新一代产品几何规范(GPS)不确定度理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代GPS标准体系是适应经济全球化要求的,面向数字化设计、制造与检验的标准与计量信息系统。不确定度理论是新一代GPS标准体系的重要基础理论,它不再局限于测量不确定度,还包括总体不确定度、相关不确定度、依从不确定度、规范不确定度、方法不确定度和执行不确定度等一系列新的概念。国际上新一代GPS不确定度理论的研究近几年才刚刚起步,相关的国际标准和应用指南也尚在酝酿之中。本文对这一理论及其应用技术进行了分析和研究,为工件的合格性判定提供了更为合理的判定原则,为工件在规范和认证过程中不确定度的传递计算提供了行之有效的方法,进而为中国参与相关国际标准的制订提供理论支持。主要研究内容与创新如下:
     针对ISO 14253-1给出的测量不确定度的判定原则在实际应用过程中存在的问题,本文提出了新一代GPS不确定度的判定原则,包括针对单个GPS规范的依从不确定度的判定原则和针对工件的总体不确定度的判定原则;所提出的判定原则不仅考虑了测量不确定度对于工件认证结果的影响,而且考虑了规范不确定度和相关不确定度对于工件认证结果的影响。与单纯的测量不确定度的判定原则相比,新一代GPS不确定度的判定原则的判定结果更为合理,而且与新一代GPS标准体系的基本要求相一致。
     提出了GPS标准链依从不确定度的计算框架。在对GPS标准链进行建模的基础上,分别给出了缺省状态下和特殊状态下依从不确定度的计算流程:在缺省状态下,依从不确定度应该根据执行不确定度和规范不确定度对于规范操作链影响的具体情况,经过规范操作链的传递计算得到;在特殊状态下,应该根据执行不确定度、方法不确定度和规范不确定度对于认证操作链影响的具体情况,经过认证操作链的传递计算得到。
     针对滤波操作,提出了线性轮廓滤波器的不确定度传递的计算方法。根据线性轮廓滤波器方程,由未滤轮廓的协方差矩阵推导出了滤过轮廓的协方差矩阵,从而由未滤轮廓的不确定度得到了滤过轮廓的不确定度。给出了典型的线性轮廓滤波器——高斯滤波器的两个测量实例,实验结果表明经过滤波操作后滤过轮廓的不确定度是有所变化的,这一传递规律对于GPS标准链依从不确定度的计算非常重要。
     针对拟合操作,提出了平面度和直线度最小二乘拟合的不确定度的计算方法。根据平面度和直线度最小二乘拟合的基本原理,推导出了平面度和直线度最小二乘拟合的不确定度的计算公式,并且对坐标测量中平面度和直线度最小二乘拟合的不确定度计算进行了实验分析,实验表明这种方法为平面度和直线度的坐标测量结果提供了不确定度指标,从而保证了测量结果的完整性,提高了认证的有效性。
The improved GPS system is an information system of standard and metrology, which adapts to the economic globalization and faces the digital designing, manufacturing and measuring. The uncertainty theory is an important component of the improved GPS system, which not only is destined for measurement uncertainty, but also includes such new concepts as total uncertainty, correlation uncertainty, compliance uncertainty, specification uncertainty, method uncertainty and implementation uncertainty. The study of the improved GPS uncertainty theory starts just now, and there are no relative international standards and guides for application. This theory and its application techniques are researched systematically in this paper. The more rational decision rules for conformance comparison of workpieces and the calculation method for uncertainty propagation of GPS standard-chain are supplied. Furthermore, the study will help China to attend the establishment of relative international standards. The main researches and creative points are as follows:
     After discussing the shortages of the decision rules based on measurement uncertainty given by ISO 14253-1, the decision rules based on improved GPS uncertainty are put forward, which include the decision rules based on compliance uncertainty for a given GPS specification and the decision rules based on total uncertainty for a given workpiece. In the decision rules presented in this paper, specification uncertainty and correlation uncertainty are taken into account besides measurement uncertainty. Therefore, the decision rules based on improved GPS uncertainty are more rational than the decision rules based on measurement uncertainty because they are accordant with the basic principle of the improved GPS system.
     The calculation framework for compliance uncertainty of GPS standard-chain is proposed. Based on the modeling of GPS standard-chain, the calculation flow for compliance uncertainty of GPS standard-chain is given respectively either in a default state or in a special state. In the default state, the compliance uncertainty should be calculated by the propagation of implementation uncertainty and specification uncertainty though the specification operator. However, in the special state, the compliance uncertainty should be obtained by the propagation of implementation uncertainty, specification uncertainty and method uncertainty though the verification operator.
     Aiming at the filtration operation, the calculation method for uncertainty propagation of linear profile filter is put forward. According to the filter equation of linear profile filter, the covariance matrix of filtered profile can be derived from the covariance matrix of unfiltered profile, so the uncertainty of filtered profile can be deduced from the unfiltered profile by the algorithm. Furthermore, two measurement examples of Gaussian filter are given, and the experimental results indicate that the uncertainty is variational after filtration operation. The variation of uncertainty is very important to the calculation of compliance uncertainty.
     Aiming at the association operation, the calculation method for the uncertainty of flatness and spatial straightness least-square verification is proposed. According to the basic principle of flatness and spatial straightness least-square verification, the calculation equation for the uncertainty of flatness and spatial straightness in three-dimensional measurement is deduced. The experimental results indicate that the method not only assures the integrity of the verification result, but also improves the veracity of verification by providing the index of uncertainty.
引文
[1] ISO/TR 14638: Geometrical product specification (GPS) – Masterplan, 1995
    [2] X. Q. Jiang. An Integrated Overview of Next Generation GPS. Proceedings of the Second International Symposium on Instrumentation Science and Technology. Jinan, China. 2002: 259 ~ 264
    [3] Z. Humienny, P. H. Osanna, et al. Geometrical Product Specifications. Warszawa: Warsaw University of Technology Printing House, 2001
    [4] International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement (GUM). BIPM, IEC, IFCC, ISO, IUPAU, IUPAP, OIML, 2nd edition, 1995
    [5] ISO 14253-1: Geometrical product specification (GPS) – Inspection by measurement of workpieces and measuring equipment – Part 1: Decision rules for proving conformance or non-conformance with specifications, 1998
    [6] ISO/TS 14253-2: Geometrical product specification (GPS) – Inspection by measurement of workpieces and measuring equipment – Part 2: Guide to the estimation of uncertainty in GPS measurement, in calibration of measuring equipment and in product verification, 1999
    [7] ISO/TS 14253-3: Geometrical product specification (GPS) – Inspection by measurement of workpieces and measuring equipment – Part 3: Guidelines for achieving agreements on measurement uncertainty statements, 2002
    [8] ISO/TS 17450-2: Geometrical product specification (GPS) – General Concepts – Part2: Operators and uncertainty, 2002
    [9] ISO/TS 17450-1: Geometrical product specification (GPS) – General Concepts – Part1: Model for geometric specification and verification, 2002
    [10] BS 6808: British standard – Coordinate measuring machines, parts 1–3. London: British Standards Institute, 1987
    [11] JIS B7440: Japanese industrial standard – Test code for accuracy of coordinate measuring machines. Tokyo: Japanese Standards Association, 1987
    [12] VDI/VDE 2617: Accuracy of coordinate measuring machines, parts 1–4. Düsseldorf: Verein Deutscher Ingenieure (VDI/VDE), 1989
    [13] P. Bennich. Chains of Standards – A New Concept in GPS Standards. Manufacturing review. The American Society of Mechanical Engineers, 1994,7(1): 29-38
    [14] 李柱, 徐振高, 蒋向前, 马利民. 基于计量学的产品几何量技术规范新发展及其意义. 量测资讯(中国台湾), 2005, 3: 53-56
    [15] 蒋向前. 现代产品几何技术规范 GPS 国际标准体系. “产品尺寸和几何技术规范”与“技术产品文件”标准化交流研讨会论文集, 2003: 1-11
    [16] 李柱, 高咏生. “顶天立地”——21 世纪计量与仪器科学技术的发展. 中国机械工程, 2000, 11(3): 270-272
    [17] http: //isotc213.ds.dk
    [18] 王金星, 马利民, 蒋向前, 徐振高, 李柱. GPS 标准体系的研究进展. 中国标准化, 2004, 6: 71-73
    [19] BS 8888: Technical product documentation (TPD) – Specification for defining, specifying and graphically representing products, 2000
    [20] PD 8888: Technical product documentation (TPD) – An interim report, 2001
    [21] BS 8888: Technical product documentation (TPD) – Specification for defining, specifying and graphically representing products, 2002
    [22] V. Srinivasan. A geometrical product specification language based on a classification of symmetry groups. Computer-Aided Design, 1999, 31: 659-668
    [23] 蒋向前. 现代产品几何量技术规范(GPS)国际标准体系. 机械工程学报, 2004, 40(12): 133-138
    [24] M. G. Cox, P. M. Harris. Design and use of reference data sets for testing scientific software. Anal. Chim. Acta. 1999, 380: 339-351
    [25] M. G. Cox. A discussion of approaches for determining a reference value in the analysis of key-comparison data. 4th Workshop on Advanced Mathematical and Computational Tools in Metrology, Oxford, England, 1999: 45-65
    [26] M. G. Cox, A. B. Forbes, P. M. Herris, G. N. Peggs. Experimental design in determining the parametric errors of CMMS. 4th International Conference on LaserMetrology and Machine Performance, Univ. Northumbria, Newcastle, England, 1999: 13-22
    [27] I. J. Anderson, J. C. Mason and D. A. Turner. An efficient algorithm for template matching. Advanced Mathematical and Computational Tools in Metrology Ⅳ, World scientific, Singapore, 2000: 1-10
    [28] D. A. Turner, I. J. Anderson, J. C. Mason, M. G. Cox and A. B. Forbes. An efficient separation-of-variables approach to parametric orthogonal distance regression. Advanced Mathematical and Computational Tools in Metrology Ⅳ , World scientific, Singapore, 2000: 246-255
    [29] C. Ross, I. J. Anderson, J. C. Mason and D. A. Turner. Approximating coordinate data that has outliers. Advanced Mathematical and Computational Tools in Metrology Ⅳ, World scientific, Singapore, 2000: 210-219
    [30] J. Allgair, C. Archie, etc. Towards a Unified Advanced CDSEM Specification for Sub-0.18um Technology. Proc. SPIE 3332, 1998: 138-150
    [31] H. Amick, B. Sennewald, N. C. Pardue, E. C. Teague. Vibration of a Room-Sized Airspring-Supported Slab. Noise Control Eng. J., 1998, 64(2): 39-47
    [32] C. Archie, J. Lowney, M. T. Postek. Modeling and Experimental Aspects of Apparent Beam Width as an Edge Resolution Measure. Proc. SPIE 3677, 1999: 669-687
    [33] J. Bennett, J. A. Dagata. TOF-SIMS Imaging of STM-Modified Semiconductor Surface. Secondary Ion Mass Spectrometry SIMS IX, A. Benninghoven et al., eds., John Wiley and Sons, Chichester, 1994: 34-74
    [34] M. W. Cresswell, R.A. Allen, L.W. Linholm, etc. New Test Structure for Nanometer-Level Overlay and Feature-Placement Metrology. IEEE Transactions on Semiconductor Manuf., 1994, 7(3): 266-271
    [35] J. Fu, V. W. Tsai, R. Koning, R. G. Dixson, T.V. Vorburger. Algorithms for Calculating Single-Atom Step Heighs. Nano-technology, 1999, 10: 438-433
    [36] J. Fowler, M. Carlisle. Information Technology for Engineering and Manufacturing. Journal of Research of the National Institute of Standards and Technology, November, 2000
    [37] R. Sriram, S. R. Gorti, A. Gupta, G. Kim and A. Wong. An Object-Oriented Representation for Product and Design Processes. Journal of CAD, 1998, 30 (7): 489-501
    [38] R. Sriram, M. Pratt, S. Feng and E. Y. Song. Information Modeling on Conceptual Design Integrated with Process Planning. Recent Advances in Design for Manufacture, DE-Vlo. 109, the Proceedings of the 2000 International Mechanical Engineering Congress and Exposition, 2000: 123130
    [39] Z. C. Yan, B. D. Yang, C. H. Menq. Uncertainty analysis and variation reduction of three dimensional coordinate metrology. Part 1: Geometric error decomposition. International J. of Machine Tools & Manufacture, 1999, 39: 1199-1217
    [40] Z. C. Yan, B. D. Yang, C. H. Menq. Uncertainty analysis and variation reduction of three dimensional coordinate metrology. Part 2: Uncertainty analysis. International J. of Machine Tools & Manufacture, 1999, 39: 1219-1238
    [41] V. Srinivasan. An Integrated View of Geometrical Specification and Verification. 7th CIRP Seminar on Computer-Aided Tolerancing, 2001
    [42] Ma Limin, Jiang Xiangqian, Xu Zhengao and Li Zhu. An Investigation on the Technical Standard Strategy for China’s Manufacturing Industry. J. Phys.: Conf. Ser. 2005, 13: 389-393
    [43] 王以铭. 测量不确定度评定与表示指南. 北京: 中国计量出版社, 2001
    [44] International Organization for Standardization, “Guide to the Expression of Uncertainty in Measurement” (GUM). BIPM, IEC, IFCC, ISO, IUPAU, IUPAP, OIML, 1st edition, 1993
    [45] http: //www.bipm.fr/CC/documents/JCGM/bibliography_on_uncertainty.html
    [46] http: //physics.nist.gov/cuu/Uncertainty
    [47] http: //www.gum.dk
    [48] http: //www.quametec.com
    [49] http: //www.measurement.com
    [50] International vocabulary of basic and general terms in metrology (VIM). BIPM, IEC, IFCC, ISO, IUPAU, IUPAP, OIML, 2nd edition, 1993
    [51] GUM Supplement 1 – Numerical Method for the Propagation of Distributions. (Adraft document)
    [52] W. T. Estler. The Joint Committee for Guides in Metrology: Supplementing the Guide to the Expression of Uncertainty in Measurement. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004. 3-4
    [53] 刘智敏. 不确定度原理. 北京: 中国计量出版社, 1993
    [54] 叶德培. 测量不确定度. 北京: 国防工业出版社, 1996
    [55] 刘智敏, 刘风. 现代不确定度方法与应用. 北京: 中国计量出版社, 1997
    [56] 沙定国. 误差分析与测量不确定度评定. 北京: 中国计量出版社, 2003
    [57] http: //www.cciblac.org.cn/documents/wenjian/ag04.htm
    [58] http: //zqdlt.nim.ac.cn
    [59] http: //www.qian2000.net
    [60] JJF 1059: 测量不确定度评定与表示, 1999
    [61] 钱钟泰, 施昌彦, 高蔚. 中国计量科学研究院代表团参加“计量学指南联合委员会(JCGM)”工作组会议总结报告, 2001
    [62] ICRPG Handbook for Estimating the Uncertainty in Measurements Made with Liquid Propellant Rocket Engine Systems. Chemical Propulsion Information Agency, No. 180, 1969
    [63] ANSI/ASME PTC 19.1-85, Instruments and Apparatus, Part 1: Measurement Uncertainty, 1985
    [64] Ronald H Dieck. Measurement Uncertainty Models. ISA Transactions, 1997, 36 (1): 29-35
    [65] NCSL Z540 – 2: Guide to the Expression of Uncertainty in Measurement, 1997 (National Standard of USA)
    [66] S. D. Phillips. Uncertainty due to Finite Resolution Measurement. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004: 14-27
    [67] Dilip A Shah. The Uncertain State of Uncertainty in Industry. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004: 34-39
    [68] Jonathan W. Arenberg. Industry Applications of Uncertainty Analysis. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004: 40-45
    [69] Joe Drescher. Characterization of a Turbine Airfoil Cooling Hole Check Standard for 5-axis CMMs-Uncertainty Reduction by Redundancy and Error Reversal. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004: 107-112
    [70] Peter Blake. Surface Figure Measurement at 80K: Alignment and Uncertainty Analysis. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004: 72-77
    [71] Woncheol Choi, Thomas R. Kurfess, Jonathan Cagan. Sampling uncertainty in coordinate measurement data analysis. Precision Engineering, 1998, 22: 153-163
    [72] Chenggang Che, Jun Ni. A generic coordinate transformation uncertainty assessment approach and its application in machine vision metrology. International Journal of Machine Tools & Manufacture, 1998, 38: 1241-1256
    [73] Christopher J. Freitas. The issue of numerical uncertainty. Applied Mathematical Modelling, 2002, 26: 237-248
    [74] ASME B89.7.3.1: Guidelines for Decision Rules: Considering Measurement Uncertainty in Determining Conformance to Specifications, 2001
    [75] ASME B89.7.3.2: Simplified GUM. (In progress)
    [76] ASME B89.7.3.3: Guidelines for Assessing the Reliability of Dimensional Measurement Uncertainty Statement, 2002
    [77] 刘智敏. 不确定度及其实践. 北京: 中国计量出版社, 2000
    [78] 费业泰. 误差理论与数据处理. 北京: 机械工业出版社, 2000
    [79] N.M. Durakbasa, P.H. Osanna, A. Afjehi-Sadat. A general approach to workpiece characterization in the frame of GPS (Geometrical Product Specification and Verification). International Journal of Machine Tools & Manufacture, 2001, 41: 2147-2151
    [80] 王金星, 蒋向前. 新一代产品几何技术规范(GPS)研究——现代 GPS 的理论基础及关键技术. 世界标准化与质量管理, 2004, 11: 30-35
    [81] J. X. Wang, X. Q. Jiang, et al. A Framework for Uncertainty Evaluation of GPS Standard-chain. Proceedings of ASPE Summer Topical Meeting on Uncertainty Analysis in Measurement and Design. Pennsylvania, USA. 2004: 146-151
    [82] J. X. Wang, X. Jiang, et al. Decision rules for workpieces based on total uncertainty. The International Journal of Advanced Manufacturing and Technology, DOI: 10.1007/s00170-004-2477-9.
    [83] 李柱, 徐振高, 蒋向前. 互换性与测量技术. 北京: 高等教育出版社, 2004
    [84] Wang Jinxing, Jiang Xiangqian et al. A Calculation Method for Compliance Uncertainty of GPS Standard-chain. Proceedings of the Second International Symposium on Precision Mechanical Measurements. Beijing, China. 2004: 156-166
    [85] 张琳娜, 赵凤霞, 李晓沛. 新一代 GPS 标准体系的理论基础和关键技术探讨. “产品尺寸和几何技术规范”与“技术产品文件”标准化交流研讨会论文集, 2003: 17-21
    [86] ISO 14660-1: Geometrical product specification (GPS) – Geometrical features – Part 1: General terms and definitions, 1999
    [87] ISO 14660-2: Geometrical product specification (GPS) – Geometrical features – Part 2: Extracted median line of a cylinder and a cone, extracted median surface, local size of an extracted feature, 1999
    [88] ISO/TC 213/WG 14/N170: Geometrical Product Specifications (GPS) – Features utilized in specification and verification – Part 1: General, 2001
    [89] Weckenmann A, et al. Functionality oriented evaluation and sampling strategy in coordinate metrology. Precision Engineering, 1995, 17: 244-252
    [90] Chan F M, Ling T G, Stout K J. The influence of sampling strategy on a circular feature in coordinate measurements. Measurement, 1991, 19(2): 73-81
    [91] Lee G, Mou J, Shen Y. Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine. Int J Mach Tools Manufact, 1997, 37(7): 917-934
    [92] 高国军等. 用 CMM 检测自由曲面时检测点和路径的规划方法研究. 西安交通大学学报, 1996, 7: 57-63
    [93] Kiyoshi Takamasu, Ryoshu Furutani, Shigeo Ozono. Basic concept of feature-basedmetrology. Measurement, 1999, 26: 151-156
    [94] S.G. Zhang, A. Ajmal, J. Wootton, A. Chisholm. A feature-based inspection process planning system for co-ordinate measuring machine (CMM). Journal of Materials Processing Technology, 2000, 107: 111-118
    [95] ISO/DTS 16610-01: Geometrical product specification (GPS) – Filtration – Part 1: Overview and basic terminology, 2003
    [96] ISO/DTS 16610-20: Geometrical product specification (GPS) – Filtration – Part 20: Linear profile filters: Basic concepts, 2003
    [97] ISO/DTS 16610-21: Geometrical product specification (GPS) – Filtration – Part 21: Linear profile filters: Gaussian filters, 2003
    [98] ISO/DTS 16610-22: Geometrical product specification (GPS) – Filtration – Part 22: Linear profile filters: Spline filters, 2003
    [99] ISO/DTS 16610-26: Geometrical product specification (GPS) – Filtration – Part 26: Linear profile filters: Filtration on nominally orthogonal grid planar data sets, 2003
    [100] ISO/DTS 16610-27: Geometrical product specification (GPS) – Filtration – Part 27: Linear profile filters: Filtration on nominally orthogonal grid cylindrical data sets, 2003
    [101] ISO/DTS 16610-29: Geometrical product specification (GPS) – Filtration – Part 29: Linear profile filters: Spline wavelets, 2003
    [102] ISO/DTS 16610-60: Geometrical product specification (GPS) – Filtration – Part 60: Linear areal filters: Basic concepts, 2003
    [103] ISO/DTS 16610-30: Geometrical product specification (GPS) – Filtration – Part 30: Robust profile filters: Basic concepts, 2003
    [104] ISO/DTS 16610-31: Geometrical product specification (GPS) – Filtration – Part 31: Robust profile filters: Gaussian regression filters, 2003
    [105] ISO/DTS 16610-32: Geometrical product specification (GPS) – Filtration – Part 32: Robust profile filters: Spline filters, 2003
    [106] ISO/DTS 16610-40: Geometrical product specification (GPS) – Filtration – Part 40: Morphological profile filters: Basic concepts, 2003
    [107] ISO/DTS 16610-41: Geometrical product specification (GPS) – Filtration – Part 41:Morphological profile filters: Disk and horizontal line segment filters, 2003
    [108] ISO/DTS 16610-42: Geometrical product specification (GPS) – Filtration – Part 42: Morphological profile filters: Motif filters, 2003
    [109] ISO/DTS 16610-49: Geometrical product specification (GPS) – Filtration – Part 49: Morphological profile filters: Scale space techniques, 2003
    [110] 王金星, 蒋向前, 马利民, 徐振高, 李柱. 线性轮廓滤波器的不确定度传递规律研究. 计量学报, 2005, 26(4): 313-315, 325
    [111] ISO 11562: Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Metrological Characteristics of Phase Correct Filters, 1996
    [112] 李惠芬. 基于新一代GPS体系的表面稳健高斯滤波技术的研究: [博士学位论文]. 武汉: 华中科技大学, 2004
    [113] ISO/DIS 12780-2.2: Geometrical Product Specifications (GPS) – Straightness – Part 2: Specification operators, 2001
    [114] ISO 4288: Geometrical product specification (GPS) – Surface texture – Profile method: Rules and procedures for the assessment of surface texture, 2003
    [115] Jér?ome Bachmann, Jean marc Linares, Jean Michel Sprauel, Pierre Bourdet. Aide in decision-making: contribution to uncertainties in three-dimensional measurement. Precision Engineering, 2004, 28(1): 78-88
    [116] Timothy Weber, Saeid Motavalli, Behrooz Fallahi, S. Hossein Cheraghi. A unified approach to form error evaluation. Precision Engineering, 2002, 26: 269-278
    [117] 王金星, 蒋向前, 马利民, 徐振高, 李柱. 平面度坐标测量的不确定度计算. 中国机械工程, 2005, 16(19): 1701-1703
    [118] 王金星, 蒋向前等. 空间直线度坐标测量的不确定度计算. 华中科技大学学报, 2005, 33(12): 1-3
    [119] ISO/DIS 12781-1: Geometrical Product Specifications (GPS) – Straightness – Part 1: Terms, definitions and parameters, 1999
    [120] ISO/DIS 12780-1: Geometrical Product Specifications (GPS) – Flatness – Part 1: Terms, definitions and parameters, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700