细胞毒活性海洋真菌的筛选及其生物碱类代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微生物生存环境特殊,其次级代谢产物化学结构新颖、种类繁多,是新活性先导化合物的重要来源。为了寻找新的活性先导化合物,本论文采用了抗肿瘤活性筛选和现代化学分析相结合的方法,选取萨氏曲霉Aspergillus sydowi PFW1-13和Aspergillus sp. HSN-2作为目标菌株,对其活性次级代谢产物进行了系统研究。
     采用海虾生物致死法和tsFT210细胞和K562细胞的流式细胞术筛选模型及抑菌试验筛选模型,以细胞周期抑制、细胞凋亡诱导以及坏死性细胞毒及抑菌圈为活性指标,结合化学筛选,从9个海洋样品(其中6个动物样品,三个漂浮物样品)中分离得到了287株微生物,其中具有强活性的菌株17株。
     采用薄层色谱,硅胶柱色谱,Sephadex LH-20柱色谱,反相高效液相色谱等分离手段,通过解析波谱数据并结合理化常数阐明了从萨氏曲霉Aspergillus sydowi PFW1-13中分得的35个化合物的结构:14-norpseurotin A (1), pseurotin A (4), 18-carbonyl tryprostatin A (5), methoxyl-spirotryprostatin B (6), 13-methoxyl verruculogen TR-2 (7), 12-hydroxyl terezines D (8), spirotryprostatin A (9), terezines D (10), fumitremorgin C (12), cyclotryprostatins B (13), verruculogen (16), tryptoquivaline O (18), fumiquinazolines F (19), fumiquinazoline G (20), fumiquinazoline J (21), fumiquinazoline A (22), fumiquinazoline C (23), fumiquinazoline D (24), bisdethiobis(methyl)gliotoxin (26), didehydrobisdethiobis- (methylthio)gliotoxin (27), fumigaclavine (29), fumigaclavine A (30),Pyripyropene A (31), Pyripyropene E (32), hydrohelvolic acid (33), helvolic acid (34),麦角甾醇(35),isosclerone (36),大黄素(37),大黄素-8-甲醚(38), Monomethylsulochrin (39), 5-methylbenzene-1,3-diol (40), 1,7-dihydroxyl-3-methyl-8-ketomethoxy- xanthone (41),苯甲酸(42), scytalone(43)(化合物结构及名称参见Fig. 1);从Aspergillus sp. HSN-2中分得的8个化合物的结构:呋喃螺内酰胺(2)和(3), tryprostatins B(11), 12, 13-dihydroxyfumitremorgin C (14), fumitremorgin B (15), cyclo-L-tryptophyl-L-proline (17), gliotoxin (25), 2,5-Piperazinedione (28) (化合物结构及名称参见Fig. 2)。生物碱1、5-8和降达玛烷型三萜类化合物33为新化合物。
     利用流式细胞术结合形态学检测、MTT和SRB法,对所分得的单体化合物的体外抗肿瘤活性进行了初步评价。结果表明,新化合物1对K562细胞有弱的增殖抑制活性;新化合物5、6对多种人癌细胞及哺乳动物癌细胞具有中等强度的细胞增殖抑制活性;新化合物7、8及33对多种人癌细胞及哺乳动物癌细胞有一定程度的细胞增殖抑制活性;化合物41对K562细胞具有一定的凋亡诱导作用;化合物32对K562和P388细胞有中等强度的增殖抑制活性;化合物2、16、18-24、29、36及38具有一定程度的细胞增殖抑制活性;化合物10-13、15、26、27、29和31对tsFT210细胞具有一定程度的细胞增殖抑制活性;化合物35有诱导凋亡和细胞毒活性。在抑菌试验中,化合物1、4、33和34对对大肠杆菌(Eschetichia coli)、将枯草芽孢杆菌(Bacillus subtilis)、溶壁微球菌(Micrococcus lysoleikticus)显示不同程度的抑菌活性。
     综上,本文采用组合筛选的方法获得海洋活性菌株,并阐明了2株海洋活性菌株代谢产物中43个化合物的结构,其中生物碱类化合物32个,新的生物碱类化合物5个,证明本方法是寻找结构新颖的先导化合物的有效手段。上述研究为抗肿瘤药物的研究提供了新化合物,并为从海洋微生物中分离有活性的生物碱类化合物的研究提供了基础资料。
Marine microorganism is a rich source of secondary metabolites content with diverse structures and various biological activities. A study is carried out to investigate the bioactive lead compounds derived from marine microorganisms. By combinatory use of brine shrimp bioassay testing, cytometric bioassay against tsFT210 cell line and K562 cell line and antibiotic experiment, and chemical analysis, 17 bioactive strains have been screened from 287 strains isolated from nine marine samples. Two fungal strains Aspergillus sydowi PFW1-13 and Aspergillus sp. HSN-2 are selected for further chemical investigation.
     Monitoring by bioassay-guided isolation, the active fraction is chromatographed on silica gel, Sephadex LH-20 and prepared TLC, and preparative reversed phase HPLC, respectively, thirty five compounds are isolated from the marine-derived fungal strain Aspergillus sydowi PFW1-13. By means of spectroscopic methods (1D-NMR, 2D-NMR, MS, IR, UV, etc.), their structures are elucidated as 14-norpseurotin A (1), pseurotin A (4), 18-carbonyl tryprostatin A (5), methoxyl-spirotryprostatin B (6), 13-methoxyl verruculogen TR-2 (7), 12-hydroxyl terezines D (8), spirotryprostatin A (9), terezines D (10), fumitremorgin C (12), cyclotryprostatins B (13), verruculogen (16), tryptoquivaline O (18), fumiquinazolines F (19), fumiquinazoline G (20), fumiquinazoline J (21), fumiquinazoline A (22), fumiquinazoline C (23), fumiquinazoline D (24), bisdethiobis(methyl)gliotoxin (26), didehydrobisdethiobis- (methylthio)gliotoxin (27), fumigaclavine (29), fumigaclavine A (30), Pyripyropene A (31), Pyripyropene E (32), hydrohelvolic acid (33), helvolic acid (34), Ergosterol (35), isosclerone (36), emodin(37), questin (38), Monomethylsulochrin (39), 5-methyl- benzene-1,3-diol (40), 1,7-dihydroxyl-3-methyl-8-ketomethoxyxanthone (41), benzoic Acid (42), scytalone (43). By the same procedure, eight compounds are isolated from the fungal strain Aspergillus sp. HSN-2. The structures are elucidated as furanylspiro-lactam (2) and (3), typrostatins B(11), 12, 13-dihydroxyfumitremorgin C (14), fumitremorgin B (15), cyclo-L-tryptophyl-L-proline (17), gliotoxin (25), 2,5- Piperazinedione (28). Among them, compounds 1, 5-8 and 33 are new compounds.
     The anti-tumor activities of these compounds are evaluated in vitro by SRB and flowed cytometry using mouse cdc2 mutant cells tsFT210, mouse leukemia cells P388, human leukemia carcinoma cells K562 and human cancer cells A549, BEL-7402 and HL60. Thirty compounds show potential anti-tumor activities. New compounds 1, 5, 6 and 33 exhibit moderate inhibiting the proliferation of many cancer cells, such as mouse leukemia cells P388, human cancer cells A549, BEL-7402 and HL60. New compounds 7, 8 and 33 inhibit the proliferation of mouse leukemia cells P388, human cancer cells A549, BEL-7402 and HL60. Compound 41 has apoptosis activity. Compound 32 exhibit moderate inhibiting the proliferation of K562 and P388 cell lines. Compounds 2, 16, 18-24, 29, 36 and 38 inhibit the proliferation of tsFT210 cells. Compounds 10-13, 15, 26, 27, 29 and 31 show weak inhibiting the proliferation of tsFT210 cells. Compound 35 exhibits apoptosis inducing and cytotoxic activities. In addition, compounds 1, 4, 33 and 34 are found to be active against Escherichia coli, Bacillus subtilis and Micrococcus lysoleikticus.
     In a word, there are forty three compounds which are obtained from the two fungal strains, five compounds in thirty two alkaloid compounds are new compounds. Studies mentioned above provide novel structures for searching leading antitumor compounds and it proves the method we use is effective in finding new active alkaloid compounds.
引文
1. Hong K.W., Sporn M.B. Recent advances in chemoprevention of cancer[J]. Science, 1997, 278: 1073-77.
    2. Jordan M.A., Thrower D., Wilson L. Mechanism of inhibition by vinca alkaloids[J]. Cancer Res., 1999, 51: 2212-17.
    3. 相建海.《海洋生物学》[M].科学出版社.2003,31.
    4. 史清文,顾玉诚. 海洋天然药物的研究概况[J].河北医科大学学报,2006, 27(4): 308-313.
    5. 缪浑南,方旭东,焦炳华.海洋生物资源开发研究概况与展望[J].氨基酸和生物资源,1999, 21(4): 12-18.
    6. 师晓栋,陈秀兰,何海伦等.海洋蛋白酶解物中生物活性肽的研究进展[J].氨基酸和生物资源,2000, 22(4): 13-16.
    7. 李盛英,郑忠辉.国外抗肿瘤活性物质的研究与开发[J]. 海洋通报,2003, 22(2): 76-82.
    8. 缪莉,郑忠辉,苏文金.共附生海洋微生物活性物质的研究进展[J]. 海洋通报,2002, 21(3): 62-68.
    1. 姚新生. 海洋抗肿瘤药物研究展望[J].第二军医大学学报,2002, 23(3): 233-235.
    2. Cui C.B., Yan S.Y., Cai B., Yao X.S. Carbazole alkaloids as new cell cycle inhibitors and apoptosis inducers from Clausena Dunniana Levl[J]. J.Asian Nat. Prod.Res., 2002, 4(4): 233-241.
    3. Cui C.B., Zhao Q.C., Cai B., Yao X.S., Osadsa H. Two new and four known polyphenolics obtained as new cell-cycle inhibitors from Rubus aleaefolius poir[J]. J.Asian Nat. Prod. Res., 2002, 4(4): 243-252.
    4. 朱天骄,崔承彬,顾谦群,等. 海洋微生物的分离培养及抗肿瘤活性初筛[J]. 青岛海洋大学学报,2002, 32 (123): 123-126.
    5. Solis P.N., Wright C.W., Anderson M.M., Gupta M.P., Phillipson J. D. A microwell cytotoxicity assay using Artemia salina (brine shrimp) [J]. Planta Med. 1993, 59 (3): 250-252.
    6. Meyer B.N., Ferrigni N.R., Putnam J.E., Jacobsen L.B., Nichols D.E., McLaughlin J.L. Brine Shrimp: A convenient general bioassay for active plant constituents[J]. P1anta Med., 1982, 45: 31-34.
    7. 张永杰,王建锋,黄耀坚,等. 4 种裸子植物内生真菌抗肿瘤菌株的筛选[J]. 厦门大学学报,2002, 41 (6): 804-809.
    8. 杰利·L·麦克劳林,顾哲明. 两种简易的抗肿瘤活性初筛方法[J]. 中国中药杂志,1997, 22 (10): 617-619.
    9. 诸葛健,王正祥.《工业微生物实验技术手册》[M]. 中国轻工业出版社,110.
    1. 韩冰. 黄直丝链霉菌 18522 株和假轮枝链霉菌 YN17707 株生产的新细胞周期抑制剂的研究[D],沈阳药科大学博士学位论文,2004.
    2. 刘红兵. 中草药东京枫杨抗肿瘤活性成分的研究[D],中国海洋大学博士研究生学位论文,2004.
    3. 陆嘉. 海洋来源的放线菌 Z3001 次级代谢产物抗肿瘤活性成分研究[D],中国海洋大学硕士学位论文,2004.
    1. Bloch P., Tamm C. Isolation and structure of pseurotin A, a microbial metabolite of Pseudeurotium ovalis STOLK with an unusual heterospirocyclic system[J]. Helv. Chim. Acta, 1981, 64: 304-315.
    2. Mohr P., Tamm C. Biosynthesis of Pseurotin A[J]. Tetrahedron, 1981, 37: 201-212.
    3. Igarashi Y., Yabuta Y., Furumai T. Determination of the Absolute Configuration of Synerazol[J]. The Journal of Antibiotics, 2004, 8: 537-540.
    4. 刘睿. 五株海洋微生物代谢产物的抗肿瘤活性成分研究[D]. 中国海洋大学博士学位论文,2006
    5. 韩小贤. 海洋微生物代谢产物抗肿瘤活性成分研究[D]. 中国海洋大学博士学位论文,2005
    6. Cui C.B., Kakeya H., Okada G., Onose R., Ubukata M., Takahashi I., Isono K., Osada H. Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus[J]. Journal of antibiotics, 1995, 48: 1382-4.
    7. Cui C.B., Kakeya H., Okada G., Onose R., Osada H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus I. Taxonomy, fermentation, isolation and biological properties[J]. Journal of Antibiotics, 1996, 49: 527-533.
    8. Cui C.B., Kakeya H., Osada H. Novel mammalian cell cycle inhibitor, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus II. physico-chemical properties and structures[J]. J. Antibiot, 1996, 49(6): 534-540.
    9. Cui C.B., Kakeya H., Osada H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase[J]. Tetrahedron, 1996, 52: 12651-12666.
    10. Onishi T., Sebahar P.R., Williams R.M. Concise, asymmetric total synthesis of spirotryprostatin A[J]. Tetrahedron, 2004, 60: 9503-9515.
    11. Miyake F.Y., Yakushijin K., Horne D.A. A Concise Synthesis of Spirotryprostatin A[J]. Organic Letters, 2004, 6: 4249-4251.
    12. Von Nussbaum F., Danishefsky S. J. The total synthesis of (-)-Spirotryprostatin B[J]. Angew Chem Int Ed., 2000, 39: 2175-2178.
    13. Abraham W.R., Arfmann H.A. 12, 13-Dihydroxyfumitremorgin C from Aspergillus fumigatus[J]. Phytochemistry, 1990, 29: 1025-6.
    14. Hermkens P.H.H., Plate R., Ottenheijm H.C.J. Synthetic studies on fumitremorgins. III. First total synthesis of (-)- verruculogen TR-2[J]. Tetrahedron Letters, 1988, 29: 1323-4.
    15. Boyd S.A., Thompson W.J. Stereoselective synthesis of desmethoxy-(+) -verruculogen TR-2 [J]. Journal of Organic Chemistry, 1987, 52: 1790-4.
    16. Cole R.J., Kirksey J.W., Cox R.H., Clardy J. Structure of the tremor-producing indole, TR-2[J]. Journal of Agricultural and Food Chemistry, 1975, 23(5): 1015-18.
    17. Hermkens P.H.H., Plate R., Kruse C.G., Scheeren H.W., Ottenheijm H.C. Stereoselective Synthesis of Verruculogen TR-2 Featuring the Mild Formation of a Dihydro-β-carbolinea s an Intermediate[J]. Journal of Organic Chemistry, 1992, 57: 3881-7.
    18. Cole R.J., Kirksey J.W. Mycotoxin verruculogen. 6-O-Methylindole[J]. Journal of agricultural and food chemistry, 1973, 21: 927-9.
    19. Cole R.J., Kirksey J.W., Dorner J.W., Wilson D.M., Chexal J.K., Clardy J.C., Cox R.H. Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage[J]. J. Agric. Food.Chem., 1977, 25: 826-830.
    20. Cui C B, Kakeya H, Osada H. Novel mammalian cell cycle inhibitor, cyclotryprostatins A-D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase[J]. Tetrahedron, 1997, 53(1): 59-72
    21. Kodato S., Nakagawa M., Hongu M., Kawate T., Hino T. Total synthesis of (+)-fumitremorgin B, its epimeric isomers, and demethoxy derivatives[J].Tetrahedron, 1988, 44: 359-77.
    22. Nakagawa M., Kodato S., Hongu M., Kawate T., Hino T. Total synthesis of fumitremorgin B[J]. Tetrahedron Letters, 1986, 27: 6217-20.
    23. Kondoh M., Usui T., Mayumi T., Osada H. Effects of tryprostatin derivatives on microtubule assembly in vitro and in situ[J]. Journal of Antibiotics 1998, 51: 801-804.
    24. Wang Y., Gloer J.B., Scott J.A., Malloch D. Terezines A-D: New Amino Acid-Derived Bioactive Metabolites from the Coprophilous Fungus Sporormiella teretispora[J]. J. Nat. Prod., 1995, 58: 93-99.
    25. 赵文英,四株海洋来源微生物中生物碱类活性成分研究[D],中国海洋大学博士学位论文,2006
    26. Nakatsuka S.I., Teranishi K., Goto T. Synthetic studies on fumitremorgin. II: Total synthesis of fumitremorgin B[J].Tetrahedron Lett, 1986, 27(52): 6361-6364.
    27. Fayos J., Lokensgard D., Clardy J., Cole R.J., Kirksey J.W. Structure of verruculogen, a tremor producing peroxide from Penicillium verruculosum[J]. Journal of the American Chemical Society, 1974, 96: 6785-7.
    28. Birch A.J., Russell R.A. Studies in relation to biosynthesis-XLIV: structural elucidations of brevianamides –B, -C, -D and –F[J]. Tetrahedron, 1972, 28: 2999-3008
    29. Takahashi C., Matsushita T., Doi M., Minoura K., Shingu T., Kumeda Y., Numata A. Fumiquinazolines A-G, novel metabolites of a fungus separated from a Pseudolabrus marine fish [J]. J Chem Soc Perkin Tran I, 1995: 2345-2352
    30. Heredia M.L., Cuesta dela E., Avendano C. Acid-promoted reactions in 1-hydroxy, 1-dimethylaminomethyl and 1-methylene-4-arylmethyl-2, 4-dihydro-1H-pyrazino [2, 1-b]-quinazoline-3, 6-diones[J]. Tetrahedron, 2002, 58: 6163-6170.
    31. David J.H., Nabi A.M. Synthesis of (-)-alantrypinone [J].Tetrahedron Lett, 1999, 40: 5429-5432.
    32. David J.H., Nabi A.M. Synthesis of ent-Alantrypinone [J]. J Am Chem Soc, 2001, 123: 5892-5899.
    33. Kaouadji M., Steiman R., Seigle-Murandi F., Krivobok S., Sage L.Gliotoxin: Uncommon 1H Couplingg And Revised 1H- and 13C-NMR Assignments[J]. J Nat Prod, 1990, 53 (3): 717-719
    34. Okamoto M., Yoshida K., Uchida I., Nishikawa M., Kohsaka M., Aoki H. Studies of platelet activating factor (PAF) antagonists from microbial products. I. Bisdethiobis(methylthio) gliotoxin and its derivatives[J]. Chem Pharm Bull, 1986, 34: 340-344
    35. Kirby G.W., Robins D.J., Sefton M.A., Talekar R.R. Biosynthesis of Bisdethiobis(methylthio) gliotoxin, a New Metabolite of Gliocladium deliquescens[J]. J Chem Soc Perkin Trans 1, 1980: 119-121
    36. Kirby G.W., Rao G.V., Robins D.J. New Co-metabolites of Gliotoxin in Gliocladium virens[J]. J Chem Soc Perkin Trans 1, 1988: 301-304
    37. Stark T., Hofmann T. Structures, sensory activity, and dose/response functions of 2, 5-diketopiperazines in roasted cocoa nibs (Theobroma cacao)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(18): 7222-7231.
    38. Cole R.J., Kirksey J.W., Dorner J.W., Wilson D.M., Johnson J.C.J., Johnson A.N., Bedell D.M., Springer J.P., Chexal K.K.Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage[J]. J. Agric. Food Chem., 1977, 25: 826-830.
    39. Liu J.Y., Song Y.C., Zhang Z., Wang L.,Guo Z.J., Zou W.X , Tan R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites[J]. Journal of Biotechnology, 2004, 114: 279–287.
    40. Tomoda H., Kim Y.K., Nishida H., Masuma R., Omura S. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties[J]. Journal of Antibiotics, 1994, 47(2): 148-53.
    41. Kim Y.K., Tomoda H., Nishida H., Sunazuka T., Obata R., Omura S. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. II. Structure elucidation of pyripyropenes A, B, C and D[J]. Journal of Antibiotics, 1994, 47(2): 154-62.
    42. Tomoda H., Nishida H., Kim Y.K., Obata R., Sunazuka T., Omura S., Bordner J., Guadliana M., Dormer P.G., Smith A.B. III. Relative and Absolute Stereochemistry of Pyripyropene A, A Potent, Bioavailable Inhibitor of Acyl-CoA:Cholesterol Acyltransferase (ACAT) [J]. Journal of the American Chemical Society, 1994, 116(26): 12097-8.
    43. Tomoda H., Tabata N., Nakata Y., Nishida H., Kaneko T., Obata R., Sunazuka T., Omura S. Biosynthesis of pyripyropene A[J]. Journal of Organic Chemistry, 1996, 61(3): 882-6.
    44. Tomoda H., Tabata N., Yang D.J., Takayanagi H., Nishida H., Omura S. Pyripyropenes,novel ACAT inhibitors produced by Aspergillus fumigatus. III. Structure elucidation of pyripyropenes E to L[J]. Journal of Antibiotics, 1995, 48(6): 495-503.
    45. Cram D.J., Allinger N.L. Mold metabolites. VIII. Contribution to the elucidation of the structure of helvolic acid[J]. Journal of the American Chemical Society, 1956, 78: 5275-84.
    46. Norman L.A. The nuclear magnetic resonance spectrum of helvolic acid[J]. J Org Chem, 1956, 21: 1180-1182.
    47. Allinger N.L., Coke J.L. Structure of helvolic acid III[J]. Journal of Organic Chemistry, 1961, 26: 4522-9.
    48. Godtfredsen W.O., Von Daehne W., Tybring L., Vangedal S. Fusidic acid derivatives. I. Relation between structure and antibacterial activity[J]. Journal of Medicinal Chemistry, 1966, 9: 15-22.
    49. Okuda S., Iwasaki S., Sair M.I., Machida Y., Inoue A., Tsuda K. Stereochemistry of helvolic acid[J]. Tetrahedron Letters, 1967, 24: 2295-2302.
    50. Tschen Johannes S.M., Chen L.L., Hsieh S.T., Wu T.S. Isolation and phytotoxic effects of helvolic acid from plant pathogenic fungus Sarocladium oryzae[J]. Botanical Bulletin of Academia Sinica, 1997, 38: 251-256.
    51. 乐长高, 林永成, 姜广策, 等. Julellaavicenniae 两个代谢产物结构的测定[J]. J. East China Geologi Institute, 1999, 21: 64-66.
    52. Wright J.L.C. Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy[J]. Can J Chem, 1978, 56: 1898-19.
    53. 严小红, 宋国强, 周秀红, 等. 一种南海海绵(Acanthella sp.)的化学成分研究[J]. 天然产物研究与开发, 2003, 15: 199-202.
    54. 蒋亭, 田黎, 李果. 黄海葵附生真菌 Aspergillus flavipes 化学成分的研究[J]. 哈尔滨商业大学学报, 2002, 18: 30-33.
    55. Venktasubbaiah P., Chilton W.S. Toxin produced by the dogwood anthracnose fungus Discula sp.[J]. J. Nat. Pro., 1991, 54: 1293-1297.
    56. Kokubun T., Veitch N.C., Bridge P.D., Simmonds M.S.J. Dihydroisocoumarins and a tetralone from Cytospora eucalypticola[J]. Phytochem., 2003, 62: 779-782.
    57. 许颂, 梁华清. 刺人参的蒽醌成分研究[J]. 中草药, 1998, 29(4): 222-223.
    58. 毕志明, 张勉,王峥涛. 流苏石斛化学成分的研究[J]. 中国药科大学学报, 2001, 32(6): 421-422.
    59. 卢艳花主编,中药有效成分提取分离技术[M]. 化学工业出版社,163-164.
    60. Ma Y.M., Li Y., Liu J.Y., Song Y.C., Tan R.X. Anti-Helicobacter pylori metabolites from Rhizoctonia sp. cy064, an endophytic fungus in Cynodon dactylon[J]. Fitoterapia, 2004, 75 (5): 451~456.
    61. Turner W.B. The production of trypacidin and monomethylsulochrin by Aspergillus fumigatus[J]. J. Chem. Soc [Perkin 1], 1965, 6658-6659.
    62. Guat L.S., Graham J.B., Leslie J.H., Keng Y.S. Minor xanthones from the bark of Cartoxylum cochinchinese[J]. Phytochemistry, 1995, 38: 1521-1528.
    63. Hanumaiah T., Rao B.K., Rao C.P., Rao G.S.R., Rao K.V.J., David S.M., Ronald H. Naphthalenes and naphthoquinones from Ventilago species[J]. Phytochemistry, 1985, 24: 1811-1815.
    64. Yamazaki M., Okuyama E. Isolation and structures of oxaphenalenone dimmers from Talaromyces bacillosporus[J]. Chem. Pharm. Bull., 1980, 28 (12): 3649-3655.
    65. 于德泉,杨峻山等. 分析化学手册(第二版)[M]. 北京:化学工业出版社. 1999
    66. Jordan D.B., Zheng Y.J., Lockett B.A., Basarab G.S. Stereochemistry of the Enolization of Scytalone by Scytalone[J]. Dehydratase.Biochemistry, 2000, 39: 2276-2282
    67. Saxton J.E. Indoles, part 4, New York, John Wiley & Sons 1983, 1-822.
    68. Numata A., Takahashi C., Matsushita T., Miyamoto T., Kawai K., Usami Y., Matsumura E., Inoue M., Ohishi H., Shingu T. Fumiquinazolines, Novel Metabolites of a Fungus Isolated from a Saltsishi[J]. Tetrahedron Lett, 1992, 33: 1621-1624.
    69. Belofsky G.N., Anguera M., Jensen P.R., Fenical W., Kock M. Oxepinamides A-C and Fumiquinazolines H-I: Bioactive Metabolites from a Marine Isolate of a Fungus of the Genus acremonium[J]. Chem Eur J., 2000, 6: 1355-1360.
    1. 张均田.现代药理实验方法[M]. 北京:北京医科大学中国协和医科大学联合出版社,1998, 822-823.
    2. 徐淑云,药理实验方法学[M]. 北京:人民卫生出版社,1982,1115-1146.
    3. 宋平根,李素文. 流式细胞术的原理(第一版)[M].北京师范大学出版社, 1992.
    4. 李仪奎.中药药理学实验方法学[M].上海:上海科学技术出版社,1991, 286.
    1. Zhang XY, Zhao QY, Xue S, et al. Bioactive compounds from marine sponges and cell culture of marine sponges [J], Chin J Biotechnol, 2002, 18: 10
    2. Shigemori H, Bae M A. Alteramide A. A new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai [J]. J Org Chem. 1992, 57: 4317-4320
    3. Kobayashi J, Ishibashi M. Bioactive metabolites of symbiotic marine microorganisms [J]. Chem Rev. 1993, 93; 1753-1769
    4. Unson M D, Holland M D, Faulkner D J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue [J]. Mar Biol , 1994, 199: 1-11
    5. Shigemori H, Bae M A,Yazawa K., et al. Alteramide A,a new tetracyclic alkaloid from a bacterium Alteromomas sp. Associated with the marine sponge Halichondria Okadai[J]. J Org Chem, 1992, 57: 4317-4320.
    6. Kobayashi M, Aoki S, Gato K, et al. Marine natural products XXXIV Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum [J].Chem Pharm Bull, 1994, 42 (12): 2449-51.
    7. Shigemori H, Tenma M, Shimazaki K, et al.Three New Metabolites from the Marine Yeast Aureobasidium pullulans [J]. J Nat Prod, 1998, 61: 696-698.
    8. Hernández L. M. C, Blanco J. A. F, Pérez Baz J, et al. 4'-N-methyl-5'-hydroxystaurosporine and 5'-hydroxystaurosporine, new indolocarbazole alkaloids from a marine Micromonospora sp. Strain [J]. J Antibiot, 2000, 53: 895-902.
    9. Mitova M, Tommonaro G, De Rosa S. A novel cyclopeptide from a bacterium associated with the marine sponge Ircinia muscarum [J]. J Biosciences, 2003, 58 (9/10): 740-745.
    10. Mitova M, Popov S, De Rosa S. Cyclic Peptides from a Ruegeria Strain of Bacteria Associated with the Sponge Suberites domuncula [J]. J Nat Prod, 2004, 67: 1178-1181.
    11. Jadulco R, Edrada R. A, Ebel R, et al. New Communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa [J]. J Nat Prod, 2004, 67: 78-81.
    12. Lee H S, Shin H J, Jang K H, et al. Cyclic Peptides of the Nocardamine Class from a Marine-Derived Bacterium of the Genus Streptomyces [J]. J Nat Prod, 2005, 68: 623-625.
    13. Yu C.-M, Curtis J M, Wright J L C, et al. An unusual fatty acid and its glyceride from the marine fungus Microsphaeropis olivacea [J]. Can J Chem, 1996, 74: 730-735.
    14. Keusgen M, Yu C.-M, Curtis J M, et al. A cerebroside from the marine fungus Microspaeropsis olivacea (Bonord.) [J]. Biochem Syst Ecol, 1996, 24: 465-468.
    15. Smith C, Abbanat D, Bernan V, et al. Novel Polyketide Metabolites from a Species of Marine Fungi [J]. J Nat Prod, 2000, 63: 142-145.
    16. Jadulco R, Proksch P, Wray V, et al. New Macrolides and Furan Carboxylic Acid Derivative from the Sponge-Derived Fungus Cladosporium herbarum [J]. J Nat Prod, 2001, 64: 527-530.
    17. Edrada R A, Heubes M, Brauers G, et al. Online Analysis of Xestodecalactones A-C, Novel Bioactive Metabolites from the Fungus Penicillium cf. montanense and Their Subsequent Isolation from the Sponge Xestospongia exigua [J]. J Nat Prod, 2002, 65: 1598-1604.
    18. Rahbk L, Sperry S, Piper J E, et al. Deoxynortrichoharzin , a new polyketide from the saltwater culture of a sponge-derived Paecilomyces fungus[J]. J Nat Prod, 1998, 61(12): 1571-1573.
    19. Abrell L M, Cheng X, Crews P. New nectriapyrones by salt-water culture of a fungus separated from an Indo-Pacific sponge [J]. Tetrahedron Lett, 1994, 35: 9159-9160.
    20. Edrada R A, Wray V, Berg A, et al. Novel spiciferone derivatives from the fungus Drechslera hawaiiensis isolated from the marine sponge Callyspongia aerizusa [J]. J Biosciences, 2000, 55(3/4): 218-221.
    21. Lin W L, Brauers G, Ebel R, et al. Novel chromone derivatives from the fungus Aspergillus vericolor isolated from the marine sponge Xestospongia exigua [J]. J Nat Prod, 2003, 66: 57-61.
    22. Brauers G, Edrada R A, Ebel R, et al. Anthraquinones and Betaenone Derivatives from the Sponge-Associated Fungus Microsphaeropsis Species: Novel Inhibitors of Protein Kinases [J]. J Nat Prod, 2000 ,63; 739-745.
    23. Hiort J, Maksimenta K, Reichert M, New natural products from the sponge-derived fungus Aspergillus niger [J]. J Nat Prod, 2004, 67: 1532-1543.
    24. Ahmed Abdel-Lateff, Secondary Metabolites of Marine-Derived Fungi: Natural Product Chemistry and Biological Activity. Ph D dissertation, Bonn 2004, 70-72.
    25. Jadulco R, Brauers G, Edrada R A, et al. Sponge -derived fungi Curvularia lunata and Cladosporium herbarum [J]. J Nat Prod, 2002, 65: 730-733.
    26. Bugni T S, Bernan V S, Greenstein M, et al. Brocaenols A-C: Novel Polyketides from a Marine-Derived Penicillium brocae [J]. J Org Chem, 2003, 68: 2014-2017.
    27. Bringmann G, Lang G, Steffens S, et al. Novel marine natural products. Part 5 - Evariquinone, isoemericellin, and stromemycin from a sponge derived strain of the fungus Emericella variecolor [J]. Phytochemistry, 2003, 63: 437-443.
    28. Cheng X.-C, Varoglu M, Abrell L, et al. Chloriolins A-C, Chlorinated Sesquiterpenes Produced by Fungal Cultures Separated from a Juspis Marine Sponge [J]. J Org Chem, 1994, 59: 6344-6348.
    29. Amagata T, Minoura K, Numata A. Gymnasterones, novel cytotoxic metabolite produced by a fungal strain from sponge [J]. Tetrahedron Lett, 1998, 39: 3773-3774.
    30. Wiki M., Otaki N, Yokoyama A, et al. Okadaxanthin, a novel C50-carotenoid from a bacterium Pseudomonas sp. KK10206C associated with marine sponge Halichondria okadai [J]. Experientia, 1994, 50 (7): 684-686.
    31. Xin Z H, Zhu W M, Gu Q Q, et al. A new cytotoxic compound from penicillium auratiogriseum, symbiotic or epiphytic fungus of sponge Mycale plumose [J]. Chin Chem Lett, 2005, 16 (9): 1227-1229.
    32. 顾谦群, 辛志宏, 朱伟明, 等. 喹唑啉生物碱类化合物及其制备方法和用途.中国发明专利, 公开号:CN 1830979 A, 2006-09-13.
    33. 刘睿, 方玉春, 段琳. 海绵共附生放线菌Saccharopolyspora sp. nov中抗肿瘤活性成分的研究[J]. 中国抗生素杂志, 2006, 31(11), in press.
    34. Liu R, Cui C B, Duan L, et al. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. Nov[J]. Archives of Pharmacal Research, 2005, 28(12): 1341-1344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700