada, October 1992, 525-528.
    [112] Chen V C, Ling H. Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House, 2002, 93-104.
    [113] Chen V C, Fayin L, Shen-shyang H, Wechsler H. Micro-doppler effect in radar:phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic systems,2006,42(1): 2~21.
    [114] Cuomo K. M., Piou J. E., and Mayhan J. T., Ultra-wideband coherent processing[J]. The Lincoln Laboratory Journal, 1997, 10(2):203-222.
    [115]罗贤全,于久恩,尚朝轩,黄允华.步进频雷达目标ISAR成像运动补偿新方法[J].宇航学报. 2007,28(5):1288-1294.
    [116]李眈,龙腾.步进频率雷达目标去冗余算法[J].电子学报, 2000,28(6):60:63.
    [117]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报, 2000, 28(12):56-59.
    [118]苏宏艳,龙腾,何佩琨,候孝民.运动目标环境下的调频步进信号目标抽取算法[J].电子与信息学报, 2006, 28(5):915-918.
    [119] Ausherman A, Kozma A, Waker J L. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 20, 8 (1984), 363-400.
    [120] Prickett M J, Chen C C. Principles of inverse synthetic aperture radar (ISAR) imaging[C]. IEEE EASCON’80 Record, Arlington, VA, Sept.1980, 340-345.
    [121] Bocker R P, Henderson T B, Jones S A, and Frieden B R. A new inverse synthetic aperture radar algorithm for translational motion compensation[J]. Proceedings of SPIE, vol. 1569, 1991, 298-310.
    [122] Wahl D E, Eichel P H, Ghiglia D C, and Jakowatz C V. Phase gradient autofocus-a robust tool for high resolution SAR phase Correction[J]. IEEE Transaction on Aerospace Electronic System, 1994, 30(3):827–835.
    [123]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].博士学位论文,国防科技大学, 2009.
    [124]冯德军,王雪松,肖顺平,王国玉.高速目标解调频处理的相位特性及其补偿[J].电子与信息学报, 2008, 30(4): 916-920.
    [125]邱晓晖,赵阳, CHENG A H W, Yeo S Y. ISAR成像最小熵自聚焦与相位校正的一致性分析[J].电子与信息学报, 2007, 29(8): 1799-1801.
    [126] Qiu X H, Zhao Y. Study on Entropy Function Optimization Problem in Autofocusing Algorithm Applied for Radar Imaging[C]. 2008, International Conference on Microwave and Millimeter wave Technology,ICMMT, V4,2055-2058.
    [127] Mu?oz-Ferreras J M, Pérez-Martínez F. Non-uniform rotation rate estimation for ISAR in case of slant range migration induced by angular motion[J]. IET Radar Sonar Navigation. 2007, 1(4):251–260.
    [128] Lu G Y, Bao Z. Compensation of scatterer migration through resolution cell in inverse synthetic aperture radar imaging[J]. IEE Proceeding-Radar, Sonar Navigation. 2000,147(2): 80–85.
    [129] Yeh C M, Xu J, Peng Y N, and Wang X T. Cross-Range Scaling for ISAR Based on Image Rotation Correlation[J]. IEEE Geoscience and Remote Sensing letters, 2009, 6(3):597-601.
    [130] Wang Y and Jiang Y C. A Novel Algorithm for Estimating the Rotation Angle in ISAR Imaging[J]. IEEE Geoscience and Remote Sensing letters, 2008, 5(4):608-609.
    [131] Mu?oz-Ferreras J M, Pérez-Martínez F. Uniform rotational motion compensation for inverse synthetic aperture radar with non-cooperative targets[J]. IET Radar Sonar Navigation. 2008, 2(1):25-34.
    [132] Chen V C, Qian S. Joint time-frequency analysis for radar range-Doppler imaging[J]. IEEE Transaction on Aerospace Electronic System, 1998, 34 (2):486-499.
    [133] Bao Z, Wang G Y. Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition[J]. Optical Engineering, 1999, 38(9):1534-1541.
    [134] Lu G Y, Bao Z. New method for ISAR range-instantaneous Doppler imaging. International Conference on Signal Processing.1998, 1481-1484.
    [135] Wang G Y, Bao Z, Sun X B. Inverse synthetic aperture radar imaging of non-uniformly rotating targets[J]. Optical Engineering, 1996, 35(10):3007-3011.
    [136]黄雅静,曹敏,付耀文,李亚楠,姜卫东.基于匹配傅立叶变换的匀加速旋转目标成像.信号处理. 2009.25(6):864-867.
    [137]以光衡.陀螺理论与应用[M].北京:北京航空航天大学出版社, 1997.
    [138]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社, 1998.
    [139] Xing M D, Wang Q, Wang G Y, and Bao Z. A Matched Filter Bank Based 3-D Imaging Algorithm for Rapidly Spinning Targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2106-2113.
    [140] Bai X R , Xing M D ,Zhou F, and Bao Z. High-Resolution Three-Dimensional Imaging of Spinning Space Debris. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2352-2362.
    [141] Lammers U.H.W, Marr R.A, Doppler imaging based on radar target precession[J]. IEEE Trans. on Aerospace and Electronic Systems,1993,29(1):166-173.
    [142]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988,42-48.
    [143]李荣宁,刘敏.中远程战术导弹预测命中点的计算[J].现代防御技术,2001, 29(3):23-26.
    [144]白鹤峰,吴瑞林.战术弹道导弹(TBM)弹道的构造方法[J].现代防御技术, 1998,26(1):39-43.
    [145]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].博士学位论文,国防科技大学,2004年6月.
    [146]金文彬,刘永祥,任双桥等.锥体目标空间进动特性分析及其参数提取[J].宇航学报, 2004,25(4):408-410.
    [147]陈行勇,黎湘,郭桂蓉,姜斌.微进动弹道导弹目标雷达特征提取[J].电子与信息学报, 2006,28(4):663-666.
    [148]胡杰民,付耀文,黎湘.空间锥体目标进动周期估计[J].电子与信息学报,2008, 30(12): 2849~2852.
    [149]丁小峰,范梅梅,魏玺章,黎湘,肖怀铁.空间进动锥体目标窄带雷达成像算法[J].中国科学E辑. 2010, 40(6): 686~694.
    [150] Mahafza B.R. Radar Systems Analysis and Design Using MatLab[M]. USA Florida: CRC Press, 2000:106-108.
    [151] Fessler J.A. Nonuniform fast Fourier transforms using min-max interpolation[J]. IEEE Trans-SP, 2003, 51(2):560-574.
    [152] Dahlb?ck.N, Implementation of a fast method for reconstruction of ISAR images[D]. Thesis for the degree of Master. Link?ping, Sweden.2003, 12.
    [153]黄培康,殷红成,许小剑.雷达目标特性[M].中国北京:电子工业出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700