电机架悬在地铁动车中的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的不断发展,城市一体化加速推进,需要地铁车辆有更高的运行速度和更好的曲线通过能力。而随着车辆运行速度的提高和曲线半径的变小,轮轨动作用力会增大,这会直接影响到地铁车辆的运行安全性、舒适性和经济性。而在地铁动车中,牵引电机采用架悬的悬挂方式,减小一系簧下质量,可降低轮轨动作用力,改善车辆的曲线通过性能。故研究牵引电机在地铁动车中,采用架悬方式的可行性是非常有必要的。
     论文应用SIMPACK软件,参照现有地铁结构参数,分别建立了牵引电机轴悬和架悬两个动力学仿真模型,并对各项动力学性能进行了计算,把两个模型各项动力学性能的计算结果进行了对比分析。采用电机架悬的地铁车辆,动力学性能要优于采用电机轴悬的地铁车辆,特别是在轮轨动作用力的指标上,优势明显。
     论文对电机架悬车辆的一、二系悬挂参数进行了计算和分析,给出了这些参数的建议取值。
     论文计算分析了抗侧滚扭杆对车辆动力学性能的影响。加装抗侧滚扭杆后,随着抗侧滚扭杆刚度的增加,在车辆的抗倾覆性能得到改善的同时却对车辆运行的平稳性带来了更大的不利影响,而本文研究的地铁车辆采用电机架悬的悬挂方式后,即使不装抗侧滚扭杆,各项动力学性能依然良好,建议可以不装抗侧滚扭杆以简化转向架结构、降低转向架重量和维修成本。
     论文还探讨了现有鼓形齿联轴器在电机架悬地铁车辆上的适用性。由于本文研究的电机架悬地铁车辆目标是提高运行速度和改善小半径曲线的通过性能。通过小曲线半径时,架悬在转向架上的电机与轮对之间会产生较大的相对位移。通过计算车辆以不同的速度在曲线上运行时,联轴器的横向和垂向相对位移。发现车辆在设计的速度和曲线半径范围内运行时,其最大值均在现有鼓形齿联轴器的允许运动范围内。满足使用需求,无需另行设计改进。
With the continuous development of the city, city scale expands unceasingly; accelerating the integration of urban and rural areas, as well as the design of the metro line, need of metro vehicle has higher speed and better curve passing ability. And with the increase of vehicle speed and curve radius is smaller, the force between the wheel and rail increases, the force between the wheel and rail directly affect the metro vehicle running safety, comfort and economy. So in the metro, traction motor adopts suspension mode, reducing the unsprung mass, can reduce the wheel-rail action force, and improve vehicle curve negotiation performance. So the research on the feasibility of using suspension traction motor in subway train in is very necessary.
     In this paper, using SIMPACK software, based on the existing subway structure parameters were established for traction motor axle suspension and traction motor frame suspension two dynamics simulation model, and the dynamic properties were calculated, the calculated two models the dynamics performance results were compared and analyzed. The study found the metro vehicle suspension motor on frame, dynamic performance on the whole is better than that of the metro vehicle motor axle suspension, especially in the wheel-rail action force index, wheel-rail action force decreased significantly; but in the individual vertical dynamic index slightly worse than the metro vehicle suspension of motor shaft. Motor frame suspension vehicle differential force index to a shaft of a motor vehicle with vertical suspension stability, motor vertical acceleration and the rate of wheel load reduction, the effects of suspension parameters of these dynamics performance (vertical stiffness of primary suspension, vertical damping of primary suspension, vertical stiffness of secondary suspension, vertical damping of secondary suspension) were calculated and analyzed, and give the suggestion value of suspension parameters.
     It shows that with the anti-roll bar stiffness increases, the vehicle overturning resistance performance is improved while the riding comfort of vehicle brings more negative. While the metro vehicles with motor frame suspension mode, even if not device anti-roll bar, the dynamic performance is still good, suggestions cannot install anti-roll bar to simplify the bogie structure, reduce the bogie quality and repair costs.
     Motor suspension of metro vehicle target is to improve the operation speed and the performance negociation small radius curve. But when the subway vehicle speed to run at a higher and a smaller radius of curve, suspension on steering between the motor and the wheel frame will have a relatively larger displacement. Through the calculation of the vehicle at different speeds on curves running coupling horizontal and vertical displacement of metro vehicle, analysis the existing drum tooth coupling is suitable for this study. Through the study, the vehicle in the range of speed and radius of curve design through the curve, horizontal, vertical coupling to the displacement of the maximum value in the existing drum tooth coupling allows the range of motion. Therefore, the existing drum tooth coupling can be applied to the motor suspension of metro vehicle, without further design improvement.
引文
[1]孙永鹏.100km/h速度级A型地铁转向架研究[D].西南交通大学,2011.
    [2]张志和,封全保.机车驱动装置悬挂方式探讨[J].铁道机车车辆,2008(28):24-26.
    [3]王天福.车辆系统动力学[M].第二版.中国铁道出版社,1994
    [4]金鼎昌,罗赞,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响[J].铁道学报,1994(16):43-47.
    [5]黄志辉,孙永鹏,罗华军.轮对空心轴转向架悬挂机车电机顺置与对置对轴重转移的影响[J].机车电传动,2005(6):18-20.
    [6]Volker Distelrath, Munich,and Aubert Martin, Erlangen. The S252 Daul_System AC ElectricLocomotive with Three Phase Drive for Spanish Railway[J].Elektrische Bahnen.1990
    [7]B.Paul, J.Hashemi. Rail-wheel Geometry Associated with Contact Stress Analysis. Report no.FRD/ORD-78/41.1979:1-13
    [8]蒲全卫,周建斌,申长宏,等.A型地铁车辆ZMA080型转向架齿轮箱研发[J].电力机车与城轨车辆,2011,34(4):12-14.
    [9]罗赞.机车驱动装置悬挂结构及参数的研究[D].:西南交通大学,2005.
    [10]栗原纯.日本营团地铁最近开发的转向架[J].交流技术与电力牵引,2004:42-45.
    [11]陈喜红.国内外地铁车辆技术的发展趋势[J].电力机车技术,2002,25(6):2843.
    [12]方吉.出口地铁车辆动力学性能分析[D].:大连交通大学,2008.
    [13]UIC615—41994.powered Vehicles—Bogies and Runmng Gear—Strength Tests of Bogie Frannes.199
    [14]周殿买,徐彬,孔瑞晨,等.快速地铁转向架结构设计[J].铁道车辆,2012,50(5):24-41.
    [15]EN13749—2005.Railway aPPlieations—Methods of specifying structural requirements of bogie frames.2005
    [16]段华东.广州地铁3号线车辆转向架简介及其国产化[J].铁道机车车辆,2010,30(1):79-82.
    [17]缪炳荣SIMPACK动力学分析基础教程[M].西南交通大学出版社,2008
    [18]缪炳荣,肖守讷,金鼎昌.应用Simpack对复杂机车多体系统建模与分析方法的研究[J].机械科学与技术,2006,25(7):813-816.
    [19]Schaefer-Enkeler A. Die EuroSprinter Lokfamilie. ETR.1995
    [20]邓永权,罗世辉,梁红琴,等.基于SIMPACK的磁悬浮车辆耦合动力学性能仿真模型[J].交通运输工程学报,2007,7(1):12-20.
    [21]张剑,宋慧玲,王生武,等.地铁车辆轮轨型面匹配分析[J].大连交通大学学报,2012,33(5):1-6.
    [22]周睿,罗仁.地铁车辆轮轨匹配关系研究[J].铁道车辆,2010,48(9):1-12.
    [23]张孝坷,刘新明,刘煌,等.LM型车辆车轮磨耗形踏面_张孝珂[J].铁道车辆,1984(11):1-7.
    [24]蔡力律.城市轨道交通磁浮线路最小曲线半径研究[J].四川建筑,2008,28(3):46-47.
    [25]魏占辉.大秦线C63A型货物列车空车脱轨的分析研究.北京交通大学硕士研究生学位论文.2005
    [26]陈康,罗世辉,金鼎昌.2B0架悬式动力车运行平稳性和蛇行稳定性[J].西南交通大学学报,2003,38(1):28-33.
    [27]鹿中华,马智荣.牵引电机横向约束装置对NJ-2型机车横向振动性能的影响[J].中国铁路,2012,4:64-67.
    [28]李国顺.城市地铁电动车组转向架的选型与结构[J].铁道机车车辆,2003,23(2):90-92.
    [29]邓小军.北京地铁转向架的改进[J].地铁车辆,2000(38):63-66.
    [30]林文立.地铁动车牵引传动系统分析、建模及优化[D].:北京交通大学,2010.
    [31]王婧宇.城市轨道交通列车动力学模型的仿真研究[D].:北京交通大学,2009.
    [32]赵雷.B型城市轨道交通车辆转向架低动力作用仿真研究[D].:北京交通大学,2010.
    [33]郑凯飞,沈钢.基于SIMPACK的四轴电力机车运行平稳性分析[J].城市轨道交通研究,2012(1):80-83.
    [34]鹿中华.青藏线NJ_2机车走行部减振系统研究[D].:西南交通大学,2012.
    [35]梁鑫,罗世辉,马卫华.抗侧滚扭杆对地铁车辆动力学性能影响的研究[J].内燃机车,2011(4):5-12.
    [36]段华东.ZMA120型转向架一系悬挂垂向刚度分析[J].机车电传动,2010:60-63.
    [37]Zhan W M, Sun X. Analysis and design of vertical dynamic parameters of wheel/rail system with low dynamic interactions [J]. Journal of the China Railway Society,1993,15 (3):1-9
    [38]陈国胜,晋军辉.机车轴悬式驱动装置悬挂载荷研究[J].机车电传动,2008(2):20-23.
    [39]Kalay, S. and LoPresti, J. Economics of Heavy Axle Loads: Predicted and Actual Benefits of Heavy Axle Load Operations [J]. Association of Amerian Railroads, Washington, D.C.,2000
    [40]葛来薰.我国200km_h速度等级机车转向架主要技术特征的探讨[J].机车电传动,2007(4):1-4.
    [41]J.Piotrowske, J.J.Kalker. The Elastic Cross-influence between two Quasi-herzian Contact Zones. Vehicle System Dynamics.1988,17:337-355
    [42]封全保,孙守光,王开云,等.减轻列车轮轨横向动力作用的技术措施[J].铁道学报,2007,29(3):40-44.
    [43]Sawley, K.J. North American Rail Grinding: Practices and Effectiveness[J]. Association of American Railroads, Washington, D.C.,1999
    [44]Martin Arnlod. Simulation algorithims in vehicle system dynamics. Luther University Halle, Germany. Technical Report 27,2004
    [45]孙彰,罗世辉.地铁车辆悬挂参数优化与动力学性能评价方法[J].城市轨道交通研究,2005(4):39-43.
    [46]梁炜昭,陈清.电机驱动装置悬挂参数对“弹性架悬”机车动力学性能的影响[J].机车电传动,2007(1):18-21.
    [47]潘春花.地铁车辆悬挂系统的参数优化及失效分析[D].:西南交通大学,2012.
    [48]Christian Segieth. The 12X high power locomotive, rail international.1996
    [49]B Diedrichs, M Sima. Crosswind stability of a high-speed train on a highembankment.Rail and Rapid Transit,2007.1.
    [50]毕鑫,罗世辉.抗侧滚扭杆装置建模方式对车辆动力学性能的影响[J].铁道车辆,2012,50(8):1-3.
    [51]Krzysztof Zboinski. Dynamical investigation of railway vehicles on a curved track.Elsevier, 1997.12
    [52]Meinders T. Modelling of a Railwy Wheelset as a Rotating Elastic Multibody System.Machine Dynamic Problems,1998.
    [53]王忠杰.广州地铁3号线车辆抗侧滚扭杆装置的国产化研制[J].城市轨道交通研究,2008(9):40-42.
    [54]杨文韬,刘作义.新型行李车倾覆稳定性的计算[J].铁道货运,2006(6):20-23.
    [55]段华东.抗侧滚扭杆对轨道车辆抗侧滚性能的影响研究[J].电力机车与城轨车辆,2007,30(5):14-16.
    [56]Thomas B. Meinders, Peter Meinke, Werner O. Schiehlen. Wear Estimation in FlexibleMultibody Systems with Application to Railroads. ECCOMAS Thematic Conference,2005.
    [57]陈志强.东风4D型机车牵引齿轮箱的改进设计[J].内燃机车,2000(8):17-19.
    [58]袁晓军.架悬式齿轮联轴器传动装置运动分析[J].电力机车技术,2002,25(5):17-19.
    [59]H.Wakui, N.Matsumoto. A study on dynamic interaction for railway vehicle andstructures-mechanical model and practics analysis methed. QR of RTRI,Vol 35.1994.
    [60]GSchupp,H.Netter, L.Mauer, M.Gretzschel. Multibody system simulation of railwayvehicles with SIMPACK. Vehicle System Dynamics Supplement, Vol.31.1999.
    [61]张海涛.350km/h高速动车组用鼓形齿联轴器的研究与开发[D].:西南交通大学,2008.
    [62]李业明.大功率机车弹性联轴器及圆弧端齿联结技术研究[D].:西南交通大学,2009.
    [63]杨洁涛.马来西亚动车组联轴节组装工艺研究[J].企业技术开发,2012,31(13):55-56.
    [64]段博原,贾瑞娜.机械工程控制基础[M].科学出版社,2006
    [65]严隽耄,傅茂海.车辆工程[M].中国铁道出版社,2011
    [66]TB 2360-93.铁道机车动力学性能试验鉴定方法及评定标准[S].
    [67]GB 5599-85.铁道车辆动力学性能评定和试验鉴定规范[S].
    [68]周海涛.地铁车辆TD挠性联轴器与鼓形齿联轴器对比分析[J].机车电传动,2004(4):37-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700