铃期温度影响棉花纤维发育的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维发育过程决定棉纤维的最终品质,研究棉纤维发育的生理机制是调控棉纤维发育、形成高品质棉纤维的重要基础。温度是影响棉纤维发育的重要因素,研究温度影响棉纤维发育的生理基础,可为调控棉纤维发育、探索改善纤维品质提供理论依据。本研究以高强纤维品种(科棉1号,平均比强度为35cN.tex-1)和中强纤维品种(美棉33B,平均比强度为32cN.tex-1)为材料,采用大田方法,于2005-2006年在江苏南京(118°50'E,32°02N,长江流域下游棉区)和江苏徐州(117°11'E,34°15'N,黄河流域黄淮棉区)进行播期(4月25日和5月25日)试验,研究了:(1)温度对棉铃发育及主要纤维品质性状形成的影响;(2)温度对棉纤维蔗糖代谢的影响及其与纤维素累积特性和主要纤维品质形成的关系;(3)温度对棉铃对位叶C、N代谢的影响及其与铃重和主要纤维品质性状的关系;(4)温度对加厚发育期棉纤维内源保护酶活性、纤维素累积及其品质形成的影响;(5)温度对棉铃对位叶内源保护酶活性及棉铃发育的影响等。
     主要研究结果如下:
     1.温度对棉铃发育及主要纤维品质性状形成的影响
     铃期温度影响铃重、棉籽、纤维和铃壳等棉铃各组分的发育,而棉纤维长度、比强度、麦克隆值与铃重、铃重平均增重速率、纤维重、纤维率、纤维平均增重速率、棉籽重、棉籽率及铃壳物质转移率均成正相关。铃期日均温下降,铃重、棉纤维、棉籽快速增重的起止时间推迟、快速增重期延长、平均增重速率下降,低温(≤20.4℃)下棉铃和棉籽快速增重的起止时间提前,快速增重期缩短;棉籽与棉纤维存在异速生长关系;随铃期日均温降低棉纤维快速伸长的起止时间推迟、持续时间缩短;不同铃期日均温下纤维比强度形成速度存在差异,高温(≥25.3℃)下24d前纤维比强度增速快、45d后基本停止,低温(≤20.5℃)下24d前纤维比强度增速慢、45d后仍保持较快增速,适宜温度(23.1℃~23.2℃)下24d前纤维比强度增速快、45d后仍然保持一定速度。麦克隆值随铃期日均温下降而降低。
     2.铃期温度对棉纤维内糖代谢的影响及其与纤维品质形成的关系
     23.1℃~23.2℃是高强纤维形成的适宜温度,23.1℃-25.3℃是纤维长度形成的适宜温度。适宜的铃期均温条件下:伸长发育期(5-17d)纤维中蔗糖酶、β-1,3-葡聚糖酶活性与纤维伸长关系密切,此时两酶活性较高,可促进蔗糖水解,纤维素累积速度平稳,纤维细胞壁延展性好,有利于纤维期伸长;纤维加厚发育期(铃龄17d后)蔗糖合成酶和磷酸蔗糖合成酶活性与纤维比强度和马克隆值关系密切,此时酶活性上升速度快、活性高,蔗糖酶和β-1,3-葡聚糖酶活性下降速度快,促进蔗糖转化为UDPG,从而促进纤维素的累积,提高纤维品质。蔗糖合成酶和磷酸蔗糖酶活性高,蔗糖酶和p-1,3-葡聚糖酶活性下降速度快、水平低,蔗糖转化率高、纤维素累积期较长,累积速度平稳,棉纤维比强度高、马克隆值适宜。高品质棉科棉1号棉铃发育前期蔗糖酶、p-1,3-葡聚糖酶活性以及中后期蔗糖合成酶、磷酸蔗糖合成酶活性均较美棉33B高。
     3.加厚发育期温度对棉纤维中内源保护酶活性的影响及其与纤维素累积和纤维品质的关系
     棉纤维生理活性受纤维加厚发育期日平均温度的显著影响,其生理活性又影响棉纤维蔗糖转化和纤维素累积,最终影响纤维品质。正常温度条件下,棉纤维中可溶性蛋白含量较低,SOD、POD、CAT活性随铃龄增加上升速度较慢、峰值维持时间长,且加厚发育后28d后仍保持较高水平,MDA含量上升速度慢、含量低,纤维素前期累积速率平稳上升、峰值时间长、后期平稳下降,其纤维长度和比强度最大,马克隆值较适宜;日均温≤19.5℃,SOD、POD和CAT活性上升速度慢、后期下降快、活性低,丙二醛含量显著增加,纤维素合成速度慢、纤维品质降低;日均温≥24.9℃时棉纤维可溶性蛋白含量低,随铃龄增加棉纤维中SOD、POD、cAT活性上升速度快,且后期下降速度快、活性低,MDA含量明显上升,纤维素最大累积速率虽高,但纤维素快速累积持续期短、纤维品质也下降。棉纤维加厚发育期高强纤维品种科棉1号棉纤维生理活性较美棉33B高,蔗糖转化率也高、纤维素快速累积持续期较长,最终纤维品质优于美棉33B。
     4.铃期温度对棉铃对位叶C、N代谢的影响及其与棉铃发育和纤维品质的关系
     C/N与棉纤维长度、比强度和马克隆值的形成关系密切,不同铃期日均温下棉铃对位叶的可溶性糖、氨基酸含量及C/N存在显著(P<0.05)差异。铃期日均温在23.1℃-26.1℃范围内棉铃对位叶c、N代谢协调,C/N适宜,棉铃增重快、快速增重期长,铃重、棉纤维长度和比强度均较高,马克隆值较适宜。铃期日均温低,棉铃对位叶的可溶性糖含量在棉铃发育前期低、中期升高、后期下降,而氨基酸含量一直保持较高水平,C/N降低,棉铃快速增重的起止时间推迟、增重期延长、增重速度下降,铃重、纤维长度、比强度和马克隆值均下降。因此,铃期日均温23.1℃-26.1℃是棉花铃重和优质棉纤维形成的适宜温度,其中25.3℃-26.1℃适于形成大铃,23.1℃-25.3℃适于增加纤维长度,23.1℃-23.2℃适于提高比强度且马克隆值较适宜。优质棉纤维形成的棉铃对位叶C/N平均值存在地区差异,南京和徐州分别为5.6、9.4。
     5.铃期温度对棉铃对位叶内源保护酶活性的影响及其与棉铃发育的关系
     棉铃发育期日均温在23.1℃-25.3℃时棉铃对位叶的可溶性蛋白含量和内源保护酶活性较高,膜脂过氧化程度轻,棉铃对位叶生理活性高,C、N代谢活跃,C/N协调,棉铃平均增重速度较快,棉铃快速增重期延长,易形成大铃;≥27.0℃时可溶性蛋白含量和内源保护酶活性较低、膜脂过氧化程度严重,C代谢活跃,N生理活性较弱、C/N高,棉铃平均增重速度虽快,但快速增重期短,不利于棉铃发育和提高铃重;≤20.7℃时可溶性蛋白含量下降快,内源保护酶活性下降时间早、速度快,膜脂过氧化程度严重,棉铃对位叶生理活性低,对位叶可溶性糖转运率低,N生理活性高,C/N低,棉铃快速增重期虽长,但平均增重速率低,最终铃重下降。低温下科棉1号的对位叶生理活性比美棉33B强,铃重也较高。提高棉铃对位叶的生理活性、协调C/N是提高铃重的途径,适宜的铃期日均温可以提高棉铃对位叶的生理活性。
The process of cotton fiber development determines the final cotton fiber quality, the study on the physiological mechanism of cotton fiber development is an important foundation on regulation of cotton fiber development, the formation of high-quality cotton fiber. Temperature is a key factor affects cotton fiber development. Thus, study on effect of temperature on the physiological basis of cotton fiber development would provide the theoretical basis on the regulation of cotton fiber development and exploration of improving fiber quality. In this study, high strength fiber (Kemianl, average fiber strength35cN·tex-1)and low strength fiber(NuCOTN33B, average fiber strength32cN-tex-1)cotton cultivars was used as test materials in the field experiment, two planting dates (25April and25May) was applied. And the experiments were conducted in Jiangsu Nanjing (118°50'E,32°02'N, lower reaches of Yangtze River Valley) and Jiangsu Xuzhou (117°11'E,34°15'N, Yellow River Valley) in2005-2006. The main study topic are as follows:(1) Effect of boll period temperature on cotton boll development and main fiber qualities development during the cotton boll forming stage;(2)Effect of temperature on saccharide metabolism of cotton fiber and its relationship with cotton fiber quality formation during cotton boll development;(3) Effect of temperature on endogenous protective enzymes of cotton fiber and its relationships with fiber cellulose accumulation and cotton fiber quality;(4) Effect of temperature on C, N metabolism in the leaves subtending boll and its relationships with cotton boll development and fiber quality;(5) Effect of the temperature on endogenous protection enzymes in the leaves subtending boll and its relationship with cotton boll development.
     The main results are as follows:
     1. Effect of boll period temperature on cotton boll development and main fiber qualities
     There were positive relationship between cotton fiber length, strength, mic value and boll weight, the average boll weight increase rate, fiber weight, percentage of cellulose, seed weight, the transportation of dry matter from shell. As the boll period temperature decreased, the starting and ending time of boll, fibe rapid increasing stag would be delayed, the rapid increasing duration of fiber weigh would be prolonged, the average boll weight increase rate would be decreased. Under low temperature (≤20.1℃), the starting and ending time of boll weight and fiber rapid increasing stage would be advanced, the rapid increasing duration would be shortened. There had an allometry relationship between cottonseed and cotton fiber development, that was the starting and ending time of fiber fast elongation was delayed, duration was shortened with boll period temperature decreasing. There was difference in the fiber strength forming ratio during the daily mean temperature of different cotton boll development, the fiber strength increased faster before24days under high temperature (≥25.3℃), and after45days the fiber strength increasing almost stopped; the rate of fiber strength increasing was slower before24days under low temperature (≤20.5℃), and after45days, the fiber strength growth still kept faster speed. Under the suitable temperature condition (23.1℃~23.2℃) fiber strength increased faster before24days, the fiber strength growth still kept a certain speed after45days. Mic value in the lower boll period temperature of cotton boll development decreased.
     2. Effect of temperature on saccharide metabolism of cotton fiber and its relationship with cotton fiber quality formation
     23.1℃~23.2℃was the optimal temperature for high strength fiber formation,23.1℃~25.3℃was the optimal temperature for long length fiber formation. Under the suitable boll period temperature, there had close relationships between sucrase,β-1,3-glucanase and fiber elongation in the major fiber elongation period (5~17d), in this period, higher activities of sucrase and β-1,3-glucanase activities could increase hydrolysis of sucrose, stablize the accumulation velocity of cellulose, improve the extensibility of the fiber cell wall, and these would be benefit for fiber elongation. During the period of fiber thickening stage (17d~Boll opening), there had close relationships between activities of sucrose synthase and sucrose phosphate synthase with fiber strength, mic value. In this period, sucrose synthase activities, sucrose phosphate synthase activities increased rapidly and were very high, sucrase and β-1,3-glucanase activities decreased rapidly, these would be helpful to improve sucrose conversion and to inmprove the accumulation of cellulose and the fiber quality. In Kemianl, the sucrase and P-1,3-glucanase activities in its early development stage and the sucrose synthase and sucrose phosphate synthase activities in its middle and later development periods were all higher than those in NuCOTN33B.
     3. Effect of temperature on endogenous protective enzyme of cotton fiber and its relationship with fiber cellulose accumulation and cotton fiber quality
     Daily mean temperature of cotton fiber thickening development had significant effect on physiological activities of cotton fiber, its physiological activities had effect on cotton fiber sucrose transformation, cellulose accumulation and final fiber quality. Under normal daily temperature, the soluble protein content of cotton fiber was lower, SOD, POD, CAT activities rose slower with boll age increasing, the peak keeping time was longer, and still maintained higher level after28day of fiber thickening development, MDA content was lower and increased slowly. Sometimes the pervious acumulative rate of cellulose steady rose, the peak keeping time was longer, and late steady declined, and subsequently the fiber length and fiber strength were the highest, micro value more appropriate; while daily average temperature was below19.5℃, in which it was in lower temperature condition, SOD, POD and CAT activities rose more slowly and then decreased faster, then MDA content increased significantly, the cellulose synthesis speed and the fiber quality reduced; When the boll period temperature was above24.9℃, in which it was in higher temperature condition, the soluble protein of cotton fiber was lower, SOD, POD, CAT activities rose quickly with boll age increasing and then felled speedily, the MDA content increased obviously, the cellulose maximum accumulation rate was higher, but the duration of cellulose synthesis was shorter, then final fiber quality reduced ly. The physiological activity and sucrose conversion rate in high fiber strength cultivar Kemianl were higher than that in NuCOTN33B during cotton fiber thickening development, and had a longer duration of cellulose rapid accumulation, so the final fiber quality was superior to NuCOTN33B.
     4. Effect of temperature on C, N metabolism of leaf subtending boll and its relationship with cotton boll development and fiber quality
     C/N was closely related to cotton fiber length, strength and Mic value formation. Within different boll perild temperature condition, there were significant differences on soluble sugar, free amino acid content and C/N in leaf subtending boll (P<0.05). While the boll period temperature was at23.1℃~26.1℃, C/N metabolic in the subtending leaf, cotton boll was coordinated, cotton boll weight increase quickly, the rapid weight increasing period was longer, cotton fiber length and strength were higher, Mic value was more appropriate. While in the lower boll period temperature, the soluble sugar content in the leaf subtending boll presented lower (the early cotton boll development), increasing (the middle cotton boll development), decreasing (the later cotton boll development) and amino acid content had maintained a relatively higher level, C/N decreased, the start time of rapid boll weight increase period delayed, the rate of boll weight increasing, the boll weight, fiber length, strength and micr value all decreased. Therefore, the daily mean temperature at23.1℃~26.1℃is beneficial to increasing cotton boll weight and high fiber quality formation, the temperature at25.3℃~26.1℃is suitable for big boll forming, the temperature at23.1℃~25.3℃is helpful to increasing fiber length, the temperature at23.1℃~23.2℃is adapted to optimize fiber strength and Mic value. There have regional differences on average C/N in the subtending leaf, Nanjing and Xuzhou were respectively5.6,9.4.
     5. Effect of the temperature on endogenous protection enzymes in leaf subtending boll (LSB) and its relationship with cotton boll development.
     When the daily mean temperature (DMT) during boll maturation period was in the range of23.1℃to25.3℃, the LSB had higher soluble protein content, higher physiological activities and longer functional time. That mainly present as higher activities of endogenous protective enzymes, lower MDA content, and more ideal C/N ratio, and these characters were helpful to increase the average velocity and prolong the time for rapid increasing in boll developing, and to form higher boll weight. When the DMT during boll maturation period was above27.2℃, the physiological activities in LSB decreased, but C/N ratios increased, which resulted in the increase of average velocity, the shorter duration time for rapid increasing in boll developing, and the lower boll weight in some extent. When the DMT during boll maturation period was below20.5℃, the LSB had higher physiological activities at the prophase, but it had faster velocity of physiological activities decreasing during middle and later of boll development and lower C/N ratios, these led to longer duration time for rapid increasing and lower average velocity in boll developing, resulting in lower boll weight. Under the low temperature conditions in this study, the physiological activities and the boll weight in LSB of Kemian1were higher than that in NuCOTN33B. The way to increase boll weight is to improve the physiological activities and to abtain ideal C/N ratio, the suitable daily mean temperature (DMT) during boll maturation period can improve the physiological activities in LSB.
引文
[1]赵广荣,刘进元.棉纤维形态建成研究的新进展[J].棉花学报,2002,14(2):121-125.
    [2]刘继华,尹承佾.棉花纤维强度的形成机理与改良途径[J].中国农业科学,1994,27(5):10-16.
    [3]杨佑明,徐楚年.棉纤维发育的分子生理机制[J].植物学通报,2003,20(1):1-9.
    [4]刘继华,尹承俏,于凤英,等.开花期对棉花纤维超分子结构与纤维强度动态变化的影响[J].中国农业科学,1996,29(1):5-65.
    [5]刘继华,尹承佾.棉花纤维素沉积与高强纤维形成[J].核农学报,1991:6(4):205-209.
    [6]张文静.棉纤维加厚发育生理特征与纤维比强度形成的关系[D].南京:南京农业大学博士学位论文,2007.
    [7]徐楚年.温度对棉纤维发育效应的研究[C].中国棉花学会第十次学术研讨会论文集,1992,7.
    [8]单世华,施培,孙学振,等.温度影响棉纤维发育研究进展[J].山东农业大学学报(自然科学版),2002,33(3):395-398.
    [9]曲京武,张秀俐.用卜氏束纤维强力仪测定棉纤维零隔距强力结果的探讨[J].检验检疫科学,2000,10(6):32-33.
    [10]Sonal J, Gokani, Vrinda S, Thaker. Physiological and biochemical changes associated with cotton fiber development IX. Role of lAA and PAA [J]. Field Crops Research,2002,77:127-136.
    [11]Schubert A M. Cotton fiber development-kinetics of cell elongation and secondary wall thickening [J]. Crop Science.1973,3:704-709.
    [12]Benedict C R. In corporation of 14C-Photosynthate into developing cotton bolls [J]. Crop sicence. 1973,3:88-91.
    [13]Ramsey J C, Ber Lin J D. Ultrastructural spects of early stages in cotton fiber elongation [J]. Amer J Bot,1976b,63 (6):868-876.
    [14]Ramsey J C, Ber Lin J D. Ultrastructure of early stages of cotton fiber differentiation [J]. Bot Gaz, 1976,137 (1):11-19.
    [15]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217.
    [16]Aiyangar G S. Origin and development of lint and fuzz in cotton [J].Indian JAgr Sci,1951,21: 293-312.
    [17]Stewart J M. Fiber initiatiun on the cotton ovule (G.hirsutum) [J].Amer.J.Bot.l975,62:723-730.
    [18]Delanghe E A. Lint development. In J R Mauney and J M Stewart Cotton Physiology [J]. Cotton Foundation, Memphis, TN,1986,325-349.
    [19]Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall in cotton fiber during development [J]. Plant Physiology,1977,59:1088-1097.
    [20]O'Kel, Ley J C, Carr P H. Elongation of the cotton fiber. In:W. Loomis ed, Growth and differentiation in plants,1953,55-68.
    [21]Ferguson D L, Turley R B.Comparison of protein profiles during cotton Gossypium hirsutuml fiber cell development with partial sequences of two proteins [J]. Agric Food Chem,1996,44: 4022-4027.
    [22]Yang Y M, Xu C N, Wang B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres [J]. Plant Growth Regulation,2001,35 (3):233-237.
    [23]Potikha T, Collins C, Johnson D I, et al. The involvemental of hydrogen peroxide in the differentiation of secondary walls in cotton fibers [J]. Plant Physiology,1999,119 (3):849-858
    [24]张丽娟,熊宗伟,陈兵林,等.气候条件变化对棉纤维品质的影响[J].自然灾害学报.2006,15(2):79-84.
    [25]刘继华,于凤英.棉花纤维若干主要性状相关特性的综合分析[J].棉花学报,1991,(3):37-44.
    [26]Marx-Finigi M. Comparison of the biosynthesis of cellulose in vitro and in vivo cotton boll [J]. Nature,1966a,210:754-755.
    [27]Maureen M C, Delemer D P. Change in biochemical composition of the cell wall of the cotton fiber during development [J]. Plant Physiology,1997,59:1088-1097.
    [28]Malthy D.β-1,3-Glucan in developing cotton fibers [J]. Plant Physiology.1979,63:1158-1164.
    [29]Meier H, Buchs L, Buchala A J, et al. (1→3)-b-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres [J]. Nature,1981,289 (5800):821-822.
    [30]Delmer D P, Amor Y. Cellulose biosynthesis [J]. Plant Cell,1995,7(7):987-1000.
    [31]Delmer D P. Cellulose biosynthesis:exciting times for a difficult field of study [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:245-276.
    [32]刘继华,于凤英,尹承佾.棉花成熟纤维强度差异机制的研究[J].棉花学报,1994,6(4):11-16.
    [33]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343.
    [34]Mccarty W. A brief view of cotton growth and developme [R]. Mississippi State Mississippi State Univeity 1989:115-124.
    [35]Bradow J M, Johnson R M, Bauer P.I, et al. Peharvest spatial and temporal variability in short fiber content in relation to processing success [A]. ProcBeltwide Cotton Conf[C],1999,716-718.
    [36]余隆新,唐仕芳,王少华.湖北省棉纤维品质生态区划及研究[J].棉花学报,1993,5 (2):15-20
    [37]Hanson R G, Ewing E C. Effect of environmental factors on fiber properties and yield of Deltapine cottons [J]. Agron. J.1956,48:546-581.
    [38]周治国,孟亚利,施培,等.棉麦两熟棉纤维强度与铃期气象因子关系研究[J].棉花学报,1999,11(3):134-140.
    [39]Jones M A, Wells R, Guthrie D S. Cotton response to seasonal patterns of flower removal:I. Yield and fiber quality [J]. Crop Sci.1996,36:633-638.
    [40]许玉璋,许萱,李中东.土壤水分对棉纤维发育的影响[J].西北农业学报,1994,3(3):18-22.
    [41]王湘军.气象条件对棉花纤维品质的影响[J].中国棉花加工,1999,6:8.
    [42]Eaton F M, Ergle D R.. Effects of shade and partial defoliation on carbohydrate levels and the growth, fruiting, and fiber properties of cotton plants [J]. Plant Physiol.1954,29:39-49.
    [43]Husman S H, McCloskey W B, Teegerstrom T, et aI.Agronimic and economic evaluation of ultra narrow row cotton production in Arizona,1999:245-251.
    [44]Galadima A, Husman S H, Silvertooth J C. Plant population effect on yield and fiber quality of three upland cotton varieties at Maricopa Agricultural Center, Arizona Cotton Report, The University of Arizona College of Agriculture and Life,2003.
    [45]范术丽,许玉璋,张朝军.氮磷钾对棉花伏桃发育的影响[J].棉花学报,1999,11(1):24-30.
    [46]赵振勇,田长彦,马英杰.高密度对陆地棉产量及品质的影响[J].干旱区研究,2003,20(4):292-295.
    [47]海江波,王方成,范术丽,等.氮磷钾对棉铃干物质积累及纤维品质的影响[J].西北农业学报,1998,7(4):49-52.
    [48]Usherwood N R The Influence of potassium on cotton quality [J]. Agri-Briefs, Agronomic news items,2000,8:12-17.
    [49]Gormus O, Yucel C. Different planting date and potassium fertility effects on cotton yield and fiber properties in the Cukurova region [J]. Turkey. Field Crop Res 2002,78 (2-3):141-149.
    [50]李迎春,杨伯祥,王小平.氮磷钾对低酚棉产量和纤维品质的影响[J].中国棉花,1997,24(5):11-12.
    [51]胡尚钦,杨晓,唐时嘉,等.紫色土壤施氮对棉花产量品质的影响[J].棉花学报,2001,13(1):36-41.
    [52]Cassman, K G, Kerby T A, Roberts B A, et al. Potassium nutrition effects on lint yield and fiber quality of Acala cotton [J]. Crop Sci.1990,30:672-677.
    [53]刘继华,尹承佾,于凤英,等.棉花纤维素沉积特性的遗传分析[J].核农学报,1993,7(2):117-120.
    [54]Scheible W R, Pauly M. Glycosyltransferases and cell wall biosynthesis:novel players and insights [J]. Current Opinion in Plant Biology,2004,7(3):285-295.
    [55]Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant and Cell Physiology,1997,38 (3):375-378.
    [56]Tucker M R, Paech N A, Willemse M T M, et al. Dynamics of callose deposition and β-l,3-glucanase expression during reproductive events in sexual and apomictic Hieracium [J]. Planta,2001,212 (4):487-498.
    [57]朱乾浩,汪若海.高等植物纤维素合成的最新研究进展[J].生命科学,2000,12(5):210-213.
    [58]Brown R M Jr, Saxena IM, Kudlicka K. Cellulose biosynthesis in higher plants [J]. Trends in Plant Science,1996,1 (5):149-156.
    [59]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,118 (2):399-406.
    [60]Doblin M S, Kurek I, Jacok-Wilk D, et al. Cellulose biosynthesis in plants:from genes torosettes [J]. Plant and Cell Physiology,2002,43 (12):1407-1420.
    [61]Inouhe M, Nevins D. Regulation of cell wall glucanase activities by non-enzymic Proteins in maize coleoptiles [J]. International Journal of Biological Macromolecules,1997,21 (1):15-20.
    [62]Ruan Y L, Xu S M, White R, et aI.Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiology,2004,136 (4):4104-4113.
    [63]Salnikov V V, Grimson M J, Seagull R W, et a/.Localization of sucrose synthase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers [J]. Protoplasma,2003,221 (3-4): 175-184.
    [64]Stasinopoulos S J, Fisher P R, Stone B A, et al. Detection of two loci involved in (1■>3)-p-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative equence analysis of the putative curdlan synthase gene [J]. Glycobiology,1999,9 (1):31-41.
    [65]王水平,沈曾佑,张志良.棉纤维细胞伸长与过氧化物酶和IAA氧化酶的关系[J].植物生理学报,1985,11(4):409-417.
    [66]单世华,王明林,汪建民,等.不同开花期IAA、GA3和POD对棉纤维伸长发育的影响[J].棉花学报,2001,13(2):100-104.
    [67]刘思颖.岱字15号棉纤维发育过程中纤维细胞壁组分变化的研究[J].植物生理学报,2000,15(4):120-125.
    [68]Aureen M C, Delemer D P. Change in biochemical composition of the cell wall of the cotton fiber during development [J]. Plant Physiology,1997,59:1088-1097.
    [69]Jasdanwala R T. Auxin metabolism in developing cotton hairs [J]. Botany,1977,106:1111-1116.
    [70]Saxena I M, Brown R M. Cellulose synthases and related enzymes [J]. Current Opinion in Plant Biology,2000,3 (6):523-531.
    [71]Pear J R, Kawagoe Y, Schreckengost W E. Higher plants contain hom clogs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase [J]. Proceedings of the National Academy of Science of the United States of America,1996,93 (22):12637-12642.
    [72]Saxena I M, Lin F C, Brown R M, et al. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum [J]. Plant Molecular Biology,1990,15 (5):673-683.
    [73]Lin F C, Brown R M.. Identification of the uridine 5'-diphosphoglucose (UDP-Glc)binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc [J]. Journal of Biological Chemistry,1990,265 (9):4782-4784.
    [74]Rollit J, Maclachlan G. Synthesis of wall glucan from sucrose by enzyme preparations from Pisum sativum [J].Phytochemistry,1974,13 (2):367-374.
    [75]Roma N. Physiological and biochemical changes associated with cotton fiber development. II. Auxin oxidising system [J]. Physiologia Planta,1982,55:204-208.
    [76]Kimura S, Kondo T. Recent progresss in cellulose biosynthesis [J]. Journal of Plant Research,2002, 115 (4):297-302.
    [77]Ruan Y L. The differential expression of sucrose synthase in relation to diverse patterns of carbon portioning in developing cotton seed [J]. Plant Physiology,1997,115 (2):375-385.
    [78]Wafer U, Weier H. Enzyme activities in developing cotton fibres [J]. Plant Physiology and Biochemistry,1994,32 (5):697-702.
    [79]Nolte K D, Hendrix D L, Radin J W, et al. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules [J]. Plant Physiology,1995,109 (4): 1285-1293.
    [80]Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants [J]. Plant Biology,1995,92 (2): 9353-9357.
    [81]Salnikov V V, Grimson M J, Delmer D P, et al. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements [J]. Phytochemistry,2001,57 (2):823-833.
    [82]Amor Y,C H Haigler,S Johnson,M Wainscott.A membrane-associated synthesis of cellulose and callose in plants [J].Proc Natl Acad Sci USA,1995,92:9353-9357.
    [83]Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell,2003,15(4):952-964.
    [84]陈德华.澳大利亚棉花生产现状及研究方向[J].世界农业,2004,4:49-50.
    [85]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [86]Michelle B.V., and Haigler C.H. Sucrose phosphate synthase activity rises in correlation with high rate cellulose synthesis in threeheterotrophic sysrrns [J].Plant Physiol,2001,127 (3):123-242.
    [87]Haigler C.H., Holady S,Wu C. R, et al.Transgenic cotton over-expressing surcrose phosphate synthase produces higher quality fibers with increased cellulose content and has enhanced seed contton yield In [J]:Plant Biology 2000, July 15-19, San Diego.USA, pp.477.
    [88]Tummala J M S. Response of sucrose phosphate synthase activitv to cool temperatures in cotton, [dissertation], Lubbook, TX:Texas Tech Cniversity,1996
    [89]Hainler C H, Holaday A S, Wu C, et al.Abstract 447, In:Proceedinns of Plant Biology 2000, 15-19 July, San Diego,CA.American Society of Plant Physiologists, Rockville, MD [http://www. aspp. org/annual-meetinn/pb-2000/2000. htm],2000
    [90]Delmer,D P. Cellulose biosynthesis in developing cotton fibers.In A.S.Basra Eds. Cotton Fibers:Developing biology,quality improvement,and textile processing [M].New York:Food Products Press,1999,85-112.
    [91]Ferguson C, Teeri T T, Siika-aho M, et al. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum [J]. Planta,1998,206 (3):452-460.
    [92]Douglas C M, Foor F, Marrinan J A, et al.The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-b-D-glucan synthase [J]. Proceedings of the National Academy of Science of the United States of America,1994,91 (26) 12907-12911.
    [93]蔡应策,叶鹅盛,张利,等.p-1,3-葡聚糖酶及其在植物抗真菌病基因工程中的应用[J].西南农业学报,2001,14(2):78-81.
    [94]蓝海燕,王长海,张丽华,等.导入β-1,3-葡聚糖酶及几丁质酶基因的可育油菜及其抗菌核病的研究[J].生物工程学报,2000,16(2):142-145.
    [95]Jongeijk E, Tigelaar H, Roekel J S C. Synergistic activity of chitinases and β-l,3-glucanases enhances fungal resistance in transgenic tomato plants [J]. Euphytica,1995,85 (1-3):173-180.
    [96]Sela-Buurlage M B, Ponstein A S, Bres-Moemans S A. Only specific tobacco (Nicotiana tabacum) chitinases and β-l,3-glucanases exhibit antifungal activity [J]. Plant Physiology,1993, 101 (3):857-863.
    [97]黄鲲,刘曼西,程明愚.病原真菌细胞壁对棉花p-1,3-葡聚糖酶的诱导[J].华中理工大学学报,1998,26(7):103-106.
    [98]Delannoy E, Marmey P, Jalloul A. Molecular analysis of class Ⅲ Peroxidase from cotton [J]. The Journal of Cotton Science,2006,10 (1):53-60.
    [99]Jasdanwala R T, Singe Y D, Chinoy J J. Auxin metabolism in developing cotton hairs [J]. Journal of Experimental Botany,1977,28 (106):1111-1116.
    [100]刘继华,孙清荣,尹承佾,等.棉花纤维发育过程中氧化酶活性与同工酶酶谱分析[J].山东农业大学学报,1993,24(3):302-306.
    [101]Rama R N, Naithani S C, Jasdanwala R T. Changes in indoleacetic acid oxidase end peroxidase activities during cotton fibre development [J]. Z Pflanzenphysiol,1982,106:157-165.
    [102]刘康,张天真,潘家驹.棉纤维初始发育过程中过氧化物酶和吲哚乙酸氧化酶的活性[J].植物生理学通讯,1998,34(3):175-177.
    [103]Fry S C. Phenolics components of the primary cell wall and their possible role in the hormone regulation of growth [J].Planta,1979,146 (3):343-352
    [104]Daniel J. Cosgrove. Expansive growth of plant cell walls [J]. Plant Physiology and Biochemistry, 2000,38 (1-2):109-124.
    [105]Hega K, lino M. The short-term growth stimulation induced by external supply of IAA in internodes of intact pea seedlings [J]. Australian Journal of Plant Physiology,1997,24 (6) 215-226.
    [106]Hega K, lino M. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of thetisse sensitivity to auxin [J]. Plant Physiology,1998,117 (4):1473-1486.
    [107]Kim J B, Olek A T, Carpita N C. Cell wall and membrane-associated exo-β-D-glucanses from developing maize seedlings [J]. Plant Physiology,2000,123 (2):471-486.
    [108]Walti M, Roulin S, Feller U. Effects of pH, light and temperature on (1-3,1-4)-β-glucanase stability in wheat leaves [J]. Plant Physiology and Biochemistry,2002,40 (4):363-371.
    [109]Shieh M W, Cosgrove D J. Expansins [J]. Plant Research,1998,111 (1):149-157.
    [110]Shcherban T Y, Shi J, Durachko D M, et al. Molecular cloning and sequence analysis of expansins-A highly conserved, multigene family of proteins that mediate cell wall extension in plants [J]. Proceedings of the National Academy of Science of the United States of America,1995, 92 (20):9245-9249.
    [111]陈爱国,陈进红Expansin的研究进展[J].植物学通报,2003,20(6):752-758.
    [112]Orford S J, Timmis J N. Specific expression of an expansin gene during elongation of cotton fibres [J]. Biochimica et Biophysica Acta-Gene Structure and Expression,1998,1398 (3):342-346.
    [113]Ruan Y, Llewellyn D, Furbank R. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expressing of sucrose and K+transporters and expansin [J]. Plant cell,2001,13 (1):47-60.
    [114]Pfeiffer I, Kutschera L. Sucrose Metabolism and Cell elonnation in Developinn Sunfloner Hypocotyls [J]. ExpBot.1995,46:631-638.
    [115]Renz A. Partial Parification from Potato Tubers of Three Fructokinases and Three Texokinases which Show Bifferinn Organ and Developmental Specificity [J]. Planta.1993,190:56-65.
    [116]张圣章.棉纤维细胞发育研究的进展[J].植物生理学通讯,1982,(6):1-7.
    [117]Beasley C A.Developmental morphology of cotton flowers and seed as seen with the scanning electron microscope [J].Amer.J. Bot,1975,62:584-592.
    [118]Lang A G. The origin of lint and fuzz hairs of cotton [J]. Agric Res,1938,56:507-521.
    [119]Gispon J R. I Temperature variety interrelationships in cotton. Cotton growth review [J]. Agronomy Journal,1968,60:292-295.
    [120]Xie, W., N.L. Trolinder, et al. Cool temperature effects on cotton fiber initiation and elongation clarified using in vitro cultures [J]. Crop Sci.1993,33:1258-1264.
    [121]刘继华.陆地棉主要品种纤维品质变异性分析.Ⅰ.温度对棉纤维品质的影响[J].山东农业大学学报,1987,18(2):1-8.
    [122]纪从亮.棉花高产优质高效栽培实用技术[M].北京:中国农业出版社,2002:4.
    [123]Gipson J R,Joham H E. Influence of night temperature on growth and developmentof cotton, .Fiber properties [J]Agron.J,1968 b (60):296-298.
    [124]Thaker, V.S., S. Saroop, et al. Genotypic variations and influence of diurnal temperature on cotton fiber development [J]. Field Crops Res,1989,22:1-13.
    [125]Gipson J R, Ray L L. Fiber elongation rates in five varieties of cotton as influenced by night temperature [J].Crop Sci,1969 (9):339-341.
    [126]Gipson J R, Ray L L. Temperature-variety inter relationships in cotton.1. Boll andfibre development [J]. Cott.Gr. Rev,1970, (47):257-271.
    [127]单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000,15(4)120-125.
    [128]单士华.温度对棉纤维及棉铃发育影响的研究[D].泰安:山东农业大学硕士研究生学位论文,2000.6.
    [129]Langhe E A. Lint development. Pro. Amer. Cott. Prod. Res, Conf,1982,366-376.
    [130]Wanjura D F. Yield accumulation rates and properties development of cotton fiber [J]. Field Crop Research,1985,3:205-218.
    [131]Hessler, L.E., H.C. Lane, et al. Young. Cotton fiber development studies at suboptimum temperatures [J].AgronJ,1959.51:125-128.
    [132]杜雄明,潘家驹.影响棉纤维分化和发育的因素[J].生命科学,2000,12(4):177-180.
    [133]许玉璋,赵都利,许萱.温度对棉纤维发育的影响[J].西北农业学报,1993,2(4):19-23.
    [134]赵都利,许玉璋.大田条件下发育棉铃纤维中的纤维素沉积及其与温度关系的研究[J].棉花学报,1985,(1):55-61.
    [135]汤庆峰,文启凯,田长彦,等.棉花纤维品质的形成机理及影响因子研究进展[J].新疆农业科学,2003,40(4):206-210.
    [136]Deborach Delmer et al. Cellulose Synthesis in Fibers of Gossipium Hirsutum Acala S J-l [C]. Pro.Amer.Cott,1980:351.
    [137]勾玲,张旺锋,李少昆,等.新疆棉花纤维发育过程中可溶性糖和纤维素含量的变化及与气象因子的关系[J].中国农业科学,2002,35(7):878-882.
    [138]承泓良.棉纤维品质遗传改良的基础研究I.离体发育棉铃纤维中纤维合成与温度关系[J].江苏农业科学,1984,(5):1-3.
    [139]Basra A S, Malik C P. Development of the cotton fiber [J]. Int Rev Cytol,1984,89:65-113.
    [140]Huwyler H R,Franz G,Meier H. βl,3,-glu-cans in the cell walls of cotton fibers Gossypium arboreumL [J].Plant Sci lett,1978,12:55-62.
    [141]Itoh T. Fine structure and formation of cell wall of developing cotton fiber [J]. Wood Research, 1974,56:49-61.
    [142]Naithani S C, Rao N, et al. Changes in odiph enoloxidas eduring fiber development in cotton [J]. AnnBot,1981,48:379-385.
    [143]郑维,于成,沈雪芳.综合气象条件对棉纤维比强的影响试验研究[J].新疆农业大学学报,2002,25(3):13-15.
    [144]Hanson R G, Ewing E C. Effect of environmental factors on fiber properties and yield of Deltapine cottons [J].Agron. J,1956,48:546-581.
    [145]Haigler C H, Taylor J G, Martin L K. Temperature dependence of fiber cellulose biosynthesis: impact on fiber maturity and strength [J]. Proc. biochemistry of cotton workshop,1994:95-100.
    [146]卞海云.低温下棉纤维发育关键酶及外源物质对纤维比强度形成的影响[D].南京:南京农业大学硕士学位论文,2006.
    [147]黄骏麒.中国棉作学[M].北京:中国农业科技出版社,1998.
    [148]刘毓湘.当代世界棉业[M].北京:中国农业出版社,1995.
    [149]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [1]Campbell B T, Jones M A. Assessment of genotypeχenvironment interactions for yield and fiber quality in cotton performance trials [J]. Euphytica,2005,144:69-78.
    [2]单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000,15(4):120-125.
    [3]黄骏麒.中国棉作学[M].北京:中国农业科技出版社,1998.
    [4]Grismer M E. Regional cotton lint yield, Etc and water value in Arizona and California [J]. Agricultural Water Management,2002,54:227-242.
    [5]Bonda B R, Osterhuis D M, Norman R J. Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36 (1):127-133.
    [6]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645.
    [7]Sawan Z M, Mahmoud M H, El-guibali A H. Response of Yield, Yield Components, and Fiber Properties of Egyptian Cotton (Gossypium barbadense L.) to Nitrogen Fertilization and Foliar-applied Potassium and Mepiquat Chloride [J]. The Journal of Cotton Science,2006,10: 224-234.
    [8]赵都利,许萱,王汉文,等.棉铃各组成部分的干物质积累及其与温度关系的研究[J].陕西农业科学,1985,6:26-30.
    [9]卞海云,王友华,陈兵林,等.低温条件下相关关键酶活性对棉纤维比强度形成的影响[J].中国农业科学,2008,41(4):1235-1241.
    [10]刘毓湘.当代世界棉业[M].北京:中国农业出版社,1995.
    [11]Sawan Z M, Mahmoud M H, El-guibali A H. Response of Yield, Yield Components, and Fiber Properties of Egyptian Cotton (Gossypium barbadense L.) to Nitrogen Fertilization and Foliar-applied Potassium and Mepiquat Chloride [J]. The Journal of Cotton Science,2006,10: 224-234.
    [12]周可金,江厚旺,吴宁,等.不同开花期棉铃干物质积累规律研究[J].棉花学报,1996,8(3)145-150.
    [13]Leffler H R. Development of cotton fruit accumulation and distribution of dry matter [J]. Agronomy Journal,1976,68:855-857.
    [14]高英,高璆,金桂红,等.麦后移栽棉不同品种棉铃干物质积累与分配研究[J].棉花学报,1993,5(2):55-61.
    [15]朱绍琳,陈旭升,易福华,等.棉铃物生学[M].北京:中国农业科学出版社,1994.
    [16]卞海云,陈兵林,周治国,等.低温条件下外源生理活性物质对棉铃发育的影响[J].西北植物学报,2005,25(9):1785-1790.
    [17]单世华,孙学振,周治国,等.温度对棉纤维干物质积累动态变化的影响[J].山东农业大学学报(自然科学版),2001,32(1):6-10.
    [18]邬飞波,成灿土,许馥华.氮素营养对短季棉生理代谢和产量的影响[J].浙江农业大学学报,1998,24(3):241-247.
    [19]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [20]陈源.高品质棉品种棉铃发育与纤维品质形成的基本特征及其调节[D].扬州大学博士学位论文,2006.6:41-48.
    [21]胡宏标.张文静.陈兵林.等.棉铃对位叶C/N的变异性及其与棉铃干物质积累与分配的关系[J].作物学报,2008,34(2):254-260.
    [22]Egelkaut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystems,2004,68:235-242.
    [23].汤庆峰,文启凯,田长彦,等.棉花纤维品质的形成机理及影响因子研究进展[J].新疆农业科学,2003.40(4):206-210.
    [24]王秀珍,肖汉如,来源,等.棉纤维品质形成与气象条件的研究[J].中国农业气象,1994,15(2):8-11.
    [1]黄骏麒.中国棉作学[M].北京:中国农业科技出版社,1998.
    [2]孙本普,李秀云,王勇,等.夏套棉对棉花生态环境及生长发育影响的研究[J].应用生态学报,1997,8(5):475-480.
    [3]李伶俐,杜远仿,谭金芳,等.麦套不同熟性棉复合群体的生产力及生理生态特性[J].应用生态学报,2003,14(3):473-476.
    [4]Huwyler H R, Franz G, Merier H. Changes in the composition of cotton fiber cell walls during development [J]. Planta,1979,146 (5):635-642.
    [5]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [6]武耀廷,张恒木,刘进元.棉纤维细胞发育过程中纤维素的生物合成[J].棉花学报,2003,15(3):174-179.
    [7]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Mol Biol,2001,47:29-51.
    [8]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. P Biol,1995,92:9353-9357.
    [9]Ruany L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alteration in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,11:399-406.
    [10]Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNA for cell well-related enzymes in growing cotton fiber cells [J]. Plant and cell Physiology,1997,38:375-378.
    [11]徐亚浓.棉纤维细胞分化和发育功能基因的研究[D].杭州:浙江大学硕士学位论文,2002.26-37.
    [12]周青,王友华,许乃银,等.温度对棉纤维糖代谢相关酶活性的影响[J].应用生态学报,2009,20(1):149-156.
    [13]Nakai T, Tonouchi N, Konishi T. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant [J]. Proceedings of the National Academy of Science of the United States of America,1998,96 (1):14-18.
    [14]Deborah P D, Candace H H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolic Engineering,2002,4(1):22-28.
    [15]Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall in cotton fiber during development [J]. Plant Physiology,1977,59:1088-1097.
    [16]Ruany L, Prem S, Deborah P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed [J]. Plant Physiology,1997,11: 375-385.
    [17]史益敏,颜季琼,费雪南,等.番茄感染TMV诱导的β-1,3-葡聚糖酶的纯化和性质[J].植物生理与分子生物学学报,1993,19(4):333-338.
    [18]李颖章,郑晓华,唐海林,等.水杨酸和黄萎病菌毒素处理棉花愈伤组织使β-1,3-葡聚糖酶和几丁质酶的活性增加[J].植物学报,2003,45(7):802-808.
    [19]陈德华.澳大利亚棉花生产现状及研究方向[J].世界农业,2004,4:49-50.
    [20]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343.
    [21]张文静.棉纤维加厚发育生理特征与纤维比强度形成的关系[D].南京:南京农业大学博士学位论文,2007.
    [22]卞海云.低温下棉纤维发育关键酶及外源物质对纤维比强度形成的影响[D].南京:南京农业大学硕士学位论文,2006.
    [23]上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1985.
    [24]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].上海:科学出版社,1999.
    [25]张文静,胡宏标,陈兵林,等.棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J].作物学报,2008,34(5):895-869.
    [26]陈 源.高品质棉品种棉铃发育与纤维品质形成的基本特征及其调节[D].扬州大学博士学位论文,2006:41-48.
    [27]项时康,余楠,胡育昌,等.论我国棉花质量现状[J].棉花学报,1999,11 (1):1-10.
    [28]马富裕,曹卫星,李少昆,等.棉花纤维品质与气象因子的定量分析[J].应用生态学报,2005,16(11):2102-2107.
    [29]刘继华.陆地棉主要品种纤维品质变异性分析.Ⅰ.温度对棉纤维品质的影响[J].山东农业大学学报,1987,18(2):1-8.
    [30]Haigler C H, Zhang D S, Wilkerson C G Biotechnological improvement of cotton fibre maturity [J]. Physiologia Plantarum,2005,124 (3):285-294.
    [31]Meier H, Buchs L, Buchala A J, et al. (1→3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres [J]. Nature,1981,289:821-822.
    [32]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [1]单世华,孙学振,周治国,等.温度对棉纤维强度及超分子结构的影响[J].作物学报,2000,26(6):667-672.
    [2]单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000,15(4)120-125.
    [3]Thaker, V.S, S. Saroop, P.P. Vaishnav, and Y.E. Singh.1989. Genotypic variations and influence of diurnal temperature on cotton fiber development [J]. Field Crops Res.22:1-13.
    [4]Gipson J R,Ray L L.Fiber elongation rates in five varieties of cotton as influenced by night temperature [J]. CropSci,1969 (9):339-341.
    [5]Gipson J R,Ray L L.Temperature-variety inter relationships in cotton.boll and fibre development [J]. Cott.Gr.Rev.1970, (47):257-271.
    [6]Schubert A M. Cotton fiber development-kinetics of cell elongation and secondary wall thickening [J]. Crop Science.1973,3:704-709.
    [7]Benedict C R. In corporation of ~(14)C-Photosynthate into developing cotton bolls [J]. Crop sicence. 1973,3:88-91.
    [8]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217.
    [9]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,118 (2):399-406.
    [10]Doblin M S, Kurek I, Jacok-Wilk D, et al. Cellulose biosynthesis in plants:from genes to rosettes [J]. Plant and Cell Physiology,2002,43 (12):1407-1420.
    [11]Inouhe M, Nevins D. Regulation of cell wall glucanase activities by non-enzymic Proteins in maize coleoptiles [J]. InternationalJournal of Biological Macromolecules,1997,21 (1):15-20.
    [12]陈德华.澳大利亚棉花生产现状及研究方向[J].世界农业,2004,4:49-50.
    [13]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [14]赵广荣,刘进元.棉纤维形态建成研究的新进展[J].棉花学报,2002,14(2):121-125.
    [15]刘继华,尹承佾.棉花纤维强度的形成机理与改良途径[J].中国农业科学,1994,27(5):10-16.
    [16]赵都利,许玉璋.大田条件下发育棉铃纤维中的纤维素沉积及其与温度关系的研究[J].棉花学报,1985,(1):55-61.
    [17]Prochazkova D, WilhelmovaN. Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence [J]. Biologia Plantarum,2004,48 (1) 33-39.
    [18]Kukavica B, Jovanovic S V. Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing [J]. Physiologia Plantarum,2004,122 (3):321-327.
    [19]王新望,王惠萍,李俊尧,等.陆地棉功能叶不同生育时期酶活性及脂质过氧化作用的研究[J].作物学报,1995,21(2):215-222.
    [20]杨淑慎,高俊凤,李学俊,等.杂交春性小麦叶片衰老与保护酶系统活性的研究[J].中国农业科学,2004,37(6):460-463.
    [21]周青,王友华,许乃银,等.温度对棉铃对位叶生理特性及铃重形成的影响[J].西北植物学报,2009,29(3):0518-0527.
    [22]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [23]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [24]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000:164-197.
    [25]孟凡珍,张振贤,于贤昌,等.田间低温胁迫对大自菜某些理化特性的影响研究[J].中国生态农业学报,2005,13(2):84-86.
    [26]范月仙,张述义,李生泉.棉花苗期抗冷性与可溶性蛋白质含量增加关系的研究[J].山西农业大学学报.1995,15(1):56-58.
    [27]董合中,申贵芳.陆地棉与海岛棉纤维细胞伸长中过氧化物酶活性比较(简报)[J].植物生理学通讯,1997.33(3):188-190.
    [28]Fry S C. Phenolics components of the primary cell wall and their possible role in the hormone regulation of growth [J]..Planta,1979,146 (3)-.343-352.
    [29]周青,王友华,许乃银,等.温度对棉纤维糖代谢相关酶活性的影响[J].应用生态学报,2009,20(1):149-156.
    [30]项时康,余楠,胡育昌,等.论我国棉花质量现状[J].棉花学报,1999,11 (1):1-10.
    [31]韩焕勇,罗宏海,勾玲,等.棉纤维发育过程中内源激素含量和过氧化物酶活性的变化及其与纤维素累积和纤维比强度关系的研究[J].石河子大学学报(自然科学版),2006,24(5)529-533.
    [32]蒋光华.低温和棉株生理年龄对棉纤维加厚发育及纤维比强度的影响[D].南京农业大学硕士学位论文.2005.6:22-24.
    [1]Pan W L, Camberato J J, Moll R H. Altering source-sink relationships in prolific maize hybrids: Consequences for nitrogen uptake and remobilization [J]. Crop Science,1995,35 (2):836-845.
    [2]Uhart S A, Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios [J]. Crop Science,1995,35 (1):183-190.
    [3]Moll R H, Jackson W A, Mikkelsen R L. Recurrent selection for maize grain yield:dry matter and nitrogen accumulation and partitioning changes [J]. Crop Science,1994,34:874-881.
    [4]田晓莉,杨培珠,王保民,等.转Bt基因抗虫棉中棉所30的碳、氮代谢特征[J].棉花学报,2000,12(4):172-175.
    [5]凌启鸿.作物群体质量.上海:上海科学技术出版社,2000:307.
    [6]张文静,胡宏标,陈兵林,等.棉铃对位叶生理特性的基因型差异及其与铃重形成的关系[J].棉花学报,2007,19(4):296-303.
    [7]朱新开,严六零,郭文善,等.淮北稻茬超高产小麦碳氮代谢特征研究[J].麦类作物学报,2002,22(1):51-55.
    [8]Grechi I, Vivin Ph, Hilbert G, et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine[J].Environmental and Experimental Botany,2007,59:139-149.
    [9]Touchette B W Burkholder J M. Carbon and nitrogen metabolism in the seagrass, Zostera marina L.Environmental control of enzymes involved in carbon allocation and nitrogen assimilation [J] Journal of Experimental Marine Biology and Ecology,2007,35:216-233.
    [10]李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响[J].植物生态学报,2003,27(2):164-169.
    [11]王旭东,于振文,石玉,等.磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响[J].作物学报,2006,32(3):339-344.
    [12]金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,32(4):55-62.
    [13]伍素辉,刘景福,程见尧.棉花氮素营养诊断—棉花叶片氨基态氮与氮素营养水平的关系[J].植物生理学通讯,1986,(4):33-36.
    [14]张祥,陈德华,王进友,等.移栽Bt棉的生长发育及其碳氮代谢研究[J].棉花学报,2006,18(1):37-42.
    [15]Chen D H, Ye G Y, Yang C Q, et all.. Effect of introducing bacillus thuringiensis gene on nitrogen metabolism in cotton [J]. Field Crops Research,2005,92:1-9.
    [16]董志强,何钟佩,翟学军.转Bt基因棉新棉33B叶片氮素代谢特征及其化学调控潜力[J].棉花学报,2000,12(3):113-117.
    [17]胡宏标,张文静,陈兵林,等.棉铃对位叶C/N的变异性及其与棉铃干物质积累与分配的关系[J].作物学报,2008,34(2):254-260.
    [18]勾玲,张旺锋,李少昆,等.新疆棉花纤维发育过程中可溶性糖和纤维素含量的变化及与气象因子的关系[J].中国农业科学,2002,35(7):878-882.
    [19]单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000,15(4):120-125.
    [20]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [21]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000:192-197.
    [22]陈源.高品质棉品种棉铃发育与纤维品质形成的基本特征及其调节[D].扬州大学博士学位论文,2006:19-48.
    [23]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538.
    [24]Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains [J]. Plant Physiology,1989,30 (6):833-839.
    [1]凌启鸿.作物群体质量[M].上海科学技术出版社,2000:293-385.
    [2]喻树迅,范术丽,原日红,等.清除活性氧酶类对棉花早熟不早衰特性的遗传影响[J].棉花学报,1999,11(2):100-105.
    [3]周桂生,陈德华,吴云康.施肥和化控对高产棉田叶源活性和棉铃发育的调节[J].棉花学报,2001,13(6):356-360.
    [4]周治国.苗期遮荫对棉花功能叶光合特性和光合产物代谢的影响[J].作物学报,2001,27(6):967-973.
    [5]Prochazkova D, Wilhelmova N. Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence [J]. Biologia Plantarum,2004,48 (1) 33-39.
    [6]Kukavica B, Jovanovic S V. Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing [J]. Physiologia Plantarum,2004,122 (3):321-327.
    [7]王新望,王惠萍,李俊尧,等.陆地棉功能叶不同生育时期酶活性及脂质过氧化作用的研究[J].作物学报,1995,21(2):215-222.
    [8]杨淑慎,高俊凤,李学俊,等.杂交春性小麦叶片衰老与保护酶系统活性的研究[J].中国农业科学,2004,37(6):460-463.
    [9]王冀川,李志军,徐雅丽,等.低温胁迫对海岛棉幼苗生理生化特性的影响[J].中国棉花,2001,26(3):13-14.
    [10]Pan W L, Camberato J J, Moll R H. Altering source-sink relationships in prolific maize hybrids: Consequences for nitrogen uptake and remobilization [J]. Crop Science,1995,35 (2):836-845.
    [11]Uhart S A, Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios [J]. Crop Science,1995,35 (1):183-190.
    [12]Moll R H, Jackson W A, Mikkelsen R L. Recurrent selection for maize grain yield:dry matter and nitrogen accumulation and partitioning changes [J]. Crop Science,1994,34:874-881.
    [13]田晓莉,杨培珠,王保民,等.转Bt基因抗虫棉中棉所30的碳、氮代谢特征[J].棉花学报,2000,12(4):172-175.
    [14]朱新开,严六零,郭文善,等.淮北稻茬超高产小麦碳氮代谢特征研究[J].麦类作物学报,2002,22(1):51-55.
    [15]梁哲军,赵海祯,齐宏立,等.基因型差异对棉花光合产物生产和分配的影响及遗传改良研究[J].棉花学报,2005,17(1):18-22.
    [16]Zhao D L, OSTERHUIS D. Cotton responses to shade at different growth stages:nonstructural carbonhydrate composition [J]. Crop Science,1998,38 (5):1196-1203.
    [17]张文静,胡宏标,陈兵林,等.棉铃对位叶生理特性的基因型差异及其与铃重形成的关系[J].棉花学报,2007,19(4):296-303.
    [18]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677.
    [19]李合生编.植物生理生化实验原理和技术[M].高等教育出版社,2000:164-261.
    [20]Osaki M, Shinano T. Plant growth based on interrelation between carbon and nitrogen translocation from leaves [J]. Photosynthetica,2001,39 (2):197-203.
    [21]高松洁,王文静,郭大财,等.不同穗型冬小麦品种灌浆期旗叶碳氮代谢特点及籽粒淀粉积累动态[J].作物学报,2003,29(3):427-431.
    [22]谢志霞,李存东,孙红春,等.不同铃重类型棉花品种的源库特性与产量形成[J].棉花学报,2007,19(3):189-193.
    [23]张祥,陈德华,王进友,等.移栽Bt棉的生长发育及其碳氮代谢研究[J].棉花学报,2006,18(1):37-42.
    [1]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,118 (2):399-406.
    [2]Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNA for cell well-related enzymes in growing cotton fiber cells [J]. Plant and cell Physiology,1997,38:375-378.
    [3]束红梅,陈兵林,王友华,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926.
    [4]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51.
    [5]Meier H, Buchs L, Buchala AJ, et al. (1→3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres [J]. Nature,1981,289:821-822.
    [6]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343.
    [7]Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall in cotton fiber during development [J]. Plant Physiology,1977,59:1088-1097.
    [8]武耀廷,张恒木,刘进元.棉纤维细胞发育过程中纤维素的生物合成[J].棉花学报,2003,15(3):174-179.
    [9]刘继华,尹承佾,孙清荣,等.棉花纤维素累积与高强纤维的形成[J].核农学报1991,5(4):205-209.
    [10]Kimura S, Kondo T. Recent progresss in cellulose biosynthesis [J]. Journal of Plant Research,2002, 115 (4):297-302.
    [11]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [12]徐亚浓.棉纤维细胞分化和发育功能基因的研究[D].杭州:浙江大学硕士学位论文,2002.26-37.
    [13]陈源.高品质棉品种棉铃发育与纤维品质形成的基本特征及其调节[D].扬州大学博士学位论文,2006:41-48.
    [14]项时康,余楠,胡育昌,等.论我国棉花质量现状[J].棉花学报,1999,11 (1):1-10.
    [15]Ramsey J C, Ber Lin J D. Ultrastructural spects of early stages in cotton fiber elongation [J]. Amer JBot,1976b,63 (6):868-876.
    [16]Ramsey J C, Ber Lin J D. Ultrastructure of early stages of cotton fiber differentiation[J]. Bot Gaz, 1976,137 (1):11-19.
    [17]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. Plant Biology,1995,92:9353-9357.
    [18]Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development [J]. Current Opinion of Plant Biology,2004,7:235-246.
    [19]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolic Engineer,2002,4:22-28.
    [20]Michelle B V, Haigler C H. Sucrose-phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems [J]. Plant Physiology,2001,127 (3):1234-1242.
    [21].Delmer DP. Cellulose biosynthesis in developing cotton fiber. In Cotton fibers:Developing biology quality improvement and textile processing[M]. New York:Food Products Press,1999,85-112.
    [22]韩焕勇,罗宏海,勾玲,等.棉纤维发育过程中内源激素含量和过氧化物酶活性的变化及其与纤维素累积和纤维比强度关系的研究[J].石河子大学学报(自然科学版),2006,24(5):529-533.
    [23]范月仙,张述义,李生泉.棉花苗期抗冷性与可溶性蛋白质含量增加关系的研究[J].山西农业大学学报.1995,15(1):56-58.
    [24]王水平,沈曾佑,张志良.棉纤维细胞伸长与过氧化物酶和IAA氧化酶的关系[J].植物生理学报,1985,11(4):409-417.
    [25]董合中,申贵芳.陆地棉与海岛棉纤维细胞伸长中过氧化物酶活性比较(简报)[J].植物生理学通讯,1997.33(3):188-190.
    [26]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538.
    [27]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307.
    [28]Zhao D L, Oosterhuis D M. Effects of boron deficiency on leaf photosynthesis and nonstructural carbohydrate concentrations of cotton during early growth [C]. Proceedings of the 2000 Cotton Research Meeting,2000,77-80.
    [29]Tian X L, Yang P Z, Duan L S, et al. Preliminary study on the source-sink relationship of Bt transgenic cotton [J]. Acta GossypiiSinica,1999,11 (3):151-156.
    [30]陈德华,吴云康,段海,等.棉花群体叶面积载荷量与产量关系及对源的调节效应研究[J].棉花学报,1996,8(2):109-112.
    [31]张祥,陈德华,王进友,等.移栽Bt棉的生长发育及其碳氮代谢研究[J].棉花学报,2006,18(1):37-42.
    [32]周治国.苗期遮荫对棉花功能叶光合特性和光合产物代谢的影响[J].作物学报,2001,27(6):967-973.
    [33]喻树迅,范术丽,原日红,等.清除活性氧酶类对棉花早熟不早衰特性的遗传影响[J].棉花学报,1999,11(2):100-105.
    [34]王新望,王惠萍,李俊尧,等.陆地棉功能叶不同生育时期酶活性及脂质过氧化作用的研究[J].作物学报,1995,21(2):215-222.
    [35]张文静,胡宏标,陈兵林,等.棉铃对位叶生理特性的基因型差异及与铃重形成的关系.棉花学报,2007,19(4):96-303.
    [36]Pan W L, Camberato J J, Moll R H. Altering source-sink relationships in prolific maize hybrids: Consequences for nitrogen uptake and remobilization [J]. Crop Science,1995,35 (2):836-845.
    [37]Uhart S A, Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios [J]. Crop Science,1995,35 (1):183-190.
    [38]Moll R H, Jackson W A, Mikkelsen R L. Recurrent selection for maize grain yield:dry matter and nitrogen accumulation and partitioning changes [J]. Crop Science,1994,34:874-881.
    [39]田晓莉,杨培珠,王保民,等.转Bt基因抗虫棉中棉所30的碳、氮代谢特征[J].棉花学报,2000,12(4):172-175.
    [40]Jenner C F. The physiology of starch and protein deposition in the endosperm of Wheat [J]. Australian Journal of Plant Physiology,1991,18:211-226.
    [41]翁伯琦,江福英,方金梅,等.低温胁迫对豆科牧草圆叶决明苗期植株C、N代谢的影响[J].草业学报,2006,15(6):64-69.
    [42]李春燕,王祥菊,张影,等.宁麦9号植株碳氮代谢特点及其与籽粒品质的关系[J].麦类作物学报,2007,27(6):1064-1069.
    [43]王湘军.气象条件对棉花纤维品质的影响[J].中国棉花加工,1999,6:8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700