机车驱动装置悬挂结构及参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路运营速度的不断提高,准高速机车普遍出现了横向动力学性能较差的现象,与驱动装置悬挂有关的问题时有暴露。近年国外机车工业虽然在大量新型机车上卓有成效地运用了驱动装置弹性悬挂结构,但仍缺乏深入的理论研究;我国对该结构的认识还是一片空白。国外200km/h等级机车基本上是四轴(即2B_0轴式)的,因此,开发我国六轴(即2C_0轴式)200km/h等级新型机车面临着巨大地挑战。研究驱动装置悬挂结构参数和弹性悬挂机理,以及2C_0轴式200km/h等级机车方案,已成为我国铁路发展亟需解决的关键问题。
     本文首先采用三个刚体的简单模型,结合轮轨横向运动的特点,针对不同轴式、结构及参数的机车进行振动分析,通过动力学分析,阐明了驱动装置弹性悬挂的机理:通过调节驱动装置与构架间的纵、横向连接刚度,可以改变驱动装置的振动频率,从而避开轮对横向运动主要频率,并将驱动装置与构架、轮对的质量和转动惯量分开,抑制了驱动装置与构架、轮对间动态惯性力的传递。
     然后采用随机不平顺非线性时域响应分析方法,利用多体程序SIMPACK建立机车完善的非线性模型,验证了简单模型分析的结果——驱动装置弹性悬挂要求驱动装置在构架上的纵、横向悬挂刚度在0.01MN/m数量级。因此采用吊杆悬挂是实现弹性架悬的重要结构方式,利用吊杆倾斜产生的重力复原刚度作为等效刚度,吊杆长度在0.2~0.7m的范围内变化都可以满足驱动装置弹性悬挂的刚度需要。
     本文比较了刚性和弹性架悬式机车的动力学性能,发现机车运行速度在140km/h以上时,采用驱动装置弹性架悬可以大大降低机车在直线和大半径曲线高速运行时的轮轨横向力,改善机车的横向性能和电机工作条件,有效地减小机车对线路和参数变化的敏感性。运行速度越高,弹性比刚性架悬式机车有更大的优势。
     详细研究了2C_0轴式200km/h等级机车在驱动装置刚性和弹性悬挂时,采用电机顺置与对置方案的动力学性能,说明采用驱动装置弹性对置方案的优越性,同时指出必须设置合理的驱动装置止档间隙才能保证小半径曲线通过性能。在机车一些重要工作条件,如:牵引、制动和周期不平顺等时,分析了牵引杆
With railway vehicle speed increasing in China, the some locomotives don't present very well in the dynamical behavior in the lateral direction. The key problems present should be attributed to the driving equipment suspensions in the locomotives. Although flexible driving equipment suspensions, namely, driving motors are suspended in the bogie frames with desirable flexibility, have been applied to advanced locomotives in many countries, the further studies on the suspension systems have not been carried out so far. Regarding the dynamical characters of structure of the suspension systems are still out of acquaintanceship in China. By and large, abroad 200km/h locomotives have been equipped with four axles (i.e. 2Bo). China is now facing a complicated technique challenge in development of 200km/h locomotive of six axles (i.e. 2Co), which is also one of the present pressing tasks to meet the need of fast development of railway systems in China. However, the key problem to be solved is to clear the characters of the flexible suspension parameters and the mechanism of the driving equipment in the project.This thesis established a simplified model consisting of 3 rigid bodies for the bogie with the flexible suspension driving equipment. Considering the different axles, structures and parameters for the bogie, the dynamical behavior of the bogies was analyzed in detail. Through the dynamics analysis, the mechanism of the flexible driving motor suspension was basically clarified. The natural frequencies of the drive are changed by altering its longitudinal and lateral stiffness in the bogie frame to avoid the wheelset hunting frequencies, thereby the dynamic mass and the inertia of the flexible suspension driving equipment are decoupled from the bogie frame and the wheel set, the inertial movement transfer between the driving system and the bogie frame or the wheelset is restrained.Based on a time domain nonlinear analysis method considering an input of the stochastic irregularity of track, a commercial software SIMPACK available for establishing complete models of locomotives was employed to validate the results obtained by the current model. The flexible driving suspension asks the longitudinal and lateral stiffness between the drive and the bogie frame ranged from 0.01 to 0.09 MN/m, so pendular way was adopted in the structure design of the driving suspension system. By means of the pendulum gravitational rebound stiffness as the equivalent stiffness, Its sufficient stiffness bound was offered in order to meet the
    need of the flexible driving suspension even if the length of pendulum ranging from 0.2m to 0.7m.The dynamic behaviors of the locomotives with rigid and flexible driving motor suspensions were compared in the detailed dynamics analysis. It was found that when the locomotive runs on a tangent track or a curved track with large radius upwards of 140 km/h, using the flexible suspension can reduce the lateral wheel/rail forces much. The lateral riding quality of the locomotive and the work condition of the driving motor ameliorate. The locomotive dynamic behavior is lower sensitive to the track conditions and the concerned parameters variation. Especially in the running at higher speed, the locomotives with flexible motor suspension have the more advantages than that with relative rigid suspension for the driving motor.The dynamic behavior of serious of 200km/h locomotive with 2Co axles was investigated in detail. For such locomotives, the rigid and flexible motor suspensions with a "face to back" or "back to back" setting of motors were, respectively, considered. Through the investigation, it was found that the flexible suspension with "back to back" setting of motors has more advantages. Also it is pointed out that a suitable driving stop clearance has to be set to ensure good dynamic performance on sharp curved lines. In some special work situations, such as traction, braking and passing through periodical irregularity track etc, the influence of traction rods which act at the middle or two ends of the car body on the locomotive behavior were analyzed. The thesis suggested that the dynamic response of the locomotives should be investigated under an excitation of track irregularity with sensitive periods even though the locomotives pass through tangent tracks or curved tracks with large radii. Finally, this thesis discussed the motor suspension stiffness of an axle-mounted locomotive, the driving-braking-unit suspension stiffness and the coupling damper characteristic of a power car with the unit suspended between the car body and bogie frame. The trend of numerical results is in good agreement with the field test results.The numerical simulation of this thesis was carried out by means of SIMPACK. Many non-linear factors and operation conditions are of the locomotives were taken into consideration, the manifold locomotives with different suspension systems and their simplified models were analyzed and compared in detail. The results obtained will have some reference value and engineering meaning to the designs and analyses of Chinese locomotives.
引文
[1] 俞展猷.日本与欧洲高速列车技术的发展和现状[J].铁道机车车辆.2003,19(1):16-27
    [2] 翟婉明等,第15届国际车辆系统动力学会议学术交流综述[J],国外铁道车辆,1998,(1)
    [3] 张卫华,翟婉明.第十七届国际车辆系统动力学会议简介[J],国外铁道车辆,2002:39(1):6-9
    [4] Rudolf Wagner, Erlangen.Technologische Perspektiven Fuor Fahrzeuge im spurgefuohrten Hochgeschwindigkeitsverkehr[J]. ZEV+DET Glas.Ann., v 121, n 2/3, 1997, p64-80
    [5] 孙翔,罗世辉.德国ICE高速列车的驱动转向架[R].成都:西南交通大学机车车辆研究所,1993.74
    [6] 西南交通大学机车车辆研究所.世界各国高速动力车转向架译文集[Z].成都:西南交通大学机车车辆研究所,1994.
    [7] Bogies[J]. Modern Railways.1996; 53(3): 171-174
    [8] A. Striberskya,F. Mosera, W. Rulkab. Structural dynamics and ride comfort of a rail vehicle system[J]. Advances in Engineering Software, 33(2002) 541-552
    [9] Diana, etc. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements[J], Vehicle System Dynamics v 38 n 3 September 2002. p165-183
    [10] Von Glasner, E,-C.;Povel,R.;Schutzner P. .Introduction to advanced vehicle suspension design[J]. Heavy Vehicle Systems, v 3, n 1-4, 1996, p422-437
    [11] 赵建伟.浅谈高速机车的几个技术问题[J].内燃机车.2000;(5):7-13
    [12] 铁道机车车辆编辑部.我国铁路机车车辆业的发展[J].铁道机车车辆.2003,19(1):1
    [13] 葛来薰.准高速客运内燃机车架悬式转向架设计制造和试验[J].铁道机车车辆.1997(2).-1-6
    [14] 叶彪.S S 8(150 km/h)客运电力机车[J].电力机车技 术.1997.000(004).-13-15
    [15] 许人华.东风8B型重载提速货运内燃机车的研制、运用和发展[J].中国铁道科学.2001:22(4):26-31
    [16] 封全宝,孙守光.“中华之星”高速动力车转向架研究[J].铁道机车车辆.2004,24(增):10-12,48.
    [17] 黄成荣.<先锋号>电动车组动力转向架的研制[J].铁道机车车辆.2003;23(增):13-17
    [18] 韩才元.我国内燃机车的新发展[J].内燃机车.1996;(1):1-10,28
    [19] 张卫华等.高速轮对空心轴式动力车滚动振动试验台动力学性能试验阶段总结[R].成都:西南交通大学牵引动力国家重点实验室,1997.1-23.
    [20] 张红军,张卫华等.250km/h高速轮对空心轴式转向架动力车试验研究报告[R].成都:西南交通大学牵引动力国家重点实验室,2000.1-28.
    [21] 李学峰,王悦明,姚建伟等.国产200km/h交流传动电动车组(1M6T)性能试验报告[R].北京:铁道部科学研究院机车车辆研究所,2000.29-58,141-175.
    [22] 张卫华,陈良麒等.270km/h高速动力车试验台试验研究报告[R].成都:西南交通大学牵引动力国家重点实验室,2002.1-21.
    [23] 李谷.270km/h高速列车线路综合性能试验简要报告[R].北京:铁道部科学研究院,2003.51-59.
    [24] Schupp,Gunter. Simulation of Railway Vehicles: Necessities and Applications[J]. Mechanics Based Design of Structures and Machines. 2003; 31(3): 297-314
    [25] Zboinski, Krzysztof. Dynamical investigation of railway vehicles on a curved track[J]. European Journal of Mechanics, A/Solids. 1998; 17(6):1001-1020
    [26] Shen G., Pratt I., The development of a railway dynamics modelling and simulation package to cater for current industrial trends[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2001; 215(3):167-178
    [27] Chudzikiewicz, Andrzej. Simulation of rail vehicle dynamics in MATLAB environment[J], Vehicle System Dynamics, 2000; 33(2):107-119
    [28] 罗世辉,大连现代低地板有轨电车的动力学分析[J],机车电传动,2001.(3)
    [29] 罗世辉,我国车辆系统动力学研究进展及应用[A],城市轨道车辆学术研讨会,2001年11月
    [30] 罗赟,陈康,罗世辉.计算机仿真评价机车车辆低速抗爬轨能力[J],机车电传动,2002.(5)
    [31] 夏富杰等,轮轮系统动力学的研究[J],铁道机车车辆,1999.(1)
    [32] 姚建伟,机车车辆动力学强度专业发展的建议和设想[J],铁道机车车辆,2000.(6)
    [33] 臧其吉,车辆动力学的研究和发展[J],中国铁道科学,1994.(2)
    [34] Tanabe,M.; Wakui,H etc. Computational model of a Shinkansen train running on the railway structure and the industrial applications[J]. Journal of Materials Processing Technology. 2003; 140(1-3):705-710
    [35] Kik, W.; Menssen, R.; Moelle, D.; Bergander, B.; Vincent. Comparison of results of calculations and measurements of DYSAF-tests, a research project to investigate safety limits of derailment at high speeds[J]. Vehicle System Dynamics. 2003; 37(suppl.):543-553
    [36] 陈康,罗赟,金鼎昌.2B_0架悬式动力车运行平稳性和蛇行稳定性[J].西南交通大学学报.2003;38(1):28-33
    [37] 陈华斌,金鼎昌,古滨.高速万向轴式动力车转向架的参数研究[J].西南交通大学学报.1998;33(2):158-163
    [38] 黄成荣,臧其吉,王卫东.高速万向轴传动式动力车动力学性能分析[J].中国铁道科学.1997;18(4)25-32
    [39] 陈康,金鼎昌.高速动力车的平稳性分析【J].西南交通大学学报.1995,30(1):58-63.
    [40] 金鼎昌,罗赟,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响[J].铁道学报.1994,16(增):43-47.
    [41] 傅茂海,葛来薰,严隽耄.高速机车车辆的线性和非线性随机响应以及平稳性指数预测[J].铁道学报.1994;16(增):83-90
    [42] 王伯铭,陈康,鲍维千.对于V_(max)=140km/h的电传动机车采用轴悬式驱动机构的可行性研究[J].铁道机车车辆.1996,(4):5-9.
    [43] 王开文,傅茂海.准高速客运机车KONI减振器性能研究[J].西南交通大学学报.1994;29(3):311-315
    [44] 陈康.高速动力车曲线走行性能的模拟分析[J].铁道学报.1994,16(增):48-54.
    [45] Kalincak, Daniel; Krsko, Jozef. Some results of the evaluation of the excitation inputs to railway vehicles measured during run on the real track[A]. Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies[C]. Budapest, Hungary : Technical University of Budapest, 2000. 287-294
    [46] Ken Harris. Jane's World Railways[M]. 43 Editon. Surrey CR 5 2YH, UK: Jane's Information Group Limited, 2001.48, 56, 158, 178, 214, 336
    [47] Dipl.-Ing. Carl-Peter Zander. The Eurosprinter Family[J]. RTR. 1998; (3/4): 4,6-11
    [48] L.Schwendt.ABB-HENSCHEL通用高速径向转向架[J].国外内燃机车.1994;(11):38-44
    [49] Karl Sachs,孙翔(译).电传动机车转向架结构与原理[M].北京:中国铁道出版,1988.
    [50] 王信化.机车牵引驱动装置的合理设计[J].国外内燃机车.1997;(7):13-16
    [51] 杨兵.机车车辆转向架的设计[J].国外内燃机车.1997;(6):28-32
    [52] Ehrenfried Middendorf. Die neue Generation elektrischer Lokomotiven fuor die Deutsche Bahn AG-Die Baureihen 101,145 und 152(The new electric locomotive generation for DB AG: The Classes 101,145 and 152) [J]. ETR. 1996; 45(6): 349-356
    [53] 翟婉明.电传动机车轮轨动力学性能研究[J].机车电传动.1996(6):8-11
    [54] 刘舜尧.从鉴定试验数据探讨机车转向架发展趋势[J].内燃机车.1996;(1):5-8,22
    [55] 孙竹生,鲍维千.内燃机车总体及走行部[M].北京:中国铁道出版社,1995.
    [56] B.Krie β ling等(德国).德国铁路152型货运电力机车[J].电力牵引快报.1997;(4):13-23
    [57] B.O.Pedersen等(丹麦).丹麦国家铁路EG 3100型C'_0 C'_0双流制机车[J].交流技术与电力牵引.2001;(5):32-35
    [58] Berhard Hartmann. Konzeptionelle Uberlegungen zumIC_Expreβ[J]. ETR. 1986; 35(1/2): 13-18
    [59] H.Hoedei A.Haigermoser(奥地利).高速机车现代化转向架设计的发展[J]. 电力牵引快报.1995;(8/9):69-77
    [60] 西南交通大学机车车辆研究所.C0C0轴式200km/h高速机车转向架方案说明与论证[R].成都:西南交通大学机车车辆研究所,2004.1-6
    [61] Schaefer-Enkeler A. Die EuroSprinter Lokfamilie[J]. ETR. 1995; 44(6): 395-402
    [62] Garcia de Miguel N., Martin. A.: The S252 Daual System Electric Locomotive with Three-Phase drive for Spanish Railways[J]. RTR-Railway Technical Review. 1991; (32)
    [63] Volker Distelrath, Munich, and Aubert Martin, Erlangen. The S252 Daul_System AC Electric Locomotive with Three_Phase Drive for Spanish Railway[J]. Elektrische Bahnen. 1990; 88(5): 224-236.
    [64] Koestler. G. Die elektrische Ausruestung der Universallokomotive LE 5600 fuer die Portugiesische Eisenbahngesellschaft[J]. Eletrische Bahnen. 1992; 90(9): 288-293
    [65] E.Middendorf(德国).德国铁路公司新一代电力机车——目的、设计、部件试验及方案[J].电力牵引快报.1997;(3):1-11
    [66] Tietze C. Comeback der"12X"[J]. Eisenbahn Magazin. 1998; 36(8): 28-32
    [67] Christian Segieth. The 12X high power locomotive[J], rail international. 1996; (7): 24-30
    [68] Ekkehard Gartner. Die neue elektrische Hochleistungslokomotive 12X[J]. ZEV+DET Glasers Annalen. 1995; 119(9/10): 414-424
    [69] Christian Segieth. Hochleistungslokomotive 12X[J]. Elektrische Bahnen. 1994; 92(12): 319-327
    [70] G.Krat等(德国).牵引领域中大功率用的新型传动装置——GEALAIF[J].电力牵引快报.1993;(10):1-8
    [71] G.Krat等(德国).大功率机车新型驱动装置的设计[J].国外内燃机车.1994;(6):5-11
    [72] L.Still等(德国).德国铁路101型机车的设计和功率部分[J].电力牵引快报.1997;(4):1-12
    [73] Nordmann J. Baureihe 101_erste Serienlokomotive einer nenen Generation Von Schienenfahrzeugen[J]. ZEVrail Glasers Annalen. 1997; 121(2/3): 159-172
    [74] Riechers D. Die neue Schnellfahrlok:Baureihe 101 [J]. Eisenbahn-Kurier. 1996; (8): 18-21
    [75] Brauer H. M., Rieger. H.: HellasSprinter erste elektrische Lokomotiven fuer Griechenland[J]. Elektrische Bahnen. 1998; 96(4): 107-114
    [76] Haban. G. und andere: Neuartige Bremsanordnung fuer schnellfahrende Hochleistungslokomotiven[J]. ZEV Glasers Annalen. 1998; 122(11): 661-664
    [77] B.Benes(奥地利),T.Schuler(德国).奥地利联邦铁路1016/1116系列TAURUS欧洲通用电力机车[J].电力牵引快报.1999;(4):1-5
    [78] C.Tietz等(瑞士).美国铁路的ALP46型多电压制机车[J].变流技术与电力牵引.2002;(5):37-40
    [79] Lutz Schwendt. Eco 2000 机车家族的机械设计[J].机车电传动.1996;(5):9-11
    [80] Schwingungstechnik AG. Lok2000:New multi-purpose Locomotive[Z]. 1998.
    [81] Von Richard Kummrow, Winterthur, Janis Vitins. Die Typenfamilie Lok 2000[J]. ZEVrail Glasers Annalen. 1992; 116(8/9): 293-307
    [82] Lutz Schwendt(德国).德国Henschel机车厂的发展及其最新产品[J].国外内燃机车.1998;(8):44-48
    [83] Dreisystemlokomotive Baureihe 36000 ASTRIDE der Scociete Nationaledes Chemins de Fer Francais[J]. eb. 1997; 95(8):214-221
    [84] Von Erhard G 等. Die elektrische C_0-C_0 Schnellzuglokomotive Baureihe E03 der Deutschen Bundesbahn[J]. Elektrische Bahnen. 1965; 36(10):230-251
    [85] Von Hellmuth Glueck. Die Leistungsfaehigkeit der nenen Schnellfahrlokomotiven Baureihe 103 der Deutschen Bundesbahn[J]. ZEV Glasers Annalen. 1970; 94 (7):227-232
    [86] J.Brenneisen E.Bever(德国).蓝虎机车——一种适应现代潮流的模块式内燃机车系列[J].国外内燃机车.2000;(1):1-10
    [87] Kinzel W. Blue Tiger_eine moderne Diesel_Locomotiv-Familie fuer den Weltmarkt[J]. ETR. 1998; 47(2/3): 125~131
    [88] 程永陆译.新一代轻型“蓝虎”系列交流传动内燃机车[J].国外内燃机车.1998;(10):1-16
    [89] 朱胜明,封全保.轴悬式牵引电动机吊挂刚度对其振动的影响[J].机车电传 动.2000,(1):28-29.
    [90] 黄志辉.270km/h等级高速动力车转向架关键部件——驱动制动单元的设计[J].机车电传动.2001;(4):17-19,24
    [91] 钟文生,张红军.高速轮对空心轴式转向架驱动制动单元系统分析[J].西南交通大学学报.1999,34(1):93-98.
    [92] 孟宏,翟婉明等.“天梭”号电力机车垂向动力作用分析[J].机车电传动.2004;(1):7-10
    [93] 王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.59—65
    [94] 屈维德.机械振动手册[M].北京:机械工业出版社,1992.3-18-3-28
    [95] 陈果,翟婉明.铁道轨道不平顺随机过程的数值模拟[J].西南交通大学学报.1999,34(2):138-142.
    [96] 翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社,2002:10-91.
    [97] Katsuhiko. Ogata. Modern Control Engineering[M]. Pearson Education, 2002
    [98] 西南交通大学机车车辆研究所.哈萨克斯坦机车动力学计算[R].成都:西南交通大学机车车辆研究所,2003.18—19
    [99] 刘志恒.C0C0轴式200km/h高速机车转向架方案预研究[D].成都:西南交通大学硕士论文,2005.3-4
    [100] 西南交通大学机车车辆研究所.200km/h C0C0轴式高速机车转向架电机布置和驱动装置悬挂方式论证[R].成都:西南交通大学机车车辆研究所, 2004.20-24
    [101] 西南交通大学机车车辆研究所.乌兹别克斯坦3B_0机车动力学计算[R].成都:西南交通大学机车车辆研究所,2002.8-9
    [102] 西南交通大学机车车辆研究所.广深200km/h高速动力车的动力学性能计算分析[R].成都:西南交通大学机车车辆研究所,2000.20-24
    [103] 西南交通大学机车车辆研究所.270km/h高速列车动力车转向架技术设计文件[R].成都:西南交通大学机车车辆研究所,2001.15-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700