基于光纤微位移测量的轧辊磨损度在线检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪世界钢铁工业竞争的焦点是钢材的质量高而成本低,主要体现在要求钢材尺寸精度高、板形好。轧制钢材的轧辊长时间工作后,表面受到不同程度的磨损,其形状发生变化,导致钢材的板形和板厚难以控制,进而使产品质量下降。因此,及时、准确地检测出轧辊的磨损度是目前轧制生产的迫切要求。对于合理选择磨辊时间、减少换辊次数、保证钢材质量、实现在线磨辊都具有重要意义,成为提高生产效率和经济效益的重要技术之一。
     由于光纤传感技术具有灵敏度高、稳定可靠、抗电磁干扰,易与计算机连接实现智能化等特点受到国内外研究者广泛关注。本文在研究了国内外多种检测方法的基础上,进行基于光纤微位移测量的轧辊磨损度在线检测技术的理论和实验研究。主要研究工作如下:
     (1)基于光纤微位移测量原理,研究了将轧辊磨损度转化为位移量实现在线精确测量的机理。对轧辊磨损度的大小与光纤探头到轧辊表面距离之间的定量关系进行分析,建立了检测系统的数学模型。
     (2)对光纤在线检测系统进行设计,并对系统的关键技术进行研究。研制了可实现自动补偿功能的光纤探头;利用相敏检波和比值处理技术保证光源光强的稳定;采用差动相消法抑制电路的温度及零点漂移;设计可沿轧辊径向、轴向运动的三自由度精密传感器运动机构;采用VC++ 6.0编程工具对检测数据采集和处理软件系统进行设计。
     (3)在对影响轧辊磨损度在线检测精度各种因素分析的基础上,对轧辊磨损度在线检测误差分离与补偿方法进行研究。主要包括:利用设立参考通道的方法补偿光纤传感器的工作误差;采用最小二乘圆法对轧辊偏心、圆度、回转误差进行补偿;应用基于海明窗函数的有限冲击响应数字滤波器对检测数据进行滤波,补偿轧辊振动产生的误差等。
     (4)基于神经网络和小波分析理论寻找对检测信号进行数据处理的新方法,提高检测系统的灵敏度和精度。
     (5)采用快速数据采集芯片ADuC812,保证实时准确的显示检测数据,使之适于在实际现场进行高精度检测。
     (6)对检测系统进行实验研究。主要包括:光纤传感器实验、轧辊磨损度在线检测中轧辊自身状态及周围环境因素对检测结果的影响实验、检测系统分析控制软件仿真实验等。
In 21st century the competitive focus of the world iron and steel industry is good quality and low cost of the product. And the main requests are precise size and right shape of the steel boards. After long time working, the surface of a roller will wear. So the shape of the roller will be changed. And the roller wear will result in difficult controlling the shape and the thickness of the board. Further more it can lead to the decline of the product quality of a rolling mill. So it is very urgent to detect the roller wear exactly and real time. Examining the profile of a working roller between the intervals of rolling is called online testing for roller wear. The study of online testing roller wear is very important for selecting the grinding time in reason; reducing the exchanging roller times, improving the quality of the product and realizing online grinding rollers. It has become one of the key technologies to improve the producing efficiency and economic benefits.
     Because of high sensitivity, stabilization and credibility, no electromagnetic interference and easily realized intelligent with the computer optical fiber sensor has get a broad attention by domestic and overseas investigators. In this paper, after summarizing the experience of the detecting methods inside and outside we carry on the theoretic and experimental studying of roller wear online detecting system based on optical fiber tiny displacement measurement. The main research contents are as follows:
     (1)Based on optical fiber tiny displacement measurement principle, the mechanism of converting roller wear to displacement for online precisely detecting was studied. The ration relation of roller wear and the distance between the probe and the roller surface was analyzed. Also the mathematics model of the system was set up.
     (2)The whole online optical fiber detecting system was designed. And the key technologies of the detecting system were studied. The optical fiber probe that can realize compensating automatically was designed. By using the technology of PSD and ratio disposal the light intensity stabilization can be ensured. Zero and temperature excursion can be restrained by using differential circuit. A three freedom of motion organ which can move along the radial axle and axial direction of the sensor were designed. By using programming software VC++6.0 the data collecting and processing system was designed.
     (3)Through analyzing the diversified factors which affect the precision of the detecting system, the principle of error separation and compensation was studied. The main contents are: working error of optical fiber sensor can be compensated by setting up reference channel; by using LSC the circular and rotator errors of the detected roller can be compensated; librations error can be compensated by using FIR digit filter based on Hamming window.
     (4)Based on artificial neural network and wavelet analysis, a new processing method for detecting data was found. So the sensitivity and measuring precision of the detecting system can be improved.
     (5)By using high speed data acquisition chip ADuC812, detecting data can be output in real time and accurately. And this can make the detecting system appropriate for working in rolling locale and detecting with high precision.
     (6)Experimental research and analysis have been completed. The main experiments include optical fiber sensor characteristics, the effect of the roller’s states and ambience, and simulation of the analysis control software for the detecting system.
引文
1黄庆学,梁爱生.高精度轧制技术.北京:冶金工业出版社,2002:247-274
    2 [日]浅野晃,桐原一雄.用超声波自动探伤方法却爆轧机铸锻钢轧辊的质量.无损检测,1993, (7):23-27
    3轧辊在线检测装置研制技术总结报告.燕山大学轧机研究所,2002,12:1-8
    4 Ryohei Kinose. Development and application of build-in roll shaping machine for hot strip mill work rolls. Iron & Steel Engineer,1997,(3):59-64
    5 Kuroda A. Development of On-line Roll Grinder. Iron and Steel Engineer, 1993,70(3):38-43
    6 S. R. Wang, A. Tseng. Macro and Micro Modeling of Hot Rolling Of Steel Coupled by a Micro Constitutive Relationship. Iron and Steelmaker, 1996,15(9):49-61
    7 S. Jarrett, J. M. Allwood. Fast model of thermal camber evolution in metal rolling for online use. Iron making and Steel making,1999,26(6):439-407
    8 Zhi min Xi, An rui He, Quan Yang. Roll wear on finishing trains of ASP1700 hot strip mills. Journal of University of Science and Technology Beijing, 2004,11(1):94-96
    9 JIANG Zhiqiang, FENG Xilan. Development of Centrifugal Cast High Speed Steel Roll with High Wear Resistance for Pre-Finishing Stands of a Hot Rod-Wire Mill. International Journal of Plant Engineering and Management, 2004, 9(3):26-28
    10 Lars Nolle. SASS applied to optimum work roll profile selection in the hot rolling of wide steel. Knowledge-Based Systems, 2007,20:203-208
    11陈连生,黄传清,连家创.热带钢连轧机轧辊磨损度数值测量及分析.轧钢,2002,19:23-25
    12陈连生,连家创.热带钢连轧机精轧轧辊磨损度计算理论.河北理工学院学报,2001,23:24-28
    13肖刚,胡秋.轧辊磨损及预报.润滑与密封,2002,5:60-62
    14高国才,王俊圣.轧辊磨损度分析及计算.鞍钢技术,2002,2:34-36
    15陈连生,连家创.热带钢轧机轧辊磨损度研究.钢铁,2001,36(1):66-69
    16李长生,张晓明.轧制过程轧辊磨损度数学磨损度试验研究.机械工程学报,2003,38(7):28-30
    17孔祥伟,史静.热带钢轧机轧辊磨损预测.东北大学学报,2002,23(8):790-792
    18陈连生,黄传清,连家创.2050CVC热连轧机精轧机组轧辊磨损的研究.钢铁,2002,37(3):24-27
    19郭景峰.轧辊辊型非接触检测理论与CCD实现技术的研究.[燕山大学工学博士学位论文].2002:26-39
    20丛红.智能化光纤位移传感测试系统的设计.山东理工大学学报,2003,(1):24-27
    21 D N Hanlon, W M Rainforth. The rolling sliding wear response of conventionally processed and spray formed high speed steel at ambient and elevated temperature.Wear,2003, 255:956-966
    22 A. He, Q. Zhang, J. Wu, et a1.Thermal behaviors of work roll in finishing trains of ho rolling. Univ. Sci. Technol, 2001,8(1): 59-62
    23 X. M. Zhang, Z. Jiang, A. K. Tieu. Numerical modeling of the thermal deformation of CVC roll in hot strip rolling. Journal of Materials Processing Technology, 2002:219-223
    24三菱. ON-LINE PROFILE METER .三菱重工株式会社广岛制作所,1991年
    25桥本正一ほか.压延方法、ロ一ル伤检出方法、装置及ぴ压延机.公开特许公报,特开平10-192920,1998
    26山本国雄.オンティンロ一ルタテインタの开发.三菱重工技报,昭和63年7月,25(4): 352-356,1988
    27奥野真ほか.ロ一ルプロフィル测定方法および装置.公开特许公报,特开平7-311031,1995
    28 L. Sun, Q. D. Zhang, X. L. Chen. Research on working roll wear model for 2800 mm four-high mill [J]. Metallurgical Equipment, 2001,(3):17-19
    29牛继龙.中厚板轧机轧辊磨损的研究.南钢科技与管理,2005,(1):1-4
    30华云松,彭艳,刘宏民.辊型在线检测中的误差分离与补偿方法研究.冶金设备,2003,140(4): 14-18
    31温淑慧,王文生,冯波.基于遗传算法的辊型曲线拟合.传感技术学报,2002,(3):228-231
    32华云松,彭艳,刘宏民.热带钢轧机辊型在线检测现状与发展.轧钢,2002,19(4):44-46
    33王强,杨涤心,魏世忠等.高钒高速钢、高铬铸铁冷轧辊磨损实验研究.铸造,2005,54(6): 570-574
    34陈慧敏,陈跃,魏世忠等.轧辊材质摩擦磨损性能测定装置的研制.机床与液压,2005,(5): 19-25
    35宋耀华,吴炳火,戴根宝等. 2800mm中厚板精轧机辊型开发与应用.轧钢,2005,22(4):7-10
    36孔祥伟,徐建忠,王国栋.热轧带钢轧机轧辊磨损预测.东北大学学报(自然科学版),2002,23 (8):790-792
    37邱红雷,田勇,王昭东等.中厚板轧机轧辊磨损预测.东北大学学报(自然科学版),2004,25(3): 250-253
    38冯鹏,姚晓兰,王小平.中厚板轧机工作辊磨损预报模型的研究.宽厚板,2003,9(2):23-26
    39王佩林,金寒光,李丽梅.热轧辊辊型在线测量技术.江苏冶金,2006,34(5):45-47
    40华云松,彭艳,刘宏民.提高辊型在线检测精度的实验研究.中国冶金,2006,16(12):34-37
    41李铮.若干信号处理的总体设计思路.电子对抗技术,2002,16(1):39-48
    42顾廷权,范群,江光彪等.热轧辊型在线检测方法和误差分离策略的研究.世界钢铁,2003,(2): 11-15
    43韩正桐,洪迈生.三点法圆度误差分离及演化形式与精度分析.上海交通大学学报,2002,36(9): 1225-1227
    44韩正铜,洪迈生.圆度误差分离的三点法及其演化形式与精度分析.机械设计与制造,2002,(2): 54-55
    45 Kuang Chao Fan, Tung Hsien Tsai. Optomal shape error analysis of the matching image for a free-form surface .Robotics and Computer Integrated Manufacturing, 2001,(17):215-222
    46浦昭邦.光电测试技术.北京:机械工业出版社,2004:120-164
    47 L. Sun, Q. D. Zhang, X. L. Chen. Plate crown control on roiling by plate width increase in sequence for 2800mm four-high mill. Journal of University of Science and Technology Beijing, 2001, 23(3):278-281
    48 Shizhong Wei, Jinhua Zhu, Liujie Xu. Research on wear resistance of highs peed steel with high vanadium content.Materials Science and Engineering A ,2005,404:138-145
    49 ZHOU Cun-long, WANG Guo-dong, LIU Xiang-hua. Region Division and Stress Analysis for Plate Roller Leveling Process. JOURNAL OF IRON AND STEEL RESEARCH,2005,12(6): 27-29
    50林宽治ほか.オンテンロ一ル研削装置の研削异常检出方法.公开特许公报,特开平7-116959,1995
    51 Rafael Colas, Jorge Ramirez, Ignacio Sandoval, et a1. Damage in hot rolling work rolls. Wear, 1999, 230:56-60
    52 Terumasa Hisakado, Kentarou Miyazaki, Akiyosh Kameta, et a1.Efects of surface roughness of roll metal pins on their friction and Wear characteristics. Wear, 2000,239:69-74
    53 Yang Xinrong, Xiang Jianping, Ling Yuhua. Automatic detecting system of roll shape using CCD sensor in plate rolling Trans. Nonferrous Met. Soc. China,1997,7(1):156-159
    54 Sun Guofeng. Improvement of the stone elimination roller mill. BRICK-TILE,2005,(V00):20-22
    55 Guo Yuan, Wang Yutian. Optical Fiber On-line Detection System for Non-touch Monitoring Roller Shape.ISIST2006,2006,(2):1038-1042
    56 S. Hadjiloucas, J.J. Irvine and I.W Bowen, Radiometric analysis of the Light coupled byoptimally cut plastic optical fiber amplitude modulating reflectance displacement sensors, Review of Scientific Instruments, 2000, 71(8):3007-3009
    57 A. L. Chaudhari, A. D. Shaligram. Multi-wavelength optical fiber liquid refractometry based on intensity modulation. Sensor and Actuators A, 2002, 100:160-164
    58 Shinji Kajiwera, Haruo Sakaguchi, Masakazu Mohri, et a1. Material Evaluation and Thermal Stress Analysis of Side Dam for Twin Roll Type Strip Caster.Testu-to-Hagane,2001,87 (1):29-36
    59 Anrui He. Study on Roll Contour in Finishing Trains of Hot Wide Strip Mills. Beijing: University of Science and Technology, 2000:24-29
    60杨云梅,杨绣.提高轧辊磨削质量的措施.精密制造与自动化,2006,167(3):58-62
    61吴进,邱春林,齐克敏等.热轧精轧轧辊摩擦和磨损研究.钢铁研究,2006,34(6):31-34
    62 Jianli Z. Self-referenced intensity modulated fiber optic displacement sensor. Optical Engineering,1999,38(2):227-232
    63 Li Peng Sheng, Zhang Hua. A New Compensation Method of an Optical Fiber Reflective Sensor. SPIE 1997,11:3241-3245
    64 Yuan Libo, Zhang Zhenhui. Characteristic function of the twin receiving optical fiber sensors. ACTA PHOTONICA SINICA,1998, 27(5):441-444
    65 H.Colnabi. Design of an optical fiber sensor for linear thermal expansion measurement. Optics&Laser Technology,2002, 34:389-394
    66 Libo Yuan. Automatic Compensated Two-Dimensional Fiber-Optic Sensor. Optical Fiber Technology,1998,(4): 490-498
    67付松年,苏立国,游佰强等.新型反射式光纤位移传感器的分析与设计.传感器技术,2001,3: 15-18
    68王玉田,郑龙江,胡春海等.光电子学与光纤传感器技术.北京:国防工业出版社,2003:217-245
    69 Shi zhou Zhang, Satoshi Kiyono. An Absolute Calibration Method for Displacement Sensors. Measurement,2001,(29):11-20
    70 Betty Lise Anderson, Richard L. Anderson. Fundamentals of semiconductor devices.北京:清华大学出版社,2006:126-146
    71 Donald A. Neamen. An introduction to Semiconductor devices.北京:清华大学出版社,2006:268-289
    72 J. Tapia, A.V. Khomenko, R. Cortes-Martinez. High Accurate Fiber with Two-LED Light Source.Optics Communications, 2000, (177): 219-223
    73 MTI-2000 Ftonic Sensor,http://alwww.mtiinstrurnents.com/
    74 C. S. Lin, R. S. Chang. Fiber optic displacement sensors for the measurement of a vibrating object. http://www.auto.fcu.edu.tw/cslin/
    75 Yuan Libo. The analysis of the compensation of a fiber-optic displacement sensor. Sensor and Actuators:A,1993,36(3):177-182
    76 Yong Zhao, pengsheng Li, et al, A novel fiber-optic sensor used for small internal curved surface measurement. Sensors anti Actuators, 2000, A86:211-215
    77 Yang Huayong et al, Theoretical and experimental research on intensity RIM-FOS, ISTM'4, 2001: 1579-1582
    78傅竹西.固体光电子学.合肥:中国科技大学出版社,2001:264-268
    79叶嘉雄,常大定,陈汝钧.光电系统与信号处理.北京:科学出版社,1997:260-280
    80彭吉虎,吴伯瑜.光纤技术及应用.北京:北京理工大学出版社,2001:172-223
    81王俊.新型反射式光纤位移传感器系统的研制.激光与光电子学进展,2003,4:54-55
    82林凌,王小林,李刚等.一种新型锁相放大器检测电路.天津大学学报,2005,(1):65-69
    83马惠平,刘丽华,杨乐民等.平行光束反射光强调制型光纤位移传感器研究.光学学报,2003,2: 176-181
    84陈根祥.光波技术基础.北京:中国铁道出版社,2000:280-287
    85侯培国,王玉田,王莉田.高性能虚拟数字示波器的研究.测试技术学报,2002,16(2):104-107
    86刘丽华,孙正鼐,刘玉智等.用于汽轮机动静间隙测量的光纤传感器系统设计.光电子激光,2003,3:276-280
    87 H.H. Gilgen, R.P. Salathe and R. P. Novak. Sub millimeter Optical Reflectometry. Journal of Light wave Technology. 1999,7(8): 1225-1233
    88 N. Paone, G. Rossi. Fiber Optic Ice Sensors for Refrigerators. Proc. SPIE. Fiber Optic Sensors: Engineering and Applications 1998,1511(9): 129-139
    89靳伟,阮双琛,陈志超等.光纤传感技术新进展.北京:科学出版社,2005:70-76
    90孙传友,孙小斌,张一.感测技术与系统设计.北京:科学出版社,2004:570-584
    91李金良,朱志文.1.3LmInGaAsP低电流超辐射发光二极管组件.半导体光电,2001,22(5): 343-247
    92王化祥,曹章.基于锁相放大器的低通滤波环节优化设计.仪器仪表学报,2005,26(7): 684-688
    93高天光.传感器与信号调理器件应用技术.北京:科学出版社,2002:95-100
    94时得钢.基于信息融合理论得光纤位移传感器研究.电工电能新技术,2004,(1):36-42
    95高晋占.微弱信号检测.北京:清华大学出版社,2004:48-55,155-190
    96安毓英,曾晓东.光电探测原理.西安:西安电子科技大学出版社,2004:200-210
    97方棉佳,冯存前,张永顺.一种提高接收机信噪比系统的仿真与分析.雷达与对抗,2003,(2): 41-44
    98 LI Chao feng, DI Hong shuang, ZHANG Xiao ming. Wear and Thermal Stress Analysis of Side Dam for Twin Roll Strip Casting. J. Iron& Steel Res. Int.,2004,11(1):17-21
    99 Di Hong shuang, Bao Pei wei, Miao Yu chuan, et a1. Experimental Study on Twin Roll Strip Casting and Analysis of Processing Stability.Journal of Northeastern University,2000,21 (3):274-277
    100横田省三ほか.オンテンロ一ルプロフィ一ル测定方法.公开特许公报,特开平7-260468, 1995
    101 Lin Sun, Qingdong Zhang, Xianlin Chen. Application of simulated annealing algorithm to improve work roll wear model in plate mills. Journal of University of Science and Technology Bei Jin, 2002, 9(3):224-227
    102 J. Kihara. Application of BEM to Calculation of the Roll Profile in Flat Rolling. Proceedings of the 4th International Steel Rolling Conference: The Science and Technology of Rolling, Deauville, France, 1987:E.6.1-E.6.12
    103陈韶华,相敬林.一种改进的时域平均法检测微弱信号研究.探测与控制学报,2003,25(4): 56-59
    104 Dan Necsulescu, Yi Wu Jiang, Bumsoo Kim. Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING,2004,4(1):71-79
    105 Lin zhijiang, Sun lijing. Application of generalized regression neural network on fast 3D reconstruction. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY,2007,14(1):9-12
    106 Yan Yunyi, Guo Baolong. Two image denoising approaches based on wavelet neural network and particle swarm optimization. CHINESE OPTICS LETTERS,2007,5(2):82-85
    107 Yin Shirong, Wang Weiran. Denoising lidar signal by combining wavelet improved threshold with wavelet domain spatial filtering. CHINESE OPTICS LETTERS,2006,4(12):694-696
    108 Peng Xiaoqi, Song Yanbo. Approach based on wavelet analysis for detecting and amending anomalies in dataset. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2006,13(5):491-495
    109 Tan Yihua, Tian Jinwen, Liu Jian.Adaptively wavelet-based image denoising algorithm with edge preserving. CHINESE OPTICS LETTERS,2006,4(2):80-83
    110 Ma Qiming, Wang Xuanjin. Method and application of wavelet shrinkage denoising based on genetic algorithm. JOURNAL OF ZHEJIANG UNIVERSITY SCIENCE,2006,7(3):361-367
    111 FEIP ei-yan, GUO Bao-long. Infrared Image Denoising Based on Single-wavelet and Multiwavelets. INFRARED TECHNOLOGY,2005,27(3):235-239
    112 Liu Pin. Wavelet and Signal Processing. Journal of South-Central University for Nationalities, 2001,20:23-26
    113 S.Jarrett, J.M.Allwood. Fast model of thermal camber evolution in metal rolling for online use. Ironmaking and Steelmaking,1999,26(6):439-407
    114 Li C James, Li Sheng Yi, Yu Jiang Ming. High resolution error separation technique for in-situ straightness measurement of machine tools and workpieces. Mechatronics, 1996, 6(3):337-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700