大蒜连作障碍形成机理及EM缓解效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口的快速增加和社会经济的发展,人们对一些特定的农作物产品需求量日益增加,使现代农业呈现出单一作物大面积种植的特点。作为一种普遍发生的农业现象,连作障碍对许多国家的农、副业造成极大的危害。大蒜(Allium sativum L.)是深受世界各国人民喜爱的保健蔬菜,又是重要的调味品和医药原料,也是中国重要的加工原料和出口创汇蔬菜。随着大蒜生产的不断发展,大蒜主产区的连作现象日益严重。本研究从大蒜根系分泌物和秸秆水浸液的化感作用、连作对大蒜根际土壤微生态环境(土壤可培养微生物和土壤酶活性)以及产量和品质的影响、施加EM菌剂缓解大蒜连作障碍三个方面对大蒜连作障碍问题进行了研究,以期为探讨大蒜连作障碍形成机理和缓解大蒜连作障碍问题提供科学依据,主要研究结果如下:
     1.短期连作(5年和10年)大蒜根际土壤细菌、放线菌和各生理类群数量急剧增加,真菌数量缓慢增加,土壤酶活性逐渐上升,微生态环境向良性方向发展,大蒜产量和品质也显著增加;但连作15年和20年大蒜根际土壤细菌、放线菌和各生理类群数量下降,真菌数量增加,土壤酶活性降低,土壤微生态环境呈变劣趋势,大蒜产量和品质也随之显著下降,连作障碍较为明显。
     2.通过组培法得到的大蒜根系分泌物对大葱、洋葱和韭菜等同属作物种子萌芽和生长均有抑制作用,抑制程度随着大蒜根系分泌物浓度的增大而加大。GC-MS鉴定大蒜根系分泌物中的主要物质有2,2'-亚甲基双(4-甲基-6-叔丁基基)苯酚、邻苯二甲酸二辛酯、5-辛基巴比妥酸、花生酸、阿魏酸、9-十六稀酸、肉豆蔻酸、二烯丙基二硫化物等。
     3.大蒜秸秆水浸液对番茄、辣椒、黄瓜胚芽和胚根的影响表现为低浓度促进,高浓度抑制;试验设计浓度均抑制番茄和辣椒种子发芽率,但对黄瓜种子的发芽率无明显影响;但对同属作物洋葱和大葱的发芽率、胚芽长和鲜重、胚根长和鲜重均表现为抑制作用。
     4.通过薄层层析分离的5个斑点中,斑点2、斑点3和斑点5对莴苣的萌芽有抑制作用,斑点1和斑点4有促进作用。分别通过GC-MS鉴定:斑点1主要有9-十八碳烯酸甲酯、双丙酮醇、己内酰胺、N,N-二丁基甲酰;斑点2中以2,2'-亚甲基双-(4-甲基-6-叔丁基苯酚)和邻苯二甲酸二乙酯等芳香族化合物为主;斑点3主要以1,8-二氨基环十四烷基-2,9-二酮、联苯和1-甲基萘等为主;斑点4中的化学物质以酯类物质为主,比如8-十八碳烯酸甲酯,棕榈酸甲酯和7,10 -十八碳二烯酸甲基酯;斑点5以芳香族化合物和脂肪族酯类化合物为主。
     5.施加EM(Effective Microorganisms)菌剂有利于改善连作大蒜根际土壤微生物结构,促进有益微生物正常活动和繁殖,抑制有害病菌的生长和繁殖;提高大蒜根际土壤酶的活性,降低有害物质的累积,提高土壤肥力;促进干物质量的积累来提高大蒜产量;调节作物的生理代谢功能,提高作物产量和改善作物的品质。
With rapid population growth and socio-economic development, a raise in demand for some specific crop has brought modern agriculture characteristic with single-crop large-scale cultivation. As a widespread agriculture phenomenon, continuous cropping has caused great harm to agriculture and sideline many countries. Garlic is not only internationall loved health vegetables, but also an important seasoning and pharmaceutical raw materials. In china, it is an important raw material and export vegetables. Along with the continuous development of the production, continuous cropping phenomenon in the main production areas of garlic is a growing problem.
     In this test, in order to investigate the mechanism of continuous cropping of garlic and provide the scientific basis for easing garlic cropping obstacles, we have studied continuously cropped garlic from three aspects. In this test, in order to investigate the mechanism of continuous cropping of garlic and provide the scientific basis for easing garlic cropping obstacles, we have studied continuously cropped garlic from three aspects: first, allelopathy of root exudates and straw aqueous extracts of garlic; second, influence of continuous cropping garlic on rhizosphere microbial environment, yield and quality; and last, EM help relieve cropping obstacles of garlic. The main research results were summarized as follows:
     1. In short-term (5 years and 10 years), the number of bacteria, actinomycetes and various physiological groups from garlic rhizosphere soil rose dramatically; fungi’increased slowly; and soil enzyme activity increased gradually; soil microenvironment obtained improved; Garlic yield and quality were increased significantly. But in long-term (15 years and 20 years), the number of bacteria, actinomycetes and various physiological groups from garlic rhizosphere soil decreased; soil enzyme activity reduced; but the number of fungi raised; soil microenvironment turned to deterioration; garlic yield and quality were decreased significantly, continuous cropping obstacles was obvious.
     2. Garlic root exudates obtained by tissue culture method inhibited the germination and growth of genus allium crop seed such as welsh onion, onions and leek, and inhibition increased with increasing concentration of garlic root exudates. The main substances of garlic root exudates were identified by GC-MS as follows: 2,2'-methylenebis[6-(1,1-dimethylethyl) -4-methyl]-Phenol, dioctyl phthalate, 5-octanoyl-pyrimidine-2,4,6(1H,3H,5H)-trione, eicosanoic acid, ferulic acid, 9-hexade- cenoic acid, tetradecanoic acid and diallyl disulphide.
     3. In this study, the high concentration of garlic straw aqueous extracts inhibited the germination (embryo and radicle) of tomato, pepper and cucumber, but the low concentrations displayed promoter action. All concentration designed in this experiment restrained the germination rates of tomato and pepper, but had no obvious effect on cucumber’germination rate; garlic straw aqueous extracts showed inhibition on the germination of onion and welsh onion.
     4. Five spots were observed on TLC plates under UV light, with Rf values of 0.12(spot 1)、0.43(spot 2)、0.64(spot 3)、0.74(spot 4) and 0.88(spot 5). Of these, only three spots suppressed lettuce emergence, with spot 2, spot 3 and spot 5, respectively; and spot 1 and spot 4 promoted lettuce emergence. Several compounds were detected in the five spots collected by TLC as shown. The first spot consisted of 9-octa- decenoic acid, methyl este, diacetone alcohol, caprolactam, N,N-dibutyl- formamide. The second spot contained diethyl phthalate and a derivative of phenol (2,2'-methylenebis[6-(1,1-dimethylethyl) -4-methyl]-Phenol). 1,8-diazacyclotetradecane-2, 9-dione, biphenyl and 1-methyl- naphthalene were detected in the third spot. Several esters were observed in the fourth spot, including 8-octadecenoic acid methyl ester, hexadecanoic acid methyl ester and 7,10-octadecadienoic acid methyl ester. In the fifth spot, aromatic compounds and aliphatic ester were identified.
     5. EM (Effective Microorganisms) helped improve structure of rhizosphere microbial of continuously cropped garlic, promote beneficial microbial activities and normal reproduction and inhibit harmful pathogens growth and reproduction. Compared with the control, EM enhanced enzyme activities in garlic rhizosphere soil, reduced the accumulation of harmful substances, improved soil fertility. regulation of physiological metabolic functions crops, improve crop yields and improve crop quality. And the physiological metabolism of garlic was regulated, yields and quality were improved by use of EM.
引文
鲍世旦主编.土壤农化分析.中国农业出版社, 2000.
    蔡秋锦,罗婉珍,陈长雄,等.植物渗出物和植物杀虫剂效应的研究.福建林学院学报, 1998, 18(4): 291-293.
    曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报, 2003, 9(1): 105-109.
    曹潘荣,骆世明.茶树的自毒作用研究.华南农业大学学报, 1988, 3: 9-11.
    曹潘荣,骆世明.茶园的他感作用研究.华南农业大学学报, 1994, 15(2): 129-133.
    曹志强,金慧,许永华,等.老参地连续种参试验报告,中药材, 2004, 27(8): 554-555.
    柴强,黄高宝,黄鹏,等.鹰咀豆根系分泌物的分离鉴定及典型分泌物苯甲醛的化感效应.草业学报, 2005, 14(1): 10l-111.
    陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响.应用生态学报, 2007, 18 (12): 2755-2759.
    陈龙池,汪思龙.杉木根系分泌物化感作用研究.生态学报, 2003, 23(2): 393-398.
    陈晓红,邹志荣.温室蔬菜栽培连作障碍研究现状及防治措施.陕西农业科学, 2002(12): 16-17.
    成田保三郎.连作障害の对策にフいて,日本土壤肥料学杂志, 1983, 54 (2): 170-178.
    迟金和,隆小华,刘兆普.连作对菊芋生物量、品质及土壤酶活性的影响.江苏农业学报, 2009, 25(4): 775-780.
    邓兰桂,孔垂华,骆世明.木麻黄小枝提取物的分离鉴定及其对幼苗的化感作用.应用生态学报, 1996, 7(2): 145-149.
    樊红科,赵政阳,刘怀锋,等.渭北高原苹果根区土壤养分变化及对再植苹果植株生长的影响.园艺学报, 2008, 35 (12): 1727-1734.
    樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究, 2003, 10(1): 85-87.
    封海胜,张思苏,万书波,等.连作花生土壤养分变化及对施肥反应.中国油料作物学报, 1993, 2: 53-57.
    封海胜,张思苏.花生不同连作年限土壤酶活性的变化.花生科技, 1994, (3): 5-9.
    高井康雄.水田土壤中の有机酸定量について(第1报)シリカグル·カヲムクロマトグラフイ——による有机酸の定量ぢよび土壤有机酸の分离.土肥志, 1958, 28(11): 435-438.
    高志华.草莓(Fragria ananassa Duch.)连作障碍机理及抗连作障碍的研究.河北农业大学硕士论文, 2003.
    耿广东,张素勤,程智慧.邻苯二甲酸二丁酯的化感作用及其作用机理研究.江西农业大学学报, 2008, 30(6): 1045-1048.
    关松荫.土壤酶及其研究法.北京:农业出版社, 1986.
    韩丽梅,曹克强,代丽,等.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报, 2004, 28(6): 828-832.
    韩丽梅,沈其荣,王树起,等.大豆根茬木霉腐解产物的鉴定及其化感作用的研究.应用生态学报, 2002, 13(10): 1295-1299.
    郝慧荣,李振方,熊君,等.连作怀牛膝根际土壤微生物区系及酶活性的变化研究.中国生态农业学报, 2008, 16(2) : 307-311.
    郝群辉,刘红彦,王飞,等.怀地黄根际土壤水提物的GC-MS分析.河南农业科学, 2007, 2: 78-80.
    何海斌,何华勤,林文雄,等.不同化感水稻品种根系分泌物中萜类化合物的差异分析. 应用生态学报, 2005, 16(4): 732-736.
    洪庆文(责任编辑).中国科学院南京土壤研究所微生物室.土壤微生物研究法.北京:科学出版社, 1985.
    胡飞,孔垂华.胜红蓟化感作用研究I.水溶物的化感作用及其化感物质分离鉴定.应用生态学报, 1997, 8(3): 304-308.
    胡海波,张金池,高智慧,等.岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系.林业科学研究, 2001, 15(1): 88-95.
    胡江春,王书锦.大豆连作障碍研究I.大豆连作紫青霉菌的毒素作用研究.应用生态学报, 1996, 7(4):396-400.
    胡元森,李翠香,杜国营,等.黄瓜根分泌物中化感物质的鉴定及其化感效应.生态环境, 2007, 16(3): 954-957.
    胡元森,刘亚峰,吴坤,等.黄瓜连作土壤微生物区系变化研究.土壤通报, 2006, 7(1): 126-129.
    胡元森,吴坤,李翠香,等.黄瓜连作对土壤微生物区系影响Ⅱ——基于DGGE方法对微生物种群的变化分析.中国农业科学, 2007, 40(10): 2267-2273.
    胡元森,吴坤,刘娜,等.黄瓜不同生育期根际微生物区系变化研究.中国农业科学, 2004, 37(10): 1521-1526.
    胡元森.黄瓜连作障碍因子分析及其生物修复措施探讨.南京农业大学博士学位论文, 2005.
    黄小芳,李勇,丁万隆.人参根系分泌物对种子萌发的自毒效应.种子, 2009, 28(10): 4-7.
    黄小芳,李勇,刘时轮,等.五种化感物质对人参幼根皂苷含量的影响.世界科学技术: 中医药现代化, 2009, 1: 71-74.
    黄小芳,李勇,易茜茜,等.五种化感物质对人参根系酶活性的影响.中草药, 2010, 1: 126-130.
    黄小芳.人参根系分泌物及其自毒活性研究.中国协和医科大学硕士论文, 2009.
    黄益宗,冯宗炜,张福珠.化感物质对土壤硝化反应影响的研究.土壤与环境, 1999, 8(3): 203-207.
    计钟程.大豆重迎茬减产的主要原因及对策.土壤通报, 1990,21(2): 76-86.
    贾新民,于泉林,沙永平,等.大豆连作土壤多酚氧化酶研究.黑龙江八一农垦大学学报, 1995, 8(2): 40-43.
    晋艳,杨宇虹,段玉琪,等.烤烟连作对烟叶产量和质量的影响研究初报.烟草科技, 2002, (1): 41-45.
    晋艳,杨宇虹,段玉琪,等.烤烟轮作、连作对烟叶产量质量的影响.西南农业学报,2004, (17): 267-272.
    孔垂华,胡飞.植物化感(相生相克)作用及其应用.北京:中国农业出版社, 2001.
    孔垂华,徐效华,梁文举,等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性.生态学报, 2004, 24(7): 1317-1321.
    李春格,李晓鸣,王敬国.大豆连作对土体和根际微生物群落功能的影响.生态学报, 2006, 26 (4): 1144-1150.
    李合生主编.植物生理生化实验原理和技术.高等教育出版社,北京: 2006.
    李明,马永清,税军峰,等.南瓜组培根根系分泌物的化感效应研究.应用生态学报, 2005, 16(4): 744-749.
    李明,马永清,税军峰.南瓜组培根根系分泌物的化感效应研究.应用生态学报, 2005, 16(4): 744-749.
    李琼芳.不同连作年限麦冬根际微生物区系动态研究.土壤通报,2006, 37 (3): 563-565.
    李淑芬,吴志红.花卉土壤传染病防治.云南农业, 2002, (10): 14-15.
    李树林,赵士杰. VA菌根对茄子、黄瓜、籽瓜促生防病效应的研究.内蒙古农牧学院学报, 1996, 17(1): 55-58.
    李彦斌,刘建国,谷冬艳.植物化感自毒作用及其在农业中的应用.业环境科学学报, 2007, 26(增刊): 347-350.
    李勇,刘时轮,黄小芳,等.人参(Panax ginseng)根系分泌物成分对人参致病菌的化感效应.生态学报, 2009, 29(1): 161-168.
    李玉霞,马保罗,尼尔·麦克劳克林,等.轮作在保护性耕作中的作用.中国农技推广, 2006, 22(5): 20-21.
    李兆慧,王强,廖俊俊,等.天山云杉凋落物自毒物质分析与初步鉴定.分析化学, 2009, 37(6): 888-892.
    李振高,李良谟,潘映华,等.小麦苗期根系分泌物对根际反硝化细菌的影响.土壤学报, 1995, 32(4): 408-413.
    梁银丽,陈志杰.设施蔬菜土壤连作障碍原因和预防措施.北方园艺, 2004, (7): 4-5.
    粱银丽,陈志杰,徐福利,等.黄土高原设施农业中的土壤连作障碍.水土保持学报, 2004, 18 (4): 134-136.
    凌宁,王秋君,杨兴明,等.根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学报, 2009, 15(5): 1136-1141.
    林文雄,董章杭,何华勤,等.不同环境下水稻化感作用的动态杂种优势分析.中国农业科学, 2003, 36(9): 5-10.
    刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响.北方园艺, 1998, (6): 1-3.
    刘福德,姜岳忠,刘颜泉,等.连作Ⅰ-107杨树无性系苗圃地的土壤酶活性特征.中国水土保持科学, 2005, 3(2): 119-124.
    刘建国,张伟,李彦斌,等.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学, 2009, 42(2): 725-733.
    刘世琦.蔬菜栽培学.北京:化学工业出版社, 2007, 173-178.
    刘秀芬,胡晓军.化感物质阿魏酸对小麦幼苗内源激素水平的影响.中国生态农业学报, 2001, 9(1): 86-88.
    刘亚锋,孙富林,周毅,等.黄瓜连作对土壤微生物区系的影响Ⅰ—基于可培养微生物种群的数量分析.中国蔬菜, 2006, (7): 4-7.
    刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价.生态学报, 2006, 26(3): 901-913.
    泷岛.防治连作障碍的措施.日本土壤肥料学杂志, 1983, (2): 170-178.
    马瑞霞,刘秀芬,袁光林,等.小麦根区微生物分解小麦残体产生的化感物质及其生物活性的研究.生态学报, 1996, 16(6): 632-639.
    马云华,王秀峰,魏珉,等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响.应用生态学报, 2005, 16 (11): 2149-2153
    马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报, 2004, 15: 1005-1008.
    马云华.日光温室黄瓜连作土壤微生物区系与酶活性变化研究.山东农业大学硕士论文, 2004
    潘存德,王强,阮晓,等.天山云杉针叶水提取物自毒效应及自毒物质的分离鉴定.植物生态学报, 2009, 33 (1): 186-196
    戚建华,梁银丽,梁宗锁.农业生态系统中化感作用研究综述.西北农业学报, 2004, 13(2): 115-118.
    屈姝存,周朴华.大蒜油提取及大蒜油与大蒜渣的化学成分分析.湖南农业大学学报, 1998, 24(3): 235-237
    阮维斌,赵紫娟,薛健,等.高效液相色谱法检测与化感现象相关的5种酚酸.应用与环境生物学报, 2001, 7(6): 609-612.
    阮维斌.大豆连作障碍机理及调控措施的研究.中国农业大学博士论文, 2000.
    邵华,彭少麟.农业生态系统中的化感作用.中国生态农业学报2002, 10(3): 102-104.
    史刚荣.植物根系分泌物的生态效应.生态学杂志, 2004, 23(1): 97-101.
    宋丹阳,李培武,赵永国,等.脉冲核磁共振仪在大豆含油量测定中的应用.中国油料作物学报, 2006, 28(2): 199-202.
    宋亮,潘开文,王进闯,等.酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响.生态学报, 2006, 26(10): 3393-3403.
    宋亮,潘开文,王进闯.化感活性物质影响种子萌发作用机理的研究进展.世界科技研究与发展, 2006, 28(4): 52-57.
    孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施.农业工程学报, 2005,12(21): 184-188.
    孙红霞,武琴,郑国祥,等. EM对茄子、黄瓜抗连作障碍和增强土壤生物活性的效果.土壤, 2001, 5: 264-267.
    孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报, 2003, 9(4): 406-410.
    孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报, 2001, 27(5): 617-621.
    谭仁祥.植物成分功能.北京:科学出版社, 2003.
    汤树得.土壤耕作对白浆土生物学活性的影响.土壤肥料, 1982, 3: 13-15.
    藤井义晴.植物のアレロバシ——化学と生物, 1990, 28(7): 471-47.
    田志佳.大型海藻化感物质对短裸甲藻的抑制作用.中国海洋大学硕士论文, 2009.
    佟飞,程智慧,金瑞,等.大蒜植株水浸液醇溶成分的化感作用.西北农林科技大学学报, 2007, 35(6): 119-124.
    佟飞.大蒜植株水浸液的化感作用和抑菌作用.西北农林科技大学硕士论文, 2007.
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径的研究.园艺学报, 1991, 18(2): 159-162.
    王泊理,高学彪.噬线虫真菌研究进展.华南农业大学学报, 1998, 19(4): 113-117.
    王大力,马瑞霞,刘秀芬.水稻化感抗草种质资源的初步研究.中国农业科学, 2000, 33(3): 94-96.
    王大力,祝心如.豚草的化感作用研究.生态学报, 1996, 16(1): 11-19.
    王大力.水稻化感作用研究综述.生态学报, 1998, 18(3): 326-334.
    王芳.茄子连作障碍机理研究.中国农业大学博士论文,北京, 2003.
    王海斌,何海斌,曾聪明,等.含氧萜类化合物对稗草的化感抑制作用.中国生态农业学报, 2009, 17(2): 307-311.
    王俊,李凤民,贾宇,等.半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化.应用生态学报, 2005, 16(3): 439-444.
    王茹华,张启发,周宝利,等.浅析植物根分泌物与根际微生物的相互关系.土壤通报, 2007, 38(1): 167-172.
    王茹华,周宝利,张启发,等.嫁接对茄子根际微生物种群数量的影响.园艺学报, 2005, 32(1): 124-126.
    王绪奎,陈光亚.设施农业中的土壤问题及对策.江苏农业科学. 2001, (6): 39-42.
    王学奎.植物生理生化实验原理和技术:第2版.北京:高等教育出版社, 2006.
    王志刚,郭天文,徐伟慧.大棚韭菜连作对产量和品质及土壤养分状况的影响.甘肃农业大学学报, 2006, 41(6) : 34-37.
    魏良民,冯建忠.连作对甜菜生长和块根产量及含糖的影响.中国糖料, 1999, (3): 20-22.
    吴凤芝,刘德,王东凯,等.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜, 1998, 4: 5-8.
    吴凤芝,栾非时,王东凯,等.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究.东北农业大学学报, 1996, 27(3): 255-258.
    吴凤芝,孟立君,王学征.设施蔬菜轮作和连作土壤酶活性的研究.植物营养与肥料学报, 2006, 12(4): 554-558.
    吴凤芝,王伟.大棚番茄土壤微生物区系研究.北方园艺, 1999, 3:1-2.
    吴凤芝,赵风艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响.农业系统科学与综合研究, 2002, (18): 20-22.
    吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报, 2000, 31 (3) : 241-247.
    西尾道德.连作障害の发生,日本土壤肥料学杂志, 1983, 54 (1): 64-73.
    小玉孝司,福井俊男.太陽熱とハウス密閉処理による土壌消毒法について.Ⅰ.土壌伝染性病原菌の死滅条件の設定とハウス密閉処理による土壌温度の変化.奈良農試研報, 1979, 10: 71-82.
    小玉孝司,福井俊男.イチゴ萎黄病に対する露地型太陽熱土壌消毒法の適用.日植病報, 1982, 48, 699-701.
    徐正浩,崔绍荣,何勇,等.植物次生代谢物质和害虫防治.植物保护, 2004, 30(1): 5-8.
    薛炳烨,罗新书. VAM真菌对再植桃实生苗生长的作用.果树学报, 1992, 9(2): 106-109.
    薛炳烨,罗新书.克服苹果苗圃地连作障碍的初步研究.山东农业科学, 1990, (4): 18-19.
    阎飞,杨振明,韩丽梅.论农业持续发展中的化感作用.应用生态学报, 2001, 12(4): 633-635.
    阎飞,杨振明,韩丽梅.植物化感作用(Allellopathy)及其作用物的研究方法.生态学报, 2000, 20(4): 692-696.
    杨建霞,范小峰,刘建新.温室黄瓜连作对根际微生物区系的影响.浙江农业科学, 2005,6: 441-443.
    杨梅,林思祖,黄燕华,等.邻羟基苯甲酸胁迫对不同杉木无系叶片渗透调节物质的化感效应.西北植物学报, 2006, 26(10): 2088-2093.
    杨庆凯,宁海龙,周玉中,等.不同生态条件重迎茬对大豆化学品质的影响.大豆科学, 2001, 20(3): 187-190.
    杨万勤,王开运.森林土壤酶的研究进展.林业科学, 2004, (2): 152-159.
    杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报, 2002, 8(5): 564-570.
    杨兴洪,罗新书,刘润进,等.利用VA菌根真菌解决苹果重茬问题.落叶果树, 1992, (4): 5-7.
    姚圣梅,杨晓红,郑雪虹,等.蔬菜大棚土壤微生物种类及数量的初步研究.华中农业大学学报, 1997, 16(4): 347-350.
    易振,张茂新,凌冰,等.马缨丹及其酚类化合物对水葫芦生长的抑制作用.应用生态学报, 2006, 17(9): 1637-1640.
    殷永娴,张春兰,姚惠琳.增施秸秆对蔬菜保护地土壤微生物的影响.土壤通报, 1996, 27(5): 239-241.
    于广武,许艳丽,刘晓冰,等.大豆连作障碍机制研究初报.大豆科学, 1993, 12(3): 237-243.
    于慧瑛,吕国忠,孙晓东.不同生长年限人参根际土壤真菌种类及数量的初步研究.人参研究, 2006, 4: 9-11.
    于占东,宋述尧.稻草配施生物菌剂对大棚连作土壤的改良作用.农业工程学报, 2003, 19(1): 177-179.
    喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报, 2000, 31(1): 124-126.
    喻景权,松井佳久.豌豆根系分泌物自毒作用的研究.园艺学报, 1999, 26(3): 175-179.
    喻敏,余均沃,曹培根,等.百合连作土壤养分及物理性状分析.土壤通报, 2004, 35(3): 377-379.
    袁龙刚,张军林,张朝阳,等.连作对辣椒根际土壤微生物区系影响的初步研究.陕西农业科学, 2006, (2): 49-51.
    曾任森,林象联,骆世明,等.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定.生态学报, 1996, 16(1): 20-27.
    曾任森.化感作用研究中的生物测定方法综述.应用生态学报, 1999, 10(1): 123-126.
    甄文超,曹克强,代丽,等.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报, 2004, 28(6): 828-832.
    张辰露,孙群,叶青.连作对丹参生长的障碍效应.西北植物学报, 2005, 25(5): 1029-1034.
    张春兰,吕卫光,王开金,等.有机物料在设施蔬菜栽培中的作用.设施蔬菜连作障碍原因分析与防治措施.李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产.北京:中国农业大学出版社, 2000, 157-163.
    张春兰.稻草对减轻保护地土壤次生盐渍化的作用.土壤, 1994, (3): 146-148.
    张洪胜.关于老果园改建时的重茬病与克服方法.北方果树, 1991, (1): 32-33.
    张江红.酚类物质对苹果的化感作用及重茬障碍影响机理的研究.山东农业大学博士论文, 2005.
    张淑香,高子勤,刘海玲.连作障碍与根际微生态研究Ⅲ土壤酚酸物质及其生物学效应. 应用生态学报, 2000, 10(5): 741-744.
    张新慧,张恩和.不同植龄啤酒花根际微生物区系的变化及与产量和品质的关系.草业学报, 2007, 16(5): 56-60.
    张益望,刘文兆,王俊,等.轮作及不同施肥措施对春玉米生长、产量及水分利用的影响. 水土保持通报, 2010, 30(2): 124-128.
    张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报, 2004, 12(1): 83-90
    郑炳松.现代植物生理生化研究技术.北京:气象出版社, 2006.
    赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社, 1998.
    周宝利,陈丰,刘娜,等.邻苯二甲酸二异丁酯对茄子黄萎病及其幼苗生长的化感作用. 西北农业学报, 2010, 19(4): 179-183.
    周莉华,李伟炯,倪永珍.长期施用EM生物有机肥对冬小麦生产的影响.农业工程学报, 2005, 21(Supp): 221-224.
    周晓芬,杨军芳.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果.河北农业科学, 2004, 8(4): 89-92.
    周艳丽,程智慧,孟焕文.大蒜根系分泌物对不同受体蔬菜的化感作用.应用生态学报, 2007, 18(1): 81-86.
    周志红,骆世明,牟子平.番茄植株中几种化学成分的化感效应.华南农业大学学报,1998, 19(3): 56-60.
    周志红,骆世平,牟子平.番茄的化感作用研究.应用生态学报, 1997, 8(4): 445-449.
    周志红.植物化感作用研究方法及影响因素.生态科学, 1999, 18(1): 35-38.
    Alam M.M, Khan A.M. Control of phytonematodes with oil-cake amendments in spinach fields. Indian Journal Nematol, 1974, 4: 239-240.
    Alexander S.A, Waldenmaier C.M. Reduction of lesion nematode population in tomato using marigole crop roation. Phyopathology, 1998, 88(9): S3, S128.
    Anaya A.L, Mata M.R, Miranda R. Allelopathic potential of compounds isolated from Ipomoea tricolor. Journal of Chemical Ecology, 1990, 16: 2145-2152.
    Bewley J.D, Black M. Seeds physiology of development and germination. New York: Plenum Press, 1986.
    Biond D, Cianci P, Geraci C, et al. Antimierobial aetivity and chemieal composition of essential oil from Sicilinan aromatie Plnats. Flavour and Fragrance journal, 1993, 8: 331-337.
    Blum U. Allelopathic interactions involving phenolic acids. The Journal of Nematology, 1996, 28: 259-267.
    Bocchi C, Careri M, Groppi F, et al. Comparative investigation of UV, electrochemical and particle beam mass spectrometric detection for the high-performance liquid chromatographic determination of benzoic and cinnamic acids and of their corresponding phenolic acids. Journal of Chromatography A., 1996, 753: 157-170.
    Bonanomi G, Sieurez M.G, Caporaso S, et al. Phytotoxicity dynamics of decaying plant materials. New Phytologist, 2006, 169(3): 571-578.
    Bradow J.M, Connick W.C. Volatile seed germination inhibitors from plant residues. Journal of Chemical Ecology, 1990, 16: 645-666.
    Bums R.G(ed). Soil Enzymes. Academic Press, New York, 1978.
    Cecile B, Yang X.H, Leslie A.W. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 2003, 256: 67-83.
    Chin W.T., Kroontie W. Urea hydrolysis and subsequent loss of ammonia. Soil Science Society of America Journal, 1963, 27:316-319.
    Dilday R.H, Lin J and Yan W. Identification of allelopathy in the USDA- ARS rice germplasmcollection. Australian Journal of Experimental Agriculture, 1994, 34(7): 907-910.
    Dilday R.H, Mattice J.D, Moldenhauer K.R. An overview of rice allelopathy in the USA. In: Kim K.U and Shin D.H. Rice Allelopathy. Korea: Chan Suk Park publish, 2000, 15-26.
    Einhellig F.A. Allelopathy: Current status and future goal. In: Allelopathy: Organisms, processes, and applications. Inderjit et al. (ed.). Acs Symposium Series Symposium Series, 582. Journal of the American Chemical Society, Washington, D C. 1995, 1-24.
    Fehrman N. Replant disease and its importance for fruit production. Acta Horticulture, 1988, 233: 17-19.
    Fininsa C, Yuen J. Temporal progression of bean common bacterial blight(Xanthomonas Campestris pv.phaseoli)in sole and intercropping systems. European Journal of Plant Pathology, 2002, 108(6): 485-495.
    Fragoeior S, Magna N, BossioD.A, et a1. Enzymetic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculatede with Phanerochaete chrysosporium and Trametes wrsicolor. Environmental Microbiology, 2005, 7: 348-355.
    Fragoeiro S, Magan N, Bossio D.A, et a1. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microbial Ecology, 2005, 49: 50-62.
    Freddy A. Common bean response to tillage intensity and weed control strategies. Cropping System, 2001, 93: 556-563.
    Fujii Y. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa). Biological Sciences in Space, 2003, 17: 6-13.
    Giuseppe T, Maria L.C, Guido G. Oxidative polymerisation ofphenols by a phenol oxidase from green olives. Enzyme andMicrobialTechnology, 2003, 33: 47-54.
    Greco N, Addabbo T.D, Stea V., et al. The synergism of soil solarizaton with fumigant nematicides and straw for the control of Heterodera carotae and Ditylenchus dipsaci. Nematol. Medit, 1992, (20): 25-32.
    Grierson P.F. Organic acids in the rhizosphere of Banksia integrifolia L.F. Plant and Soil, 1992, 144: 259-265.
    Grigorios D, Aline E, Patrick P, Rene B. Purification and characterization of the first bacteriallaccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology and Biochemistry, 2000, 32: 919-927.
    Guenzi W.D, McCalla T.M. Phenolic acids in oats, wheat, sorghum and com residues and heir phytotoxicity. Agronomy Journal, 1966, 58: 303-304.
    Guenzi W.D, McCalla T.M. Phytotoxic substances extracted from soil. Soil Science Society of America Proceedings, 1966, 30: 214-216.
    Hall M.H, Henderlong P.R. Alfalfa autotoxic fraction characterization and initial separation. Crop Science, 1989, 29: 425-428.
    Harris D.C. A comparison of dazomet, cjloropicrin and methyl bromide as soil disfestants for strawberris. Journal of Horticultural Science, 1991, 66(1): 51-58.
    Hassan M.S, EI-behadli A.H and Alsaadwi I.S. Citrus replant problem in Iraq. I. Possible role of soil fungi and nematode. Plant Soil, 1989, 116(2):151-155.
    Hasson S.M, Rao A.N. Weed management in rice using allelopathicrice varities in Egyp. Nature, 1995, 377: 201-203.
    Heribert I. Developments in soil microbiology since the mid 1960s. Geoderma, 2001, 100: 389-402.
    Hoestra H. General Remarks on Replant disease. Acta Horticulture, 1988, 233: 11-16.
    Iderjit K, Dakshini M.M. Allelopathic potential of an annual weed Polypogon monspeliensis in crops in India. Plant and Soil, 1995, 173: 251-257.
    Inderjit K. Plant phenolics in allelopathy. Botanical Review, 1996, 62(2): 186-202.
    Jaffee B.A, Abawi G.S, Mai W.F. Fungi associated with root of apple seeding grown in soil from an apple replant disease. Plant Disease, 1982, 66(10): 942-944.
    Jimenez-Osorail J.J, Gliess man S.R. Allelopathic interference in a wild mustard and broccoli intercrop agroecosystem. In: Waller GR ed. Allelochemicals: Role in agriculture and forestry. American Chemical Society Sympium Series, 330. Washington D C: Journal of the American Oil Chemists Society, 1987, 262-274.
    Khan A.M, Khan M.W, Saxena S.K. Effect of organic amendments on the population of nematodes and fungi in the rhizosphere of eggplant(Solanum melongena). In: Proc. All India Nematol. Symp, IARI, India, 1969, 67-68.
    Khan A.M, Khan M.W, Saxena S.K. Influence of certain oil-cake amendments on nematodesand fungi in tomato fields. Acta Botanica Indica, 1973, 1: 49-51.
    Klein R.R, Miller I.A. Allelopathy and its role in agriculture. Soil Sci Plant Anal, 1980, 11: 43-56.
    Klose S, Tabatabai M.A. Urease activity of microbial biomass in soils as affected by cropping systems. Biology and Fertility of Soils, 2000, 31(34): 191-199.
    Kowalchuk G.A, Os G.J, Aartrijk J, et al. Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biology and Fertility of Soils, 2003, 37: 55-63.
    Kuiters A.T. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. SoilBiology and Biochemistry, 1985, 18(5): 475-480.
    Laterra P, Brazzalo. Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands.Weed Reservoir, 1999, 39: 297-308.
    Leal W.S, Shi X, Nakamuta K, et al. Structure, stereochemistry, and thermal isomerization of the male sex pheromone of the longhorn beetle Anaglyptus subfasciatus. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(4): 1038-1042.
    Leather G.R, Einhellig F.A. Bioassays in the study of allelopathy. In: Putnam A.R, Tang C.S. The Science of Allelopathy. John Wiley and Sons, New York: 1986, 133-145.
    Liu J.G, Li Y.B, Jiang G.Y, et al. Allelopathic effects of cotton in continuous cropping. Allelopathy Journal, 2008, 21(2): 299-306.
    Lodehi M.A.K, Bilal R., Malik K.A. Allelopathy in agroecosystems: wheat phytotocxicity and its possible roles in crop rotation. Chemistry and Ecology, 1987. 13: 1881-1891.
    Magnusson J, Strom K,Roos S, et al. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FFMS (Federation of European Microbiological Societies) Microbiology Letters, 2003, 219(1): 129-135.
    Meharg A, Killham K. A novel of quantifing root exudation in presence of soil microflora. Plant and Soil, 1991, 133: 111-116.
    Melissa J, Fransade L, Jamesm L. The effect of root exudates on rhizosphere microbial populations. The Rhizosphere: biochemistry and organic substances at the soil-plant interface (Book in soils, plants, and the environment) [M]. 2000, 95-140.
    Miller D A. Allelopathy in forage crop systems. Agonomy Journal, 1996, 88: 854-859.
    Moiisch H. Der Einfluss einer Pflanze auf die andere-Allelopathie, Gustav. Fischer. Verlag, Jena, 1937.
    Murphy S.D. Pollen Allelopathy. In: Principles and practices in plant ecology: Allelochemical interactions. CRC Press, 1999, 129-146.
    Nelson D, Elisa E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 2000, 28: 83-99.
    Ohon T, Doolan K, Zibilske L.M, et al. Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric Ecosyst Environ, 2000, 78: 187-192.
    Olofsdotter M, Rebulanan M, Madrid A, et al. Why phenolic acids are unlikely primary allelochemicals in rice. Journal of Chemical Ecollgy, 2002, 28: 229-242.
    Patrick Z.A. Phytotoxic substance associated with the decomposition in soil plant residues. Soil Science, 1971, 111(1): 13-19.
    Patterson D.T. Effects of allelopathic chemicals on growth and physiological responses of soybean (Glycine max). Weed Science, 1981, 29(1): 53-58.
    Peng S.L, Wen J, Guo Q.F. Mechanism and active variety of allelochemicals. Acta Botanica Sinica, 2004, 46(7): 757-766.
    Pramanik M.H.R, Asao T, Yamamoto T, et al. Sensitive bioassay to evaluate toxicity of aromatic acids to cucumber seedlings. Allelopathy Journal, 2001.18: 161-169.
    Putnam A.R, De Frank J. Use of Cover Crops to Inhibit Weeds. Proe IX lnt Cong Plant Proteceion, 1979, 580-582.
    Putnam A.R. Allelopathic chemicals, Natures herbicides in action. Chem and Eng News, 1983, 61(14): 34-45.
    Putnam A.R. Vegetable weed control with minimal herbicide inputs. Horticulture Science, 1990, 25: 155-158.
    Rice E.L. Allelopathy (2nd ed). New york: Academy Press Asciece publishers Incorporated, 1984.
    Rice E.L. Biological control of weeds and plant diseases: Advances in applied allelopathy. Oklahma: University of Oklahoma Press, 1995.
    Runia W.T. A recent development in steam sterilisation. Acta Horticulturae. 1983, (152): 195-199.
    Rupam K. Root exudation and its implication on rhizosphere mycoflora [J]. Advances in microbial biotechnology, 1999, 351-362.
    Saik H. Yoneda K. Possible deal roles of an allelopathic compound, cis- dehydromatricaria ester. Journal of Chemical Ecology, 1981, 8: 185-193.
    Schmidt K.R, Chand S, Gostomski P.A, et al. Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog, 2005, 21: 377-385.
    Smelt J.H, Teunissen W, Crums J.H, et al. Accelerated transformation of 1,3-dichloro- propene after injection in structured loamy soils. Acta Horticulturae, 1989, (255): 37-48.
    Smelt J.H, Teunissn W,Crums J.H, et al. Accelerated transformation of 1,3-dichloropropene in loamy soils. Netherlands Journal of Agricultural Science, 1989, (37): 173-183.
    Tang C.H, Yong C.C. Collection and identification of allelopathic compands from the undisturbed root system of Bigalta limpogress (Hemarthria altissima). Plant Physiol., 1982, 69: 155-160.
    Tran D.X, Min C, Tran D.K, et al. Identification of Phytotoxic Substances from Early Growth of Barnyard Grass(Echinochloa crusgalli) Root Exudates. Journal of Chemical Ecology, 2006, 32: 895-906.
    Trasar C.C, Leiros M.C, Seoane S, Sotres F.G. Limitations of soil enzymes as indicators of soil pollution. Soil Biology and Biochemistry, 2000, 32: 1867-1875.
    Turco R.F, Bischoff M, Breakwell D.P, et al. Contribution of soil-borne bacteria to the rotation effect in corn. Plant and Soil. 1990, 122: 115-120.
    Vance G.F, Boyd S.A, Mokma D.L. Extraction of phenolic compounds from a spodosol profile: an evaluation of three extractants. Soil Science, 1985, 140(6): 412-420.
    Vance G.F, Mokma D.L and Boyd S.A. Phenolic compounds in soils of hydrosequences and developmental sequences of spodosols. Soil Science Society of America Journal, 1986, 50: 992-996.
    Vincenzo D.F, Laura D.M, Emilia Q, et a1. Isolation of Phytotoxic Compounds from Tree-of-Heaven(Ailanthus altissima Swingle). Journal of Agriculture and FoodChemistry, 2003, 51(5): 1177-1180.
    Vyvyan J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 2002, 58: 1631-1646.
    Waller G.R , Kmnari D , Friedman N, et al. Caffeine autotoxicity in coffee Arabica. In the Science of Allelopathy (by Pumam A.R, Tang C.S, John Wiley and Sons). New York, 1986, 243-265.
    Wang J.L, Xu R, Chen C.L. General review in the study of barrier mechanism caused by continuous soybean cropping. Soybean Science, 2000, 19(4): 367-371.
    Whittaker R.H, Feeny P.P. Allelochemicals: Chemical interactions between species. Science, 1971, 171(3937): 757-770.
    Yoshitaka S, Masaya N, Tomoko O, et al. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Applied and Environmental Microbiology, 1999, 65(9): 3996- 4001.
    Yu J.Q, Yoshihisa M. Effects of root exudates of cucumber (Cucumis sativus L.) and allelochemicals on ion uptake by cucumber seedlings. Journal of Chemical Ecology, 1997, 23(3): 817-827.
    Yu J.Q, Yoshihisa M. Extraction and identification of phytotoxic substances accumulated in nutrient solution for hydroponic culture of tomato. Soil Science Plant Nutriyion, 1993, 39(4): 691-700.
    Yu J.Q. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tuberosum) intercropping system. Journal of Chemical Ecology, 1999, 25(11): 2409- 2417.
    Yu J.Q. Autotoxic potential of vegetale crops In: Narualss. Eds.In: allelopathy. Update –Basic and Applied Aspects NH, U. S. Asciece publishers Incorporated. 1999. Zimmermann S, Frey B. Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biology and Biochemistry, 2002, 34: 1727-1737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700